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Structure of A=11 double-Λ hypernuclei studied with

three-body forces
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Abstract: The energy levels and ΛΛ bond energy of the double-Λ hypernucleus 11Be are calculated considering two-

and three-nucleon forces. The interactions between the constituent particles are contact interactions that reproduce

the low-energy binding energy of the nuclei. Effective action is constructed to involve the three-body forces. In

this paper, we compare the binding energy result that is obtained with the experimental and other modern nucleon-

nucleon potentials. The results of all the schemes agree very well, showing the high accuracy of our present ability to

calculate the many-nucleon bound state with three-body forces. The experimental value of BΛΛ(11ΛΛBe)=20.83 MeV

seems to be more compatible with our calculated value of BΛΛ(11ΛΛBe)=19.31 MeV in comparison with the calculated

result of 18.23 MeV by Hiyama et al.
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1 Introduction

In nuclear physics, a fundamental problem is to de-
scribe the different facets of the interactions among the
nucleons in two- and many-body hyperonic nuclei. Re-
cent advances in computational facilities, together with
the development of new methods and the refinement of
older ones, allow very precise calculations of few-body
systems. These advances are especially remarkable in
nuclear physics, considering the complexity of the nu-
clear interaction. Three-nucleon interactions are a fron-
tier, and a coherent theoretical and experimental effort
to constrain them in few- to many-nucleon systems is
necessary. Moreover, three-nucleon forces with indepen-
dent T=3/2 components have been developed and im-
plemented by the Urbana-Argonne-Los Alamos group.
When combined with the modern nucleon-nucleon Ar-
gonne v18 potential, these forces describe the spectra of
light nuclei and low-energy scattering in the five-body
system [1, 2]. Theoretically, hyperon-nucleon interac-
tions have many similarities, but also many differences
with nucleon-nucleon interactions: no one-pion-exchange
in Lambda-N, but one-kaon-exchange; important two-
pion-exchange with the excitation of an intermediate
sigma; and hyperon-nucleon-nucleon forces that may be
relatively more important than three-nucleon forces, de-
pending on whether the sigmas are explicitly kept. Bet-
ter hyperon-nucleon forces would help us understand the
role of hyperonic degrees of freedom in high-density mat-

ter, e.g. compact stars.
So far, several cluster models have appeared to es-

timate the ground-state binding energies of double-Λ
species [3–9]. Recently, ΛN interaction models have been
constructed by utilizing various Λ hypernuclear data to
complement the limited ΛN scattering data. A recent
finding of the double-Λ hypernucleus in the KEK-E373
experiment has had a great impact not only on the study
of baryon-baryon interactions in the strangeness S=−2
sector, but also on the study of the dynamics of many-
body systems with multi-strangeness [10]. Hiyama et
al. reported on a pioneering five-body ααnΛΛ cluster-
model calculation of 11

ΛΛBe in order to confront a possible
interpretation of the KEK-E373 HIDA event [11]. Gal
et al. also reported on a six-body ααnnΛΛ calculation
of 12

ΛΛBe to confront another possible interpretation that
is beyond reach at present [12]. They obtained binding-
energy shell-model estimates for both 11,12

ΛΛ Be, using ex-
perimental BΛ values with small corrections based on
recently determined ΛN spin-dependent interaction pa-
rameters. The results of their calculation conclude that
neither 11

ΛΛBe nor 12
ΛΛBe provide satisfactory interpreta-

tion of the HIDA event.
On the other hand, for the baryon-baryon interac-

tions with S =−2 sectors that are of concern presently,
experimental information has been highly limited due
to the extreme difficulties of two-body scattering exper-
iments. Therefore, the observed ΛΛ bond energies of
double-Λ hypernuclei should be the most reliable source
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for the S = −2 interaction, and such data play a deci-
sive role in determining the strength of underlying ΛΛ
interactions.

In this paper, we present the results of three-body
Faddeev-type calculations for the systems of three clus-
ters interacting through short-range nuclear as well as
long-range Coulomb interaction. Here we apply the
three-cluster Faddeev formalism to the five-body ααnΛΛ
model for 11

ΛΛBe. From the early years of hypernuclear
study, 11

ΛΛBe was considered to be a prototype of a five-
cluster structure, in which the two α clusters form a
loosely bound subsystem, nucleon and the effect of the
two Λ hyperon. We have succeeded in performing a five-
body calculation of 11

ΛΛBe using an ααnΛΛ cluster model
in comparison with the recent observation of the Hida
event for a new double Λ hypernucleus. The calculated
ΛΛ binding energy also shows good agreement with other
theoretical methods.

The paper is organized as follows. In Section 2 we
derive the Faddeev equations for the scattering ampli-
tude. The Faddeev equations will be solved by iteration
yielding a multiple scattering series. We tabulate the
calculated binding energy, discuss the theoretical errors,
and compare our results with the corresponding experi-
mental and theoretical values in Section 3. The summary
and conclusions follow in Section 4.

2 Two-cluster ΛΛ, Λn, Λα, αn and αα

interactions

2.1 αx interactions

As for the potentials Vαx between the clusters α and
x, we employ those which have often been used in the
OCM-based cluster-model study of light nuclei. Namely,
they are the VαN potential introduced in Ref. [13], the
Vαd and Vαt potentials given in Ref. [14] and the Vαα po-
tential used in Ref. [15], which reproduce the low-lying
states and low-energy scattering phase shifts of the αx
systems reasonably well. The potentials are described
in the following parity-dependent form with the central
and spin-orbit terms:

Vαx(r) =

imax
∑

i=1

Vie
−βir2

+

i′max
∑

i=1

(−)lV p
i e−β

p
i
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i e−γir2
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i e−γ
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l·sx ,

(1)

where V p
i shows the parity-dependent form of the poten-

tials and l is the relative angular momentum between α

and x, and sx is the spin of x. In the αα system, the spin-
orbit term is missing and the odd wave is forbidden by

the Pauli principle. The additional Coulomb potentials
are constructed by folding the proton-proton Coulomb
force into the proton densities of the α and x clusters.

2.2 Λx interactions

The interaction between the Λ particle and the x clus-
ter can be described by folding the G-matrix-type YN in-
teraction into the density of the x cluster. The obtained
interactions are given in Ref. [16] as

vΛN(r;kF) =

3
∑

i=1

[

(v(i)
0,even+v(i)

σσ,evenσΛ·σN)
1+Pr

2

+(v(i)
0,odd+v(i)

σσ,oddσΛ·σN)
1−Pr

2

]

e−µir2

, (2)

where Pr is the space exchange (Majorana) operator.
The strengths v(i) are represented as quadratic functions
of kF; see Eq. (2.7) of Ref. [16] and Table V of Ref. [8]
for various original YN interactions. The Λx interaction
is derived by folding the above vΛN(r;kF) interaction into
the x-cluster wave function. The kF depends on the mass
number of the cluster x. Because of the operator Pr

in Eq. (3.3), the resultant Λx potential becomes nonlo-
cal [8]. We summarize the functional form of the local
and nonlocal parts of the Λx potentials as

VΛx(r,r′) =

3
∑

i=1

(Vi+V s
i sΛ·sx)e

−βir2

δ(r−r′)

+

3
∑

i=1

(Ui+U s
i sΛ·sx)e

−γi(r+r
′)2−δi(r−r

′)2 , (3)

where sΛ=σΛ/2.

2.3 The Coulomb interaction

The T -matrix of the full Coulomb force is diver-
gent at the diagonal part and the strong oscillation in
the momentum representation. The Faddeev calculation
with the cut-off Coulomb force is a simple approximation
to the unsolvable Faddeev equation with the complete
Coulomb force. The Coulomb potential WC, due to its
long range, does not satisfy the mathematical properties
required for the formulation of standard scattering the-
ory as given in the previous subsection for short-range
interaction Vα. The comparison between the data from
the nuclear physics experiments and the theoretical pre-
dictions with full Coulomb is meaningful only if the full
and screened Coulomb becomes physically indistinguish-
able. We base our treatment of the Coulomb interaction
as a Ref. [17], and choose the screened Coulomb potential
in configuration-space representation as

WR(r)=WC(r)e−(r/R)n

, (4)

and then transform it to momentum-space. Here, R is
the screening radius and n controls the smoothness of
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the screening. The standard scattering theory is for-
mally applicable to the screened Coulomb potential WR,
i.e., the Lippmann-Schwinger equation yields the two-
particle transition matrix

TR=WR+WRg0tR, (5)

where g0 is the two-particle free resolvent.

2.4 Three-body nuclear reactions

The three-body system is the only nuclear three-
particle system that may be considered realistic in the
sense that the interactions are given by high precision
potentials valid over a broad energy range. The descrip-
tion of three-body nuclear reactions involves a number
of approximate methods that have been developed. The
methods are the distorted-wave Born approximation,
various adiabatic approaches [18], and the continuum-
discretized coupled-channels method [19]. The present
method based on Faddeev is more technically and nu-
merically involved and has some disadvantages. The
Faddeev method may be more flexible with respect to
dynamic input, and therefore allows us to test novel as-
pects of the nuclear interaction that are not accessible
with the traditional approaches. The comparison be-
tween traditional nuclear reaction approaches and the
momentum-space Faddeev method for various systems
is summarized here.

The standard nucleon-nucleus optical potentials em-
ployed in three-body calculations have central and, even-
tually, spin-orbit parts that are local. This local approx-
imation yields a tremendous simplification in the prac-
tical realization of distorted-wave Born approximation,
continuum-discretized coupled-channels and other tradi-
tional approaches that are based on configuration-space
representations where the use of nonlocal optical poten-
tials has never been attempted. There are very few non-
local parametrizations of the optical potentials available.
We take the one from Refs. [20, 21] defined in the con-
figuration space as

vγ(r′,r)=Hc(x)[Vc(y)+iWc(y)]+2Sγ·LγHs(x)Vs(y), (6)

with x = |r′ − r| and y = |r′ + r|/2. The cen-
tral part has real volume and imaginary surface parts,
whereas the spin-orbit part is real; all of them are
expressed in the standard way by Woods-Saxon func-
tions. Some of their strength parameters were readjusted
in Ref. [22] to improve the description of the experi-
mental nucleon-nucleus scattering data. The range of
the nonlocality is determined by the functions Hi(x) =
(πβ2

i )−3/2exp(−x2/β2
i ) with the parameters βi being of

the order of 1 fm. The description of the (α,Λ,n) three-
particle system with real potentials is quite successful at
low energies, but becomes less reliable with increasing
energy where the inner structure of the α particle can-

not be neglected anymore [23]. The methods based on
the Faddeev equations can also be applied in this case,
however, the potentials within the pairs that are bound
in the initial or final channel must remain real.

3 The Faddeev integral equation for the

ααnΛΛ system

We describe the scattering process in a system of
three-clusters interacting with short-range, strong inter-
actions vα, α=1, 2, 3; where, v1 is the potential between
clusters 2(αα) and 3(ΛΛ) [24, 25]. In the framework of
non-relativistic quantum mechanics, the center-of-mass
(c.m.) and the internal motion can be separated by in-
troducing Jacobi momenta

pα =
mγkβ−mβkγ

mβ+mγ

, (7)

qα =
mα(kβ+kγ)−(mβ+mγ)kα

mα+mβ+mγ

, (8)

where (αβγ), kα and mα are the cyclic permutations of
(123), the individual cluster momenta and the masses,
respectively. We start from the triad of the Lippmann-
Schwinger (LS) equations [25] acting on a three-cluster
initial state given by

Φ(c)
β =|pβ〉

(c)|qβ〉, (9)

where |pβ〉
(c) is a two-cluster state, and the index β=1,

2, 3 indicates the three choices of pairs characterized by
the third particle or cluster. Furthermore, Uβ=

∑

γ 6=β
Uγ ,

where Uγ (γ =1, 2, 3) are the pair forces. Three-body
forces can also be incorporated in a straightforward fash-
ion. The LS equations are given by:

Ψ (c)
0 =Φ(c)

β +GβUβΨ (c)
0 , (10)

where G−1
β =(E+iε−H0−Uβ)−1 is Green’s function. By

using standard Jacobi momenta pα and qα, Eq. (7) and
suitable multiplication of the three equations in the triad
from the left by Vγ , one obtains the transition operators

Vβ0≡(Uγ+Uθ)Ψ
(c)
0 , with γ 6=β, β 6=θ, which fulfill the set

of equations

Vβ0=
∑

γ 6=β

tγΦ0+
∑

γ 6=β

tγG0Uγ0, (11)

where Φ0=|p〉|q〉 is the three-cluster state. We consider
the system of three-clusters with charges zβ of equal sign
interacting via pairwise strong short-range and screened
Coulomb potentials Vβ +WβR with β being 1, 2, or 3.
The corresponding two-particle transition matrices are
calculated with the full channel interaction, see [22]

T (R)
β =(Vβ+WβR)+(Vβ+WβR)G0T

(R)
β , (12)

For the three-body break-up operator, one can gener-
ate the multiple scattering series directly by decomposing
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V00 as

V00≡
∑

θ

Vθ, (13)

where Vθ is the coupled set of Faddeev equations

Vθ=Tθ+TθG0

∑

α6=θ

Vβ . (14)

By iterating Eq. (14) and inserting the result into
Eq. (13), this leads exactly to the multiple scattering
series. So, we have a set of three coupled equations [26]

V1 = T1+T1G0(V2+V3),

V2 = T2+T2G0(V3+V1), (15)

V3 = T3+T3G0(V1+V2).

For the calculations, the ααnΛΛ five-body cluster is
quite challenging because of: (i) three species of parti-
cles (α, Λ, and neutron), (ii) five different kinds of in-
teractions (Λ-Λ, neutron-Λ, α-Λ, α-neutron and α-α)
involved, and (iii) the Pauli principle between the two
Λ particles and between the Λ and neutron. There are
interactions that are determined so as to reproduce the
observed binding energies of the two (ΛΛ, Λn, Λα, αn
and αα) and three-body (ΛΛα, Λαα, ΛΛn and αnΛ)
sub-clusters.

Fixing clusters arbitrarily, like the neutron as the
spectator and labelling it as “1”, and the two others (αα

and ΛΛ two-body clusters) as particles “2” and “3”, the
scattering wave function Ψ (c)

0 must be antisymmetric un-
der the exchange of particles “2” and “3”. Thus, defining
the exchange operator P23, the scattering wave function
must fulfill P23Ψ

(+)
0 = −Ψ (+)

0 . By applying the driving
terms to the free state, we obtain [26]:

V1Φ0,a=T1Φ0,a+T1G0(1−P23)V2Φ0,a

V2Φ0,a=T2Φ0,a+T2G0(−P23V2Φ0,a+V1Φ0,a).
(16)

where, Φ0,a≡(1−P23)|p1q1〉|0m2m3〉
∣

∣

∣
0
1

2

1

2

〉

, which is an-

tisymmetric under the exchange of the two clusters.
The matrix element for the n+αα+ΛΛ→11

ΛΛBe pro-
cess is simply related to the time-reversed photo disin-
tegration process of 11

ΛΛBe into three free clusters. It is
necessary that one can formulate the photodisintegration
of 11

ΛΛBe based on a three-particle picture. Let O be the
photon absorption operator and |Ψ11

ΛΛ
Be〉 the 11

ΛΛBe ground
state. The break-up amplitude into n+αα+ΛΛ can then
be written as an infinite series of processes

〈Φ0,a|V0|Ψ11
ΛΛ

Be〉

= 〈Φ0,a|O|Ψ11
ΛΛ

Be〉+
∑

i

〈Φ0,a|UiG0O|Ψ11
ΛΛ

Be〉

+
∑

ij

〈Φ0,a|UiG0UjG0O|Ψ11
ΛΛ

Be〉+··· . (17)

Here, Ui are the pair forces among the ΛΛ, Λn,Λα parti-
cles. This infinite series in terms of pair forces represents
the final state interactions. The first term is the direct
break-up process generated by O. By defining

〈Φ0,a|V0|Ψ11
ΛΛ

Be〉 = 〈Φ0,a|O|Ψ11
ΛΛ

Be〉

+
∑

i

〈Φ0,a|V0i|Ψ11
ΛΛ

Be〉, (18)

one can obtain the T -matrices Ti, which leads to three
coupled Faddeev equations (i=1, 2, 3) [26],

V0i|Ψ11
ΛΛ

Be〉=TiG0O|Ψ11
ΛΛ

Be〉+TiG0

∑

j 6=i

V0j |Ψ11
ΛΛ

Be〉, (19)

and the complete break-up amplitude

〈Φ0,a|U0|Ψ11
ΛΛ

Be〉 = 〈Φ0,a|O|Ψ11
ΛΛ

Be〉+〈Φ0,a|U01|Ψ11
ΛΛ

Be〉

+〈Φ0,a|(1−P23)U02|Ψ11
ΛΛ

Be〉. (20)

We employ the two-, three-, and four-body subsystem
interactions and single-particle and two-body currents,
and these coupled equations can be solved using stan-
dard techniques [27].

4 Results and discussion

We derived two coupled Faddeev equations for the
three-cluster scattering amplitudes, and the results of
three-body Faddeev-type calculations for systems with
three particles interacting through short-range nuclear
plus long-range Coulomb potentials. Realistic applica-
tions of the three-body theory to three-cluster nuclear re-
actions have only become possible in recent years since a
reliable and practical momentum-space treatment of the
Coulomb interaction was developed [22]. In the present
ααnΛΛ five-body system for 11

ΛΛBe, it is absolutely neces-
sary that any sub-cluster systems composed of the two,
three, or four constituent particles are reasonably de-
scribed by taking the interactions among these systems
as discussed in Section 2. We provided Faddeev equa-
tions for the n+αα+ΛΛ capture process to the 11

ΛΛBe
ground state.

In the present five-body calculation, we employ the
interactions of Ref. [10] so that those severe constraints
are also successfully met in our two-, three-, and four-
body subsystems. By using other work on double-Λ hy-
pernuclei, cluster model interactions were determined so
as to reproduce the following observed quantities well:
(a) the energies of the low-lying states and scattering
phase shifts in the αn and αα systems; (b) the Λ-binding
energies BΛ in 5

ΛHe (= αΛ), 6
ΛHe (= αnΛ) and 9

ΛBe
(=ααΛ); (c) the double-Λ binding energies BΛΛ in 6

ΛΛHe
(=αΛΛ), the NAGARA event [10].
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Tables 1 and 2 show the RMS distances r̄α, r̄Λ and
r̄n and of Λ, n and α, and the RMS. The distances are
r̄α−α between two α particles, r̄α−n between α and n
and r̄(αα)−n between (αα) and n in 11

ΛΛBe, respectively.
When the three-body force is added to the calculation,
the reduction in these distances is about 6%; this is sim-
ilar to the case of the double-Λ hypernuclei studied with
the ααnΛΛ five-body model and in comparison with its
results [10].

Table 1 also shows that the shrinkage effect is seen in
11
ΛΛBe due to the addition of two Λ particles.

Table 1. The calculated RMS distances r̄α, r̄Λ and
r̄n and of Λ, n and α, respectively, measured from
the c.m. of 11

ΛΛBe.

literature r̄α/fm r̄Λ/fm r̄n/fm

Hiyama et al. [10] 1.62 2.18 2.65

This calculation 1.56 2.05 2.51

Fig. 1. The calculated energy spectra of the low-
lying states of 11

ΛΛBe together with the results
by Hiyama et al. [10] and the lowest threshold,
10
ΛΛBe+n threshold. The value of the ground state
is also found to be −19.81 MeV by including all
other types of configurations such as 10

ΛΛBe∗+n,
10
Λ Be∗+Λ, 7

ΛΛHe∗+α and 6
ΛHe∗+5

ΛHe∗ [10]. The
experimental result is taken from Ref. [11].

Using the same framework of Ref. [10], we calculated
the energies and wave functions of the 5/2−

1 , 1/2+
1 and

1/2−
1 states of 11

ΛΛBe. As seen in Fig. 1, the calculated
value of BΛΛ(11ΛΛBe) is 19.31 MeV in comparison with the
calculated result of 18.23 MeV by Hiyama et al. [10] and
the experimental value of 20.83 MeV [11] for the 3/2−

ground state. There is a correction of about 7%, which
is much smaller than the result by Hiyama et al. [10].

The V bond
ΛΛ is defined, which is useful for estimating

the strength of the ΛΛ interaction [10]

V bond
ΛΛ (A

ΛΛZ)≡BΛΛ(A
ΛΛZ)−BΛΛ(A

ΛΛZ :VΛΛ=0) , (21)

where BΛΛ(A
ΛΛZ : VΛΛ = 0) denotes the BΛΛ value calcu-

lated by putting VΛΛ = 0. The calculated BΛΛ(11ΛΛBe)
is 19.67 MeV in 11

ΛΛBe and the calculated BΛΛ(11ΛΛBe;
VΛΛ = 0) is 19.13 MeV. Then, V bond

ΛΛ (A
ΛΛZ) = 0.54 MeV,

which is in comparison with the calculated value of
V bond

ΛΛ (A
ΛΛZ)=0.56 MeV by Hiyama et al. [10].

Table 2. The calculated RMS distances r̄α−α, r̄α−n

and r̄(αα)−n in 11
ΛΛBe.

literature r̄α−α/fm r̄α−n/fm r̄(αα)−n/fm

Hiyama et al. [10] 3.10 3.33 2.94

This calculation 3.02 3.21 2.05

5 Summary and conclusions

We presented the results of three-body Faddeev-type
calculations for systems with three clusters interact-
ing through short-range nuclear as well as long-range
Coulomb interaction. Realistic applications of three-
body theory to three-cluster nuclear reactions have only
become possible in recent years, when a reliable and prac-
tical momentum-space treatment of the Coulomb inter-
action was developed. For recent observation of the Hida
event for a new double-Λ hypernucleus, we succeeded
in performing a five-body calculation of 11

ΛΛBe using an
ααnΛΛ cluster model. The calculated ΛΛ binding en-
ergy is in good agreement with other theoretical meth-
ods. More precise data are needed in order to test our
present result, together with the three-body force, quan-
titatively. Many data for double-Λ hypernuclei are ex-
pected to be found in the new emulsion experiment E07
at J-PARC in the near future. Then, our predictions will
be clearly tested.

The experimental value of BΛΛ(11ΛΛBe)=20.83 MeV
seems to be more compatible with our calculated value
of BΛΛ(11ΛΛBe)=19.31 MeV in comparison with the calcu-
lated 18.23 MeV result by Hiyama et al.
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