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Combined estimation for multi-measurements of branching ratio *
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Abstract: A maximum likelihood method is used to deal with the combined estimation of multi-measurements of

a branching ratio, where each result can be presented as an upper limit. The joint likelihood function is constructed
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is given in cases both with and without inclusion of systematic error.
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1 Introduction

Measurements of branching ratios of resonances are
essential in high energy physics experiments. Usually, for
a particular decay channel of a resonance, different ex-
periments may carry out their respective measurements
of its branching ratio. In other cases, a single experiment
can implement measurements for the same branching
ratio through different decay chains. Combining these
results of a branching ratio based on certain statistical
methods will usually lead to a better precision than any
individual measurement.

Suppose there are I independent measurements of a
quantity, their observed values are expressed as xi±σi,
i=1, ···, I . Assuming the measurements follow the nor-
mal distribution, the combined estimate of these I inde-
pendent measurements for the quantity can be expressed
as µ±σ, where

µ=

I
∑

i=1

xi

σ2
i

I
∑

i=1

1

σ2
i

, σ=
1

√

√

√

√

I
∑

i=1

1

σ2
i

. (1)

Equation (1) can be used to give a combined esti-
mate of multi-measurements for a branching ratio in the
case that each result has the form xi±σi. However, in

some cases which are not rare, some measurements can
only report upper limits for a branching ratio, due to the
low statistics of the signal events. In such case, Eq. (1) is
not applicable to deduce the combined estimate of multi-
measurements of a branching ratio.

In this article we focus our discussion on a particular
but often encountered situation in high energy physics
experiments. In each experiment, after applying certain
selection criteria to the raw data, the data set of the can-
didate signal events in the signal region is obtained. The
candidate signal events contain both signal and back-
ground events, which can be separated by fitting the
observed spectrum of a kinematic variable in the signal
region. The shapes of the signal and background func-
tions of the kinematic variable are usually determined by
Monte Carlo simulation or a control sample of the data.
Using the number of signal events obtained in the fit, a
corresponding branching ratio can be determined.

To illustrate the idea clearly, we take the measure-
ment of the branching ratio of ψ′→ηJ/ψ in e+e− colli-
sions (BES experiment) as an example [1]. The exper-
iment selected γγe+e− and γγµ+µ− candidate events,
by constraining the invariant mass of the lepton pair to
the J/ψ mass; the γγ invariant mass spectra of the two
sets of candidate events are shown in Fig. 1. Here, the
kinematic variable is the γγ invariant mass Mγγ, the
events inside the peak area at 548 MeV correspond to
the ψ′→ηJ/ψ signal, while the broad smooth distribu-
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Fig. 1. γγ invariant mass spectrum of ψ′→ηJ/ψ candidate events. (a) γγe+e−channel; (b) γγµ+µ− channel.

tion corresponds to background. If both shapes of the
signal and background functions are known, then by fit-
ting the observed γγ invariant mass spectrum, the num-
ber of signal events can be determined. The branching
ratio of R→X is calculated by

B(R→X)=
Ns(R→X→Y)

NRε(R→X→Y)·BR(X→Y)
. (2)

In the above measurements, R denotes ψ′, X denotes
ηJ/ψ, Y denotes γγe+e− or γγµ+µ−, Ns is the number
of observed signal events, NR is the total number of de-
cays of resonance R, and ε is the detection efficiency of
a signal event. The measured value of ψ′→ηJ/ψ decay
branching ratio from γγe+e− and γγµ+µ− channels can
be written as (using simplified symbols):

Bi=
Nis

NRiεiBRi

≡Nis

Ai

, i=1(γγe+e−),2(γγµ+µ−), (3)

where the symbol with subscript i represents the value
of the ith measurement. Eq. (3) is easily extended to the
cases of i>2. The uncertainty of the measured Bi due to
the statistical fluctuation of Nis is usually considered as
the statistical error of Bi, while the uncertainty of Bi due
to the uncertainty of Ai is considered as the systematic
error.

By fitting the observed spectra shown in Figs. 1(a)
and 1(b), the number of signal events Nis can be ob-
tained and the measured branching ratio of ψ′ →ηJ/ψ
from γγe+e− and γγµ+µ− channels can be calculated
with Eq. (3) to be 2.91±0.12 and 3.06±0.14 (statistical
error only), respectively. Assuming these two measure-
ments are independent, the combined estimate for the
branching ratio of ψ′ → ηJ/ψ can be determined with
Eq. (1). However, if one of the results is an upper limit,
Eq. (1) is not applicable anymore.

It is typical to obtain the number of signal events
by fitting the observed spectrum of a kinematic vari-

able (Mγγ in the above example) in branching ratio or
cross section measurements. In this article, we describe
in detail the maximum likelihood method to deal with
the combined estimation for multi-measurements of a
branching ratio in cases where some or all the results
of these measurements are given as upper limits. This
method constructs a joint likelihood function using all
observed spectra obtained in individual measurements,
maximizes the joint likelihood function, and then ob-
tains the combined estimate of the branching ratio. The
basics of the maximum likelihood method can be seen in
many text books and Refs. [2, 3].

The way to construct a joint likelihood function de-
pends on the forms of observed spectra in individual
measurements. In Sections 2 and 3, we describe the
combined estimation for individual observed spectra as
a function of the same kinematic variable and different
kinematic variables, respectively. The determination of
the Bayesian credible interval and upper limit with and
without inclusion of systematic error for the combined
branching ratio is discussed in Section 4. The results
of a test with Toy Monte Carlo samples are shown in
Section 5. Finally, a conclusion is given in Section 6.

2 Combined estimation for individual

observed spectra as a function of the

same kinematic variable

2.1 Individual observed spectra are histograms

with the same binning

Suppose there are I experiments which measure the
same branching ratio of a resonance, each experiment
giving an observed spectrum of the candidate signal
events in the same signal region as a histogram for a
kinematic variable m with the same binning.

In this case, a merged spectrum of I experiments for
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the variable m can be constructed, whose histogram has
the same binning as the individual histograms. Let the
number of events in bin j for the ith experiment be nij ,
i=1, ···, I , j=1, ···, J ; the number of events in bin j is

nj =
I
∑

i=1

nij , j=1,··· ,J. (4)

The number of events in the ith experiment is Ni=

J
∑

j=1

nij .

The total number of events of the I experiments, namely,
the total number of events of the merged spectrum is

N =

I
∑

i=1

Ni. In Eq. (4), nj can be considered as a Pois-

son variable with expectation λj . The joint likelihood
function of observing nj events in bin j(j=1,··· ,J) is

L(n1, ··· ,nJ)=

J
∏

j=1

1

nj !
λ

nj

j e−λj , (5)

where λj is calculated by the integral of the combined
probability density function (pdf) of I experiments,
f(m|θ), in bin j:

λj =λ

∫
∆mj

f(m|θ )dm. (6)

Here, m is the kinematic variable, ∆mj is the range for
m in bin j, θ is the parameters in the joint likelihood
function which is defined by Eq. (13) , and λ is the
expectation of the total number of events N (Poisson
variable):

λ=

J
∑

j=1

λj . (7)

Let fis(m|θis ) and fib(m|θib) be the pdf of signal and
background distributions in the signal region of the
ith experiment, respectively. The combined pdf of the
merged spectrum, f(m|θ ), can be expressed as

f (m|θ )=
I
∑

i=1

Ni

N
[wisfis(m|θis)+(1−wis)fib(m|θib)], (8)

Here, the function forms of fis(m|θis ) and fib(m|θib)
should already be determined for the ith experiment. θib

and θis are parameters of the background and signal pdfs,
whose values need to be determined in the combined fit.
For instance, in the measurement of the ψ′→ηJ/ψ de-
cay branching ratio stated above, the variable m is the
invariant mass Mγγ, θib can be the coefficients of the
polynomial describing background, θis can be the central
mass and width of the Breit-Wigner function describing
the mass distribution of the resonance η, and the Gaus-
sian resolution of the detector for the invariant mass.
For the combined estimation of multi-measurements for
a branching ratio, the central mass and width of the

Breit-Wigner function for resonance η should be identi-
cal, while the Gaussian resolution of the detector for the
variable m can be different in each experiment. wis is
the ratio of the signal events to the total observed events
in the signal region for the ith experiment. That is, the
number of signal events can be written as Nis = wisNi.
The total number of signal events in the merged spec-

trum is Ns=

I
∑

i=1

Nis=

I
∑

i=1

wisNi.

From Eq. (3), we have Nis=AiBi wherein

Ai≡NRiεiBRi, i=1,···,I. (9)

When we implement a combined estimation for a branch-
ing ratio, obviously it assumes B=Bi. Since Nis=wisNi,
we have wis = AiB/Ni. Substituting this relation into
Eq. (8), we get an expression of the combined pdf for
the merged spectrum as follows:

f (m|θ ) =

I
∑

i=1

Ni

N

[

Ai

Ni

B·fis(m|θis)

+

(

1−Ai

Ni

B

)

fib(m|θib)

]

. (10)

Based on Eq. (5), when one omits quantities which
are not related to the interested parameters θ, the log-
likelihood function is expressed as

lnL=

J
∑

j=1

nj lnλj−λ. (11)

The likelihood equation is

∂lnL

∂θ

∣

∣

∣

∣

θ=θ̂

=
∂

∂θ

[

J
∑

j=1

nj lnλj−λ

]

θ=θ̂

=0. (12)

The parameters θ in the joint likelihood function contain
θis, θib, λ and B:

θ={B,λ,θs,θb}, θs={θ1s,··· ,θIs}, θb={θ1b,··· ,θIb}.
(13)

Using any optimization package to solve the likelihood
Eq. (12), one obtains the estimates θ̂ for parameters θ
(including the combined estimate B̂), and their fitting
(statistical) errors (including error of B, σB,st). In an
iterative procedure of the maximum lnL calculation, the
initial value of λ can be taken as N , the initial value of
B can be the weighted average of all individual results
Bi, while the initial values of θis and θib use the resultant
values obtained in each individual experiment.

If all the background pdfs fib(m|θib) in each exper-
iment are smooth distributions, it is possible to form
a merged background pdf fb(m|θb) in constructing the
merged spectrum, namely:

f (m|θ )=
I
∑

i=1

ci

[

Ai

Ni

B·fis(m|θis)

]

+q·fb(m|θb). (10a)
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Here, the function form of fb(m|θb) can be determined
empirically according to the shape of the background in
the merged spectrum and q represents the ratio of the
background events to the total events in the merged spec-
trum. The parameters θ in the joint likelihood function
contain θs, θb, λ, q and B:

θ={B,λ,q,θs,θb}, θs={θ1s,··· ,θIs}. (13a)

The remainder of the procedure is the same as before,
except Eq. (10) is replaced by Eq. (10a) and Eq. (13)
replaced by Equation (13a).

2.2 Individual observed spectra are unbinned

data within the same signal region

Suppose I experiments measure a branching ratio of a
resonance, and each experiment gives an observed spec-
trum of the candidate signal events in the same signal
region as unbinned data for a variable m.

Let the number of events in the one-dimensional scat-
ter plot (a collection of points for variable m of a data
set) at ith experiment be Ni; these Ni events appear at
m=mi1, ···, miNi

, i=1, ···, I . The total number of events

for the merged spectra of I experiments is N≡
I
∑

i=1

Ni and

the combined pdf in the signal region, f(m|θ ) can still
be described by Eq. (10)

We define the joint likelihood function for these N
events as:

L = L(m11,··· ,m1N1
;··· ;mI1,··· ,mINI

|B,θs,θb)

=

I
∏

i=1

Ni
∏

j=1

{

I
∑

i=1

Ni

N

[

Ai

Ni

B·fis(mij |θis)

+

(

1−Ai

Ni

B

)

fib(mij |θib)

]}

. (14)

Then we have

lnL =

I
∑

i=1

Ni
∑

j=1

ln

{

I
∑

i=1

Ni

N

[

Ai

Ni

B·fis(mij |θis)

+

(

1−Ai

Ni

B

)

fib(mij |θib)

]}

. (15)

The parameters θ in the joint likelihood function contain
θs, θb and B :

θ={B,θs,θb}, θs={θ1s,··· ,θIs}, θb={θ1b,··· ,θIb}. (16)

If all the background pdfs fib(m|θib) in each experiment
are smooth distributions, the pdf of the merged spectra,

f (m|θ ), is represented by Eq. (10a). Hence we have

L =L(m11,··· ,m1N1
;··· ;mI1,··· ,mINI

|B,θs,θb)

=
I
∏

i=1

Ni
∏

j=1

{

I
∑

i=1

[

Ai

N
B·fis(mij |θis)

]

+q·fb(mij |θb)

}

,

(14a)
and

lnL=
I
∑

i=1

Ni
∑

j=1

ln

{

I
∑

i=1

[

Ai

N
B·fis(mij |θis)

]

+q·fb(mij |θb)

}

.

(15a)
The determined parameters θ in the joint likelihood func-
tion contain θs, θb, q and B:

θ={B,q,θs,θb},θs={θ1s,··· ,θIs}. (16a)

Using any optimization package to solve the maxi-
mum lnL calculation, one obtains the estimates θ̂ for
parameters θ (including the combined estimate B̂), and
their fitting (statistical) errors (including the error of B,
σB,st).

3 Combined estimation for individual

observed spectra as a function of dif-

ferent kinematic variables

The combined estimation methods of branching ra-
tio described in Section 2 are applicable merely for the
case that all I experiments give observed spectra for the
same kinematic variable m, and their signal regions are
the same. In this case, a merged spectrum of I exper-
iments for the variable m can be constructed, and the
corresponding combined estimation method is called the
merged spectrum method. In this section, we will dis-
cuss the combined estimation methods of the branching
ratio in more general cases. That is, all (or part of)
I experiments give observed spectra for different kine-
matic variables, and their signal regions can be differ-
ent or the same. In this case, a merged spectrum of I
experiments cannot be constructed, hence, the merged
spectrum method is not applicable; instead, a simulta-
neous fit for the observed spectrum in each experiment
has to be carried out. However, the equations deduced
in such general cases are also applicable for the cases
that all I experiments give observed spectra for the same
kinematic variable m, which have different (or the same)
signal regions.

3.1 Individual observed spectra are histograms

with different binning

Suppose I experiments measure the same branching
ratio of a resonance, and each experiment gives an ob-
served spectrum of the candidate signal events in a signal
region as a histogram for a kinematic variable mi. The
variable mi, the histogram binning and the signal region
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in each experiment for these I measurements can be dif-
ferent.

Let Ni be the number of events in the signal region for
the ith experiment. The histogram of the ith experiment
contains Ji bins, and the observed number of events in
bin ji(=1,··· ,Ji) is niji

, which is a Poisson variable with
the expectation λiji

. The joint likelihood function of ob-
serving niji

events in bin ji(ji=1,··· ,Ji) is

Li(ni1, ··· ,niJi
)=

Ji
∏

ji=1

1

niji
!
λ

niji

iji
e−λiji , (17)

where λiji
is calculated by the integral of the pdf f(mi|θi)

at bin ji:

λiji
=λi

∫
∆mji

fi(mi |θi )dmi. (18)

Here λi is the expectation of the number of events Ni

(Poisson variable):

λi=

Ji
∑

ji=1

λiji
. (19)

fi(mi |θi ) is the pdf of variable mi in the signal region of
the ith experiment:

fi(mi |θi )=wisfis(mi|θis)+(1−wis)fib(mi|θib). (20)

θis and θib are parameters describing the signal and back-
ground functions respectively in the signal region, and
wis is the ratio of signal events, Nis to total events, Ni

within the signal region, i.e. Nis =wisNi. The function
forms of fis and fib should already be known from the
data analysis of the ith experiment.

From Eq. (3), it is known that Nis=AiBi, i=1,··· ,I.
When a combined estimation for a branching ratio is im-
plemented, we straightforwardly assume B = Bi. Since
Nis = wisNi, therefore, wis = AiB/Ni. Substituting this
relation into Eq. (20), we get:

fi(mi |θi )=
Ai

Ni

B·fis(mi|θis)+

(

1−Ai

Ni

B

)

fib(mi|θib).

(21)
The joint likelihood function for I experiments is

L=

I
∏

i=1

Li. (22)

Omitting quantities not related to the parameters θ, the
log-likelihood function is expressed as

lnL=

I
∑

i=1

[

Ji
∑

ji=1

(niji
lnλiji

)−λi

]

. (23)

The parameters θ in the joint likelihood function contain
λ, θs, θb and B :

θ = {B,λ,θs,θb}, λ={λ1,···,λI}, θs={θ1s,··· ,θIs},
θb = {θ1b,··· ,θIb}. (24)

Using any optimization package to solve the maximum
lnL calculation one obtains the estimates θ̂ for param-
eters θ (including the combined estimate B̂), and their
fitting (statistical) errors (including error of B, σB,st).
In an iterative procedure of the maximum lnL calcula-
tion, the initial value of λ={λ1,··· ,λI} can be taken as
{N1,··· ,NI}, the initial value of B can be the weighted
average of all individual results Bi, while the initial val-
ues of θs and θb use the resultant values from each indi-
vidual experiment.

3.2 Individual observed spectra are unbinned

data within different signal regions

Suppose I experiments measure a branching ratio of a
resonance, and each experiment gives an observed spec-
trum of the candidate signal events in different signal
regions as unbinned data for the variable mi.

Let the number of events in the scatter plot of the
ith experiment be Ni; these Ni events appeared at mi=
mi1,··· ,miNi

,i=1,··· ,I . The pdf in the signal region for
the ith experiment, fi(mi |θi ), can still be described by
Eq. (21). The total number of events for the spectra of

I experiments is N≡
I
∑

i=1

Ni.

Defining the joint likelihood function for these N
events as:

L = L(m11,··· ,m1N1
;··· ;mI1,··· ,mINI

|B,θs,θb)

=

I
∏

i=1

Li(mi1,··· ,miNi
|B,θis,θib)

=
I
∏

i=1

Ni
∏

j=1

[

Ai

Ni

B·fis(mij |θis)+

(

1−Ai

Ni

B

)

fib(mij |θib)

]

.

(25)

We then have

lnL =

I
∑

i=1

Ni
∑

j=1

ln

[

Ai

Ni

B·fis (mij |θis)

+

(

1−Ai

Ni

B

)

fib(mij |θib)

]

. (26)

The parameters θ in the joint likelihood function contain
θs, θb and B :

θ={B,θs,θb}, θs={θ1s,··· ,θIs}, θb={θ1b,··· ,θIb}. (27)

Using any optimization package to solve the maxi-
mum lnL calculation one obtains the estimates θ̂ for pa-
rameters θ (including the combined estimate B̂), and
their fitting (statistical) errors (including error of B,
σB,st).
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4 Determination of the credible interval

and upper limit with or without inclu-

sion of systematic error

4.1 Without inclusion of systematic error

Now, we have the estimates θ̂ for parameters θ (in-
cluding the combined estimate B̂), and their fitting (sta-
tistical) errors (including error of B, σB,st). The problem
we face is how to report our combined branching ratio,
namely, report a credible level CL=68.27% interval or
CL=90% upper limit? To answer this question, an addi-
tional flip-flopping policy [4] is needed. For instance, a
frequently used flip-flopping policy is that if B >3σB,st,
we report B±σB,st as a CL = 68.27% interval; otherwise,
a CL=90% upper limit Bup will be given.

Below, we will use Bayesian Highest Posterior Den-
sity (HPD) [2] to perform the interval estimation for the
branching ratio B. We intend to use a flip-flopping policy
based on the Bayesian posterior density.

Given a credible level CL=γ, the optimal interval in
Bayesian statistics is the HPD interval, let h(B|n) be
the posterior density for parameter B, and n be the ob-
served sample values. Then, the HPD interval for B at
a credible level CL=γ is R, which satisfies

P (B∈R|n)=

∫
R

h(B|n)dB=γ, (28)

and for any B1∈R, B2 6∈R, the following relation holds:

h(B1|n)>h(B2|n). (29)

The upper limit Bup at CL=γ is

P (B6Bup|n)=

∫
B6Bup

h(B|n)dB=γ. (30)

For the case of parameter B being the combined
branching ratio, n represents the observed spectra of
I experiments. For the following three types of ob-
served spectra (a) histograms with the same binning for
the same kinematic variable, (b) histograms with dif-
ferent binning for different kinematic variables and (c)
unbinned data, from Eqs. (5), (17), (14), (14a) and (25),
n can be expressed as

n = {n1,··· ,nJ}, n={n11,··· ,n1J1
;··· ;nI1,··· ,nIJI

},

n = {m11,··· ,m1N1
;··· ;mI1,··· ,mINI

}. (31)

h(B|n) is the posterior pdf for B:

h(B|n)=
L(n|B)π(B)∫

L(n|B)π(B)dB

. (32)

Here, L(n|B) can be calculated based on Eqs. (5), (14)
or (14a), (22) and (25) for a given B, with all other pa-
rameters in θ taken as the values where the likelihood
function reaches its maximum. π(B) is the prior pdf for

B, for which we use the flat distribution in the allowed
region of B[0,1]. It leads to

h(B|n)=
L(n|B)∫1

0

L(n|B)dB

. (33)

We use the following flip-flopping policy to decide
how to report our combined branching ratio, namely, to
report a CL=68.27% interval or CL=90% upper limit.
If there exists a HPD interval at CL=90%, R0.9, and it
satisfies

R0.9∈
[

B̃l, B̃u

]

, B̃l<B̃u, L(n|B̃l)=L(n|B̃u),

B̃l∈[0,1], B̃u∈[0,1]. (34)

Then a CL=68.27% interval R0.6827 is reported as the
measured value of the combined branching ratio:

R0.6827∈[Bl,Bu], Bl<Bu, L(n|Bl)=L(n|Bu),

Bl∈[0,1], Bu∈[0,1], (35)

which corresponds to

B=B̂
+σ+

−σ
−

,σ+=Bu−B̂,σ−=B̂−Bl. (36)

Here B̂ is the maximum likelihood estimate of B. If R0.9

does not exist, we report the upper limit Bup at CL=90%
according to Eq. (30).

4.2 Inclusion of systematic error

In order to estimate the systematic error of the com-
bined estimate of B, it is necessary to take into account
the correlation between each experiment.

If I measurements for a branching ratio B are inde-
pendent, the systematic error of B can be calculated by
the following equations:

σ2
B,sys=

(

I
∑

i=1

σ−2
Bi,sys

)

−1

, (37)

σ2
Bi,sys

B2
i

=
σ2

NRi

N 2
Ri

+
σ2

BRi

BR2
i

+
σ2

εi

ε2
i

+
σ2

Nib

N 2
ib

, (38)

where σBi,sys, σεi
and σNib

are the systematic error
for Bi, εi and Nib in the ith experiment, respectively.
Nib is the expectation of the number of background
events in the observed spectrum for the ith experiment:
Nib = Ni−AiBi. All the quantities on the right side of
Eq. (38) should already be determined from the ith ex-
periment data analyses. σNRi

, σBRi
, σεi

and σNib
are

naturally independent of each other.
If I measurements for a branching ratio B are

not independent, there is an independent component
(

σ2
Bi,sys

)

uncom
and a common component

(

σ2
B,sys

)

com
≡

(

σ2
Bi,sys

)

com
in σ2

Bi,sys. Then the systematic error for B
can be expressed as

σ2
B,sys=

(

σ2
B,sys

)

uncom
+
(

σ2
B,sys

)

com
, (39)
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(σ2
B,sys)uncom=

(

I
∑

i=1

(

σ−2
Bi,sys

)

uncom

)

−1

. (40)

For instance, in the measurement of the branching ratio
of ψ′→ηJ/ψ stated above, σ2

NRi
is the common compo-

nent, while σBRi
, σεi

and σNib
are independent compo-

nents.
The total error of B is

σ2
B =σ2

B,st+σ2
B,sys. (41)

In the case of inclusion of the systematic error of B the
likelihood function may depend on the parameter of in-
terest B as well as on a nuisance parameter ν, which is
the observed value of the branching ratio off center from
B and must be included for an accurate description of
the data [2]. Thus, the likelihood function depends on
both B and ν, written as L(n|B,ν). One might char-
acterize the uncertainty in a nuisance parameter ν by a
pdf π(ν) centered about its nominal value with a certain
standard deviation σν . Here we take the systematic error
of the combined branching ratio equal to the error of ν,
i.e. σν,sys. Thus, it can be written as

L(n|B,ν) = L(n|ν)·π(ν)

= L(n|ν)· 1√
2πσν,sys

exp

(

− (ν−B)
2

2σ2
ν,sys

)

. (42)

In this case, the likelihood function L(n|B) in Eq. (33)
has to be replaced by

L̃(n|B)=

∫1

0

[

L(n|ν)· 1√
2πσν,sys

exp

(

− (ν−B)
2

2σ2
ν,sys

)]

dν.

(43)

Therefore, in the case of inclusion of systematic error,
we still use Eqs. (28)–(29) and Eqs. (33)–(36) to de-
termine the CL=68.27% interval and use Eqs. (30) and
(33) to determine the CL=90% upper limit for combined
branching ratio B, with the posterior density h(B|n) of

h(B|n)=
L̃(n|B)∫1

0

L̃(n|B)dB

. (44)

It is worth noting that if σν,sys is a constant, say σν,sys=

σB̂,sys, where σB̂,sys is the systematic error of B̂, the max-
imum likelihood combined estimate of the branching ra-
tio B, the Gaussian distribution G

(

ν,σ2
ν,sys

)

is truncated
both at ν = 0 and at ν = 1. However, if one chooses
σν,sys = σ̃ν,sys ·ν, where σ̃ν,sys is a constant representing
for the relative error of the branching ratio B = ν we
have G

(

ν,σ2
ν,sys

)

→0 when ν→0, and the truncation of

G
(

ν,σ2
ν,sys

)

at ν=0 does not appear. It is noted that the

truncation at ν=1 can be omitted when B̂�1.

5 Test with Toy Monte Carlo data

The various prescriptions described in Sections 2, 3
and 4 for the combined estimation of a branching ratio
for multi-measurements are tested using toy MC data.
For the two tests listed in Table 1 and Table 2, we estab-
lish two individual experiments, each of which assumes a
signal pdf and a background pdf. Configurations of the

Table 1. Estimate of a branching ratio for two individual experiments and the combined estimate using toy MC
data. The observed spectra in the two experiments are for the same kinematic variable m, and have the same signal
region. In the table, the binned data are formed from unbinned data using certain binning tactics. Therefore, they
are actually the same except for the binning.

Exp.
NR

σ̃NR

ε

σ̃ε

Nb

σ̃Nb

Ns fs fb

1
0.8×108

0.09

0.3

0.15

2500

0.11
24 G(5,0.52¤ 1st order poly.

2
2.5×108

0.11

0.4

0.12

2500

0.10
100 G(5,12) 2nd order poly.

spectrum format Exp. joint L pdf
without σ̃B,sys with σ̃B,sys

B̂
(

10−6
)

σ
B̂

/B̂ σ̃B,sys B̂
(

10−6
)

σ
B̂

/B̂

binned 1 <2.40 0.21 <2.44

2 0.97+0.52
−0.51 0.54 0.53 0.19 0.97+0.54

−0.53 0.56 0.55

1⊕2 Eq. (5) Eq. (10) 1.00+0.53
−0.52 0.53 0.52 0.14 1.00+0.55

−0.54 0.55 0.54

Eq. (5) Eq. (10a) 1.01+0.53
−0.53 0.53 0.14 1.01+0.54

−0.54 0.54

Eqs. (22, 17) 0.96+0.47
−0.46 0.49 0.48 0.14 0.96+0.49

−0.48 0.52 0.50

unbinned 1 <2.40 0.21 <2.44

2 0.99+0.52
−0.52 0.53 0.19 0.99+0.54

−0.54 0.55

1⊕2 Eq. (14) 1.02+0.53
−0.53 0.52 0.14 1.02+0.54

−0.54 0.53

Eq. (14a) 1.02+0.53
−0.53 0.52 0.14 1.02+0.54

−0.54 0.53

Eq. (25) 0.97+0.47
−0.46 0.49 0.48 0.14 0.97+0.49

−0.48 0.51 0.50
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tests in the tables are detailed with the notations: L,
the joint likelihood function used in the combined es-
timation; NR, the number of resonance decays; ε, the
signal detection efficiency; Ns, the simulated number
of signal events in the signal region; fs, pdf for signal;
Nb, the simulated number of background, events in the
signal region; fb, pdf for background σ̃NR

,σ̃ε,σ̃Nb
are

the relative systematic error for NR,ε,Nb, respectively.
σ̃2

B,sys=σ̃2
NR

+σ̃2
ε+σ̃2

Nb
.

The test results are given in Table 1 and Table 2
for the observed data represented by (1) same kinematic
variable m and same signal region, and (2) different kine-
matic variable m and different signal region, respectively.
When the systematic error of the branching ratio is taken

into account in the combined estimation, a Gaussian
π(ν) is used with standard deviation σν =σB̂,sys=B̂·̃σB̂,sys.

Here σ̃B̂,sys is the relative systematic error at B̂. In the
MC simulation, the branching ratio of a mother particle
decayed to a signal event is Bprod=1×10−6.

The results in Table 1 and Table 2 indicate the fol-
lowing features: (a) Different prescriptions of combined
estimation for the same multi-measurement data set give
statistically coincident branching ratio values, no matter
whether each individual result is presented as a central
value plus error or an upper limit. (b) The accuracy
of the combined branching ratio is better than each indi-
vidual measurement, as expected. (c) The interval of the
combined branching ratio with inclusion of systematic

Table 2. Estimate of a branching ratio for two individual experiments and the combined estimate using toy MC
data. The observed spectra in two experiments are for different kinematic variables mi, and have different signal
regions. In the table, the binned data are formed from unbinned data using certain binning tactics. Therefore,
they are actually the same except for the binning.

Exp.
NR

σ̃NR

ε

σ̃ε

Nb

σ̃Nb

Ns fs fb

1
0.5×108

0.06

0.3

0.14

2500

0.09
24 BW (4.6, 0.1) 1st order poly.

2
2.5×108

0.06

0.4

0.12

2500

0.10
100 G(5,12) 2nd order poly.

spectrum format Exp. joint L pdf
without σ̃B,sys with σ̃B,sys

B̂
(

10−6
)

σ
B̂

/B̂ σ̃B,sys B̂
(

10−6
)

σ
B̂

/B̂

binned 1 <2.92 0.18 <2.95

2 0.97+0.52
−0.51 0.54 0.53 0.19 0.97+0.54

−0.53 0.56 0.55

1⊕2 Eqs. (22,17) Eq. (21) 1.04+0.48
−0.47 0.47 0.46 0.13 1.04+0.50

−0.49 0.49 0.48

unbinned 1 <2.95 0.18 <2.99

2 0.99+0.52
−0.52 0.53 0.19 0.99+0.54

−0.54 0.55

1⊕2 Eq. (25) 1.06+0.48
−0.47 0.46 0.45 0.13 1.06+0.50

−0.49 0.48 0.47

Fig. 2. (color online): (a) and (b) The observed data of experiments 1 and 2 and their fitted spectra after the
combined fitting is carried out for the unbinned data in Table 2. In the plots, the green, blue and red lines
represent the signal shape, background shape and fitted spectrum, respectively; (c) The posterior densities h(B|n)
for Exp. 1, Exp. 2 and their combination with inclusion of systematic error.
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error is wider than that without inclusion of systematic
error at the same credible level, as expected. (d) The
result obtained from the unbinned likelihood function is
more reliable than that from the binned likelihood as the
latter loses some measurement information.

Figures 2(a) and 2(b) show the observed data of ex-
periments 1 and 2 and their fitted spectra after the com-
bined fitting is carried out for the unbinned data in Ta-
ble 2, while the three curves in Fig. 2(c) are the posterior
densities h(B|n) for Exp. 1, Exp. 2 and their combina-
tion with inclusion of systematic error, respectively.

6 Summary

In particle physics, a decay branching ratio is often
measured by different experiments, and the result of each
individual measurement could be a CL=68.3% interval or
a CL=90% upper limit. The combined estimate of multi-
measurements will surely improve the precision of the
branching ratio, however, the combined estimate with

inclusion of upper limit(s) remains a difficult problem.
We use the maximum likelihood method to deal with the
combined estimation of multi-measurements of a branch-
ing ratio, where in each individual measurement the re-
sult can be presented as an upper limit. The joint like-
lihood function is constructed using the observed spec-
tra of all experiments and the combined estimate of the
branching ratio is obtained by maximizing the joint likeli-
hood function. The Bayesian credible interval and upper
limit of the combined branching ratio are given in cases
both with and without inclusion of systematic error. The
various prescriptions for the combined estimation of a
branching ratio for multi-measurements are tested using
toy MC data, which shows that different prescriptions of
combined estimation for the same multi-measurements
data set give statistically consistent branching ratio val-
ues, no matter whether each individual result is pre-
sented as a central value plus error or an upper limit,
and the accuracy of the combined branching ratio is bet-
ter than each individual measurement, as expected.
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