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Abstract: By applying an appropriate Pekeris approximation to deal with the centrifugal term, we present an

approximate systematic solution of the two-body spinless Salpeter (SS) equation with the Woods-Saxon interaction

potential for an arbitrary l-state. The analytical semi-relativistic bound-state energy eigenvalues and the correspond-
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Key words: spinless Salpeter equation, usual Woods-Saxon potential, Nikiforov-Uvarov method

PACS: 03.65.Ca, 03.65.Pm, 03.65.Nk DOI: 10.1088/1674-1137/37/6/063101

1 Introduction

The Bethe-Salpeter (BS) equation [1], named after
Hans Bethe and Edwin Salpeter, describes the bound
states of a two-body (particles) quantum field theoret-
ical system in a relativistic covariant formalism. The
equation was actually first published in 1950 at the end
of a paper by Yoichiro Nambu but without derivation [2].

Due to its generality and its application in various
branches of theoretical physics, the BS equation appears
in many different forms [3–10]. Different aspects of this
equation have been elegantly studied mainly by Lucha et
al. in [11–25] and some other authors where they have
worked on many interesting approaches to deal with its
nonlocal Hamiltonian [26–30].

The Woods-Saxon (WS) potential is a short range
potential and widely used in nuclear, particle, atomic,
condensed matter and chemical physics [31–39]. This po-
tential is reasonable for nuclear shell models and used to
represent the distribution of nuclear densities. The WS
and spin-orbit interaction are important and applicable
to deformed nuclei [40] and to strongly deformed nuclides
[41]. The WS potential parameterization at large defor-
mations for plutonium 237,239,241Pu odd isotopes was an-
alyzed [33]. The structure of single-particle states in the
second minima of 237,239,241Pu has been calculated with
an exactly WS potential. The nuclear shape was param-
eterized. The parameterization of the spin-orbit part of
the potential was obtained in the region corresponding to

large deformations (second minima) depending only on
the nuclear surface area. The spin-orbit interaction of a
particle in a non-central self-consistent field of the WS
type potential was investigated for light nuclei and the
scheme of single-particle states has been found for mass
number A0 = 10 and 25 [40]. Two parameters of the
spin-orbit part of the WS potential, namely the strength
parameter and radius parameter, were adjusted to repro-
duce the spins for the values of the nuclear deformation
parameters [42].

The usual WS potential takes the form [31]

V (r)=− V0

1+e
r−R

a

, (1)

where V0 is the depth of potential, a is the diffuseness of
the nuclear surface and R is the width of the potential
[31, 38, 39].

The aim of the present work is to study the usual
WS potential within the framework of a semi-relativistic
SS equation and obtain approximate bound-state energy
eigenvalues and their corresponding wave functions. We
use a simple and powerful tool in the form of a paramet-
ric generalization of the Nikiforov-Uvarov (NU) method
[43]. Such a shortcut of the method has proved its ef-
fectiveness in solving various potential models over the
past few years [44].

The present work is organized as follows. In Section 2,
we review the SS equation and apply it to the usual
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WS potential interaction to obtain the semi-relativistic
SS bound-state energy spectrum and their correspond-
ing wave functions for two-interacting particles. In Sec-
tion 3, we consider the solution for the non-relativistic
case. Finally, in Section 4 we give our final comments
and conclusion.

2 Spinless Salpeter equation and its ap-

plication to the Woods-Saxon poten-

tial

The SS equation for a two-body system under a
spherically symmetric potential in the center-of-mass
system has the form [26, 27, 29]

[

∑

i=1,2

√

−∆+m2
i +V (r)−M

]

χ(~r)=0, ∆=∇2, (2)

where the kinetic energy terms involving the opera-
tion

√

−∆+m2
i are non-local operators and χ(~r) =

ψnl(r)Ylm(θ,φ) stands for the semi-relativistic wave func-
tion. For heavy interacting particles, the kinetic energy
operators in Eq. (2) can be approximated as [2–32]

√

−∆+m2
i =m1+m2−

∆

2µ
−∆2

8η3
−··· , (3)

where µ=m1m2/(m1+m2) stands for the reduced mass

and η = µ(m1m2/(m1m2−3µ2))
1/3

is simply an in-
troduced useful mass parameter [25, 26]. The above
Hamiltonian contains relativistic corrections up to order
(v2/c2) and is called a generalized Breit-Fermi Hamilto-
nian [11–15]. Using an appropriate transformation and
following the same procedures explained in Ref. [29] (see
Eqs. (13)–(18)), one can then arrive at the semirelativis-
tic SS equation:

[

− ~
2

2µ

d2

dr2
+
l(l+1)~2

2µr2
+Wnl(r)−

W 2
nl(r)

2m̃

]

ψnl(r)=0, (4)

where

Wnl(r)=V (r)−Enl, and m̃=
η3

µ2
=

m1m2µ

m1m2−3µ2
. (5)

Now, we intend to solve the above semi-relativistic
Eq. (4) with the usual Woods-Saxon potential interac-
tion (1). Thus, the insertion of Eq. (1) into (5) allows us
to obtain

{

d2

dr2
− l(l+1)

r2
+

2µ

~2

[

Enl

(

1+
Enl

2m̃

)

+V0

(

1+
Enl

m̃

)

y+
V 2

0

2m̃
y2

]}

ψnl(r)=0,

y=
1

1+eνx
, ν=

1

a
, x=r−R.

(6)

Because Eq. (6) cannot be solved analytically due to the

centrifugal term l(l+1)r−2, we have to use a proper ap-
proximation of this term. Unlike the usual approxima-
tion used for the first time in Greene and Aldrich’s work
[45], here we apply the Pekeris approximation by taking
an expansion around r=R (or x=0) in series of powers
of x/R as [46]:

Vl(r) =
l(l+1)

r2
=

l(l+1)

R2

(

1+
x

R

)2

∼=
l(l+1)

R2

[

1−2
( x

R

)

+3
( x

R

)2

+···
]

. (7)

Here the first three terms should be sufficient. Further,
the centrifugal term can also be replaced by the usual
Woods-Saxon potential form:

Ṽl(r)=
l(l+1)

r2
∼=
l(l+1)

R2
(D0+D1y+D2y

2), (8)

where Di (i = 0,1,2) can be determined as a function
of specific potential parameters [34]. If we expand the
expression (8) around r=R (or x=0) up to the second-
order term (x/R)

2
and next compare it with Eq. (7), we

can finally obtain the explicit forms of the parameters
D0, D1 and D2 as

D0 = 1− 4

νR
+

12

ν2R2
, (9a)

D1 =
8

νR
−

48

ν2R2
, (9b)

D2 =
48

ν2R2
. (9c)

Thus, we can replace the centrifugal term (7) by its
approximation (8) to obtain an approximate analytical
solution for Eq. (6) as

{

d2

dx2
+

1

1+eνx

[

2µV0

~2

(

1+
Enl

m̃

)

− l(l+1)D1

R2

]

+
1

(1+eνx)2

(

2µV 2
0

2~2m̃
− l(l+1)D2

R2

)

+

[

2µEnl

~2

(

1+
Enl

2m̃

)

− l(l+1)D0

R2

]}

ψnl(r)=0. (10)

Hence, the above equation is amendable to the solution
of the NU method [43]. Let us now introduce an appro-

priate transformation s=
1

1+eνx
into Eq. (10) to recast

it in a more simple form:
[

d2

ds2
+

1−2s

s(1−s)
d

ds
+

1

ν2s2(1−s)2

×(−As2+Bs−C)

]

ψnl(s)=0, (11)
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where

A =
1

ν2

(

l(l+1)D2

R2
−2µV 2

0

2~2m̃

)

, (12a)

B =
1

ν2

[

2µV0

~2

(

1+
Enl

m̃

)

− l(l+1)D1

R2

]

, (12b)

C =
1

ν2

[

l(l+1)D0

R2
−2µEnl

~2

(

1+
Enl

2m̃

)]

. (12c)

By comparing Eq. (11) with the relation (A1), we
find the coefficients,

c1=1, c2=2, c3=1, (13)

and further the relation (A5) determines the rest of the
coefficients as

c4=0, c5=0,

c6=A, c7=−B,

c8=C, c9=A−B+C,

c10=2
√
C, c11=2

√
A−B+C,

c12=
√
C, c13=

√
A−B+C,

(14)

where A+C>B is the essential requirement for the bound
state solutions. Therefore, from relation (A10), we can
obtain the binding energy eigenvalue equation as

n+
1

2
+
√
C+

√
A−B+C=

1

2

√
1+4A, (15)

where

A−B+C =
l(l+1)

ν2R2

(

1+
4

νR
+

12

ν2R2

)

− 2µ

ν2~2

[

Enl+V0+
(Enl+V0)

2

2m̃

]

, (16a)

C =
1

ν2

[

l(l+1)

R2

(

1− 4

νR
+

12

ν2R2

)

−2µEnl

~2

(

1+
Enl

2m̃

)]

, (16b)

1+4A = 1+
4

ν2

(

48l(l+1)

ν2R4
−µV

2
0

~2m̃

)

, (16c)

for which the binding energy is a negative quantity (i.e.,
Enl < 0) and of small value satisfying the inequality
Enl�m̃ [29]. Obviously, Eq. (15) seems to be a compli-
cated transcendental energy eigenvalue equation admit-
ting two solutions. However, we choose the negative one
as mentioned before.

Now, we seek to find the bound-state energy eigen-
values numerically via Eqs. (15) and (16) by taking

a set of physical parameter values for 208Pb as m1 =
m2 = 4.76504 fm−1 (938 MeV), V0 = 0.3431032 fm−1

(67.54 MeV), R=7.6136 fm and a=0.65 fm−1 [38, 39].
Hence, our numerical results are given in Table 1 for
various values of radial and orbital quantum numbers n
and l.

Table 1. Approximate energy eigenvalues of the SS
particles subject to the usual WS potential for
various values of n and l quantum numbers.

n l En,l

1 0 −0.345316379

2 0 −1.007879100

1 −1.006973500

3 0 −2.047025224

1 −2.046833187

2 −2.046625724

4 0 −3.656078626

1 −3.656902452

2 −3.657700993

3 −3.658474632

To show the behavior of the energy eigenvalues on
the usual WS parameters, we plot the binding energy
eigenvalues of the SS equation for the usual WS poten-
tial versus diffuseness of the nuclear surface a and the
width of the potential R in Figs. 1 and 2, respectively.
As can be seen from Fig. 1, when the diffuseness of the
nuclear surface a increases, the energy increases and the
binding energy decreases with the increasing of the width
of the potential R as shown in Fig. 2.

Fig. 1. Energy behavior of the SS equation with
the usual WS potential versus a for various val-
ues of l.

Let us now turn to the calculations of the correspond-
ing wave functions. Referring to Eq. (14) and relations
(A11) and (A12) of Appendix A, we find the functions

ρ(s) = s2
√

C(1−s)2
√

A−B+C , (17a)

φ(s) = s
√

C(1−s)
√

A−B+C . (17b)

Hence, the relation (A13) gives the first part of the wave
functions

yn(s)=P (2
√

C,2
√

A−B+C)
n (1−2s). (18)
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By using Rnl(s)=φ(s)yn(s), we get the radial SS wave
functions for the usual WS potential from the relation
(A14) as

ψnl(s)=Anls
√

C(1−s)
√

A−B+CP (2
√

C,2
√

A−B+C)
n (1−2s),

(19)

and after substituting s=
1

1+eν(r−R)
,we obtain

ψnl(r) = Anl

(

1

1+eν(r−R)

)

√
C (

eν(r−R)

1+eν(r−R)

)

√
A−B+C

×P (2
√

C,2
√

A−B+C)
n

(

eν(r−R)−1

eν(r−R)+1

)

, (20)

where Anl is the normalization constant. We have 2
√
C>

−1 and 2
√
A−B+C>−1.

Fig. 2. Energy behavior of the SS equation with
the usual WS potential versus R for various n.

3 Solution of the non-relativistic case

We consider the Schrödinger for a two-body system
interacting via the usual WS potential field. Under
some limiting conditions when Wnl(r) � m̃, the semi-
relativistic SS equation (4) reduces to the Schrödinger
wave equation:

[

d2

dr2
− l(l+1)

r2
+

2µ

~2
(Enl−V (r))

]

ψnl(r)=0. (21)

The binding energy equation of Eq. (21) can be easily
obtained via Eqs. (15) and (16) as

n−L+

√

l(l+1)

ν2R2

(

1− 4

νR
+

12

ν2R2

)

−2µEnl

ν2~2

= −

√

l(l+1)

ν2R2

(

1+
4

νR
+

12

ν2R2

)

− 2µ

ν2~2
(Enl+V0),

L(L+1) =
48l(l+1)

ν4R4
, L=−1

2
+

1

2

√

1+
192l(l+1)

ν4R4
, (22)

and followed by a lengthy but straightforward alge-
bra, we finally obtain the energy formula for the non-

relativistic case as

Enl =
~

2l(l+1)

2µR2

(

1− 4

νR
+

12

ν2R2

)

− ~
2

2µ(n−L)2

(

4l(l+1)

ν2R3
−µV0

ν~2
−1

2
(n−L)2

)2

. (23)

Now, we calculate numerically the non-relativistic en-
ergy eigenvalues from Eq. (23) with the aid of Eq. (22)
using a set of physical parameter values for 208Pb as
m1=m2=4.76504 fm−1 (938 MeV), V0=0.3431032 fm−1

(67.54 MeV), R=7.6136 fm and a=0.65 fm−1 [38, 39].
These numerical energies are displayed in Table 2 for
various n and l states.

Table 2. Approximate energy eigenvalues of the
Schrodinger particles subject to the usual WS po-
tential for various values of n and l quantum num-
bers.

n l En,l

1 0 −0.223223240

2 0 −0.336182678

1 −0.327759906

3 0 −0.590280900

1 −0.581509600

2 −0.564026223

4 0 −0.954658926

1 −0.945425071

2 −0.927031040

3 −0.899614482

Also, the plots of various Schrödinger energy states
for the WS potential versus diffuseness of the nuclear
surface a and the width of the potential R are shown in
Figs. 3 and 4, respectively.

Fig. 3. Energy behavior of the Schrödinger equa-
tion with WS potential versus a for various l.
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Fig. 4. Energy behavior of the Schrödinger equa-
tion with WS potential versus R for various l.

Further, the non-relativistic wave function can be
found as

ψnl(r) = Bnl

(

1

1+eν(r−R)

)ηl
(

eν(r−R)

1+eν(r−R)

)λi

×P (2ηl,2λi)
n

(

eν(r−R)−1

eν(r−R)+1

)

, (24)

with

λi=

√

l(l+1)

ν2R2

(

1+
4

νR
+

12

ν2R2

)

− 2µ

ν2~2
(Enl+V0),

ηl=

√

l(l+1)

ν2R2

(

1− 4

νR
+

12

ν2R2

)

−2µEnl

ν2~2
,

(25)

and Bnl is the non-relativistic normalization factor. The
exact s-wave energy and wave function solutions are ob-

tained when l=0 as

Enl =
~

2l(l+1)

2µR2

(

1− 4

νR
+

12

ν2R2

)

− ~
2

2µ(n−L)2

(

4l(l+1)

ν2R3
−µV0

ν~2
−1

2
(n−L)2

)2

,

(26)

ψnl(r) = Bnl

(

1

1+eν(r−R)

)η0
(

eν(r−R)

1+eν(r−R)

)λ0

×P (2η0,2λ0)
n

(

eν(r−R)−1

eν(r−R)+1

)

, (27)

where

λ0=
1

ν

√

−2µ

~2
(Enl+V0), Enl<0, η0=

1

ν

√

−2µEnl

~2
, (28)

respectively.

4 Final remarks and conclusion

In this work, we have obtained approximate analyti-
cal solutions of the two-body spinless Salpeter equation
with the usual WS potential interaction by using the
parametric generalization of the NU method. The ap-
proximate semi-relativistic bound-state energy eigenval-
ues and corresponding wave functions are obtained by
using Pekeris approximation to the centrifugal potential.
The present solutions are valid when the diffuseness
of the nuclear surface a is large compared with r−R.
Further, approximate nonrelativistic energy and wave
function solutions for any l-state can be easily obtained
under some limited conditions when Enl�m̃.

The authors wish to thank the kind referees for their

invaluable suggestions which have greatly helped in the

improvement of this paper.

Appendix A

Parametric generalization of the NU method

The NU method is used to solve the second-order differen-
tial equations with an appropriate coordinate transformation
s=s(r) [35]

ψ′′
n (s)+

τ̃ (s)

σ(s)
ψ′

n (s)+
σ̃(s)

σ2(s)
ψn (s)=0, (A1)

where σ(s) and σ̃(s) are polynomials, at most of the sec-
ond degree, and τ̃ (s) is a first-degree polynomial. To make
the application of the NU method simpler and direct without
the need to check the validity of the solution. We present a
shortcut for the NU method. Therefore, at first we write the
general form of the Schrödinger-like Equation (A1) in a more

general form applicable to any potential as follows [36, 41–44]

ψ′′
n (s)+

(

c1−c2s
s(1−c3s)

)

ψ′
n (s)+

(

−As2+Bs−C
s2 (1−c3s)2

)

ψn (s)=0, (A2)

satisfying the wave functions

ψn(s)=φ(s)yn(s). (A3)

Comparing (A2) with its counterpart (A1), we obtain the
following identifications:

τ̃ (s)=c1−c2s, σ(s)=s(1−c3s), σ̃(s)=−As2+Bs−C. (A4)

Following the NU method [35], we obtain the following
[36, 41–44].
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(i) The relevant constant coefficients:

c4=
1

2
(1−c1), c5=

1

2
(c2−2c3), c6=c25+A,

c7=2c4c5−B, c8=c24+C, c9=c3 (c7+c3c8)+c6,

c10=c1+2c4+2
√
c8−1>−1,

c11=1−c1−2c4+
2

c3

√
c9>−1, c3 6=0,

c12=c4+
√
c8>0, c13=−c4+

1

c3
(
√
c9−c5)>0, c3 6=0.

(A5)

(ii) The essential polynomial functions:

π(s) = c4+c5s−[(
√
c9+c3

√
c8)s−

√
c8], (A6)

k = −(c7+2c3c8)−2
√
c8c9, (A7)

τ (s) = c1+2c4−(c2−2c5)s−2[(
√
c9+c3

√
c8)s−

√
c8],

(A8)

τ ′(s) = −2c3−2(
√
c9+c3

√
c8)<0. (A9)

(iii) The energy eigenvalue calculations

(c2−c3)n+c3n
2−(2n+1)c5+(2n+1)(

√
c9+c3

√
c8)

+c7+2c3c8+2
√
c8c9=0. (A10)

(iv) The wave function calculations

ρ(s) = sc10 (1−c3s)c11 , (A11)

φ(s) = sc12 (1−c3s)c13 , c12>0, c13>0, (A12)

yn(s) = P (c10,c11)
n (1−2c3s), c10>−1, c11>−1, (A13)

ψnκ (s) = Nnκs
c12 (1−c3s)c13P (c10,c11)

n (1−2c3s). (A14)

where P
(µ,ν)
n (x), µ >−1, ν >−1, and x ∈ [−1,1] are Jacobi

polynomials with

P (α,β)
n (1−2s)=

(α+1)n

n!
2F1(−n,1+α+β+n;α+1;s), (A15)

and Nnκ is a normalization constant. Also, the above wave
functions can be expressed in terms of the hypergeometric
function as

ψnκ (s) = Nnκs
c12 (1−c3s)c13

2F1(−n,1+c10

+c11+n;c10+1;c3s) (A16)

where c12>0, c13>0 and s∈[0,1/c3 ], c3 6=0.

References

1 Bethe H, Salpeter E. Phys. Rev., 1951, 84: 1232
2 Nambu Y. Prog. Theor. Phys., 1950, 5: 614
3 Wick G C. Phys. Rev., 1954, 96: 1124
4 Nakanishi N. Prog. Theor. Phys. Suppl., 1969, 43: 1
5 Roberts C D, Williams A G. Prog. Part. Nucl. Phys., 1994, 33:

477
6 Maris P, Roberts C D. Phys. Rev. C, 1997, 56: 3369
7 Roberts C D, Schmidt S M. Prog. Part. Nucl. Phys., 2000, 45:

1
8 Maris P, Roberts C D. Int. J. Mod. Phys. E, 2003, 12: 297
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46 Aydoǧdu O, Sever R. Eur. Phys. J. A, 2010, 43: 73

063101-6


