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Deuteron form factors in a phenomenological approach *
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Abstract: The electromagnetic form factors of the deuteron, particularly its quadrupole form factor, are studied

with the help of a phenomenological Lagrangian approach where the vertex of the deuteron–proton–neutron with

D-state contribution is explicitly taken into account. The results show the importance of this contribution to the

deuteron quadrupole form factor in the approach.
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1 Introduction

The study of the electromagnetic form factors of nu-
cleons and light nuclei, like the deuteron and He-3, is
crucial for the understanding of the nucleon structures.
The deuteron, as the simplest nucleus, has been a sub-
ject of such study for many years (for some recent reviews
see [1–4]). Since it is a weakly bound state of the proton
and neutron, the study of the deuteron can shed light on
the study of the nucleon as well as of the nuclear effects.
Moreover, as a spin-1 particle, deuteron structures are
different from those of spin-1/2 nucleons and He-3, and
from the spinless pion meson. There are many discus-
sions in the literature of the deuteron structures, such as
its wave functions, binding energy, electromagnetic form
factors, and parton distributions. Those works are usu-
ally based on phenomenological potential models with
quark, meson, and nucleon degrees of freedom and based
on some effective field theories [1–12]. Realistic deuteron
wave functions, with the help of the meson exchange po-
tential model, have been explicitly given by Refs. [13–15].

In our previous works [16, 17], a phenomenological
Lagrangian approach was applied to the electromagnetic
form factors of the deuteron, where the deuteron is re-
garded as a loosely bound state of a proton and a neu-
tron, and the two constituents are in relative S-wave
for simplicity. The coupling of the deuteron to its two
composite particles was determined by the known com-
positeness condition from Weinberg [18], Salam [19] and
others [20, 21]. In fact, our phenomenological effective
Lagrangian approach has been proven to be successful in
the study of weakly bound state problems, like the new

resonances of X(3872) and Λ+
c (2940), and the EM form

factors of the pion, as well as some other observables
[22, 23].

It should be stressed that since only the contribution
from the one-body S-wave operator is considered in our
previous study [16], the estimated quadrupole moment
of the deuteron is much smaller than the experimental
data. According to the non-relativistic potential model
calculation [13], one sees that the deuteron quadrupole
moment is very sensitive to the D-wave component of
the deuteron. Therefore, the S-state contribution is not
sufficient. In order to avoid this discrepancy, several
two-body arbitrary and phenomenological Lagrangians
were introduced, by hand, to compensate for the dis-
crepancy [16].

The purpose of this work is to re-study the deuteron
electromagnetic form factors with this phenomenological
approach. Here both the S- and D-state contributions
to the vertex of the deuteron–proton–neutron are simul-
taneously taken into account. It is expected that by ex-
plicitly considering the D-state contribution in the ver-
tex, the estimated deuteron quadrupole could be sizeably
improved. This paper is organized as follows. Section 2
briefly shows our theoretical framework, particularly the
D-state contribution to the vertex. Numerical results
and some discussions are given in Section 3.

2 Theoretical framework

The deuteron, as a spin-1 particle, has three inde-
pendent form factors. The matrix element for electron–
deuteron (ED) elastic scattering, as shown in Fig. 1, can
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be written as

M=
e2

Q2
ūe(k

′)γµue(k)J D
µ (P,P ′), (1)

under the one-photon exchange approximation. In Eq.
(1), k and k′ are the four-momenta of the initial and fi-
nal electrons and J D

µ (P,P ′) stands for the deuteron EM
current. Its general form is

J D
µ (P,P ′) = −

(

G1(Q
2)ε′∗·ε−G3(Q

2)

2M 2
d

ε·qε′∗·q
)

(P+P ′)µ

−G2(Q
2)

(

εµε′∗·q−ε′∗µ ε·q
)

, (2)

where Md is the deuteron mass, ε(ε′) and P (P ′) are
the polarization and four-momentum of the initial (final)
deuteron, and Q2 =−q2 is momentum transfer squared,
with q=P ′−P . The three EM form factors G1,2,3 of the
deuteron are related to the charge GC, magnetic GM, and
quadrupole GQ form factors by

GC = G1+
2

3
τGQ, GM=G2,

GQ = G1−G2+(1+τ)G3, (3)

with the factor τ = Q2/4M 2
d . They are normalized at

zero recoil (Q2=0) as

GC(0) = 1, GQ(0)=M 2
dQd=25.83,

GM(0) =
Md

MN

µd=1.714, (4)

where MN is the nucleon mass, and Qd and µd are the
quadrupole and magnetic moments of the deuteron.

Fig. 1. Electron–deuteron scattering.

The unpolarized differential cross section for the eD
elastic scattering can be expressed by the two structure
functions, A(Q2) and B(Q2), as

dσ

dΩ
=σM

[

A(Q2)+B(Q2)tan2

(

θ

2

)]

, (5)

where σM = α2E′cos2(θ/2)/[4E3sin4(θ/2)] is the Mott
cross section for point-like particles, E and E ′ are the
incident and final electron energies, θ is the electron scat-
tering angle, Q2=4EE′sin2(θ/2), and α=e2/4π=1/137

is the fine-structure constant. The two form factors
A(Q2) and B(Q2) are related to the three EM form fac-
tors of the deuteron as

A(Q2)=G2
C(Q2)+

8

9
τ 2G2

Q(Q2)+
2

3
τG2

M(Q2)

B(Q2)=
4

3
τ(1+τ)G2

M(Q2). (6)

Clearly, the three form factors GC,M,Q cannot be simply
determined by measuring the unpolarized elastic eD dif-
ferential cross section. To uniquely determine the three
form factors of the deuteron, one additional polarization
variable is necessary. For example, one may take the
polarization of T20 [1].

Making an assumption that the deuteron, as a
hadronic molecule, is a weakly bound state of the proton
and neutron, one may simply write a phenomenological
effective Lagrangian for the coupling of the deuteron to
its two constituents of proton and neutron as

LD(x) = gDDµ(x)

∫
dyΦD(y2)p̄(x+y/2)Γ µ

DCn̄T (x−y/2)

+H.c., (7)

where Dµ is the deuteron field, Cn̄T(x)=nc(x), C=iγ2γ0

denotes the matrix of charge conjugation, and x is the
centre-of-mass (C. M.) coordinate. In the above equa-
tion Γ µ

D is the vertex for the deuteron–proton–neutron
coupling and the correlation function ΦD(y2) character-
izes the finite size of the deuteron as a pn bound state.
The correlation function ΦD(y2) depends on the relative
Jacobi coordinate y.

If only the S-wave contribution is considered, the sim-
plest form of the vertex is Γ µ

D ∼γµ which has been em-
ployed before [16]. When both the S- and D-state con-
tributions are considered, then the vertex becomes more
complicated. According to the work of Blankenbecler,
Gloderber, and Halpern [24] the vertex of the deuteron–
proton–neutron is

Γ µ
D=Γ 1,µ

D +Γ 2,µ
D , (8)

where the first and second terms stand for the contribu-
tions from S- and D-states, respectively. They are

Γ 1,µ
D =

1

2
√

2

(

1+
/P

Md

)

γµ (9)

and

Γ 2,µ
D =

ρ

16

(

1+
/P

Md

)(

γµ− 3

k2
/kγµ/k

)

, (10)

with ρ being a measure of the D-state admixture, k
the relative momentum between the proton and neu-
tron, and k2 =MNδ with δ being the binding energy of
the deuteron. Here, it should be mentioned that in the
rest frame of the deuteron, the non-relativistic reduction
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gives

εiΓ
1,i
D C=− i√

2
~σ·~εσ2=







ε−1 − 1√
2
εz

− 1√
2
εz ε+1






. (11)

This means that a combination of two spin-1/2 states,
proton and neutron, forms a spin triplet state. Similarly,
in the non-relativistic limit,

(

γµ− 3

k2
/kγµ/k

)

means the proton and neutron couple to a spin triplet
state and this spin triplet state re-couples Y2ml

(k̂) to
form a state with the same quantum numbers as the
deuteron.

The coupling of the deuteron to its two constituents,
gD in Eq. (7), is determined by the known compositeness
condition Z=0 proposed by Weinberg, Salam and others
[18–21]. This condition implies that the probability to
find a proton and neutron system inside the deuteron is
unity. Thus, the coupling of gD is determined according
to ZD=1−Σ′

D(M 2
D)=0, with

Σ′
D(M 2

D)=g2
DΣ′

D⊥(M 2
D) (12)

being the derivative of the transverse part of the mass
operator (see Fig. 2). Usually, the mass operator splits
into the transverse and longitudinal parts of Σαβ

D (k) =

gαβ

⊥ ΣD⊥(k2)+
kαkβ

k2
ΣD‖(k

2), with gαβ

⊥ = gαβ −kαkβ/k2

and gαβ
⊥ kα=0. We see that the coupling of the deuteron

to its constituents of the proton and neutron, gD, is well
determined by the compositeness condition.

Fig. 2. The mass operator of the deuteron.

A basic requirement for the choice of an explicit form
of this correlation function is that its Fourier transform
vanishes sufficiently fast in the ultraviolet region of Eu-
clidean space to render the Feynman diagrams ultravio-
let finite. Usually a Gaussian-type function is selected as
the correlation for simplicity. One may choose Φ̃D(k2)=
exp(−k2

E/Λ2) for the Fourier transform of the correla-
tion function, where kE is the Euclidean Jacobi rela-
tive momentum and Λ stands for the free size-parameter,
which represents the distribution of the constituents in
the deuteron.

Here the analytical expression for the coupling is

1

g2
D

=Σ′
D⊥,1+ρΣ′

D⊥,2, (13)

where Σ′
D⊥,1 and Σ′

D⊥,2 stand for the derivatives of the
transverse parts of the mass operator from the contri-
butions of the S-S and D-D states, respectively. The
explicit expressions are

Σ′
D⊥,1 =

1

32π2

∫∞
0

dαdβ

Z3
0

×
{

A(α,β)

Z0

[

1+
Λ2

S

4M 2
dZ0

]

+
B(α,β)

2
×

[

µ2
d

(

1+
A(α,β)

Z2
0

(

1+
Λ2

s

4M 2
dZ0

))

+
3Λ2

S

2M 2
dZ2

0

− 1

4Z0

]

}

×exp

[

−2(α+β)µ2
N+

A(α,β)

2Z0

µ2
d

]

, (14)

where µN,d=M 2
N,d/Λ2

S and

A(α,β) = (1+2α)(1+2β)

B(α,β) = α+β+4αβ

Z0 = 1+α+β, (15)

and

Σ′
D⊥,2 =

∫∞
0

dαdβ

16
√

2π2Z3
1

×
{

A′(α,β)

Z1

[

1+
3Λ2

S

8εMDZ1

]

+
B′(α,β)

2

[

µ2
d

(

1+
A′(α,β)

Z2
1

(

1+
3Λ2

S

8δMdZ1

))

+
1

2Z2
1

(

1−15Md

8δ
+

9Λ2
S

2δMd

)]

}

×exp

[

−2(α+β)µ2
N+

A′(α,β)

2Z1

µ2
d

]

, (16)

with

A′(α,β) =

(

1+aSD

2
+2α

)(

1+aSD

2
+2β

)

B′(α,β) =
1+aSD

2
(α+β)+4αβ

Z0 =
1+aSD

2
+α+β, (17)

and aSD = Λ2
S/Λ2

D. Here we simply ignore the ρ2- de-
pendent term since ρ is expected to be small, and we
consider the S- and D- interference. Since the correla-
tion functions of the S- and D-states may not necessarily
be the same, we have a total of three parameters ΛS , ΛD

and ρ in this calculation.
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Then, we can calculate the matrix element of photon–
deuteron interaction as shown in Fig. 3 and we have

Mµ =
∑

(N=p,n)

∑

(i,j=1,2)

∫
d4k

(2π)4i
g2

Dε
′∗
α εβ

×Tr

[

Γ i,α
D (/k+/q+/p/2+MN)

(k+q+p/2)2−M 2
N

·
Γ µ

γN(/k+/p/2+MN)

(k+p/2)2−M 2
N

·Γ
j,β
D (/k−/p/2−MN)

(k−p/2)2−M 2
N

]

×exp
[

−k2
E/Λ2

j−(k+q/2)2E/Λ2
i

]

, (18)

where the photon–nucleon current of

Γ µ

γN=F1,N(Q2)γµ+F2,N(Q2)
iσµν

2MN

qν (19)

is employed with F1,N and F2,N being the known nucleon
Dirac and Pauli form factors, and N=p,n stands for the
proton and neutron, respectively.

Fig. 3. Photon–deuteron interaction.

3 Numerical results and discussions

We calculate the matrix element of Eq. (18) and
consider the one-photon exchange approximation for the
photon–deuteron current as shown in Eq. (1). Thus we
can get the three corresponding deuteron form factors
G1,2,3 as well as the deuteron charge Gc(Q

2), magnetic
GM(Q2) and quadrupole GQ(Q2) form factors. There
are some parameterizations for the nucleon form fac-
tors of F1,2(Q

2) in the literature in Refs. [25–27]. In
the present calculation, we employ the parameterizations
used by Blunden [27]. The three model-dependent pa-
rameters, ΛS=0.10 GeV, ΛD=0.08 GeV and ρ = 0.03,
are fixed by fitting to the experimental data. The ob-
tained charge, magnetic and quadrupole form factors are
shown in Figs. 4–6. The experimental data in the figures
are from Refs. [29–39]. In the figures, the solid and
dotted curves stand for our calculations and the param-
eterizations of Ref. [28], respectively. In order to explic-
itly see the contribution of the D-wave to the deuteron
quadrupole form factors, we also show the results with
only the S-wave contribution (see the dashed curve in
Fig. 6) for a comparison.

Fig. 4. Estimated deuteron charge form factor
Gc(Q

2). The solid and dotted curves are the re-
sults of our calculations and of the phenomeno-
logical parameterization [28]. The data are open
circle [29], open square [30], open diamond [31],
plus [32], triangle [33], filled circle [34], and filled
square [35], respectively.

Fig. 5. Estimated deuteron magnetic form factor
GM(Q2). The solid and dotted curves are the re-
sults of our calculations and of the phenomeno-
logical parameterization [28]. The data are cir-
cle [36], square [37], diamond [38], and trian-
gle [39], respectively.

It should be stressed that in this work, according to
the discussions of Ref. [24], we explicitly include the D-
state contribution to the deuteron–proton–neutron ver-
tex as shown in Eq. (10). We found that this contri-
bution is very important for the understanding of the
quadrupole moment and quadrupole form factors (see
the solid and dashed curves in Fig. 6). Here, the esti-
mated GM(0) and GQ(0) are about 1.53 and 21.38, re-
spectively. These two values are reasonable compared
to the normalization conditions of 1.714 and 25.83 given
in Eq. (4). If we only take the S-wave contribution into
account, we hardly reproduce the experimental measure-
ment for the quadrupole moment at the zero-recoil limit,
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although the estimated charged and magnetic moments
are still consistent with the data. In Fig. 6, the dashed
curve shows that the obtained GQ(0)∼4 is much smaller
than the experimental value. Comparing the dashed and
solid curves in Fig. 6, we conclude that the very small
value of the quadrupole moment, with only the S-wave
contribution, is remarkably improved due to the inclu-
sion of the D-state contribution. Meanwhile, the charge
and magnetic moments also remain reasonable.

Fig. 6. Estimated deuteron quadrupole form fac-
tor GQ(Q2). Notations are the same as Fig. 4.
The dashed curve stands for the result with only
the S-wave contribution considered.

In summary, in this work we explicitly consider the
D-state contribution to the vertex of the deuteron–

proton–neutron, as well as the S-wave contribution,
and find that our four-dimensional phenomenological
Lagrangian approach can reasonably reproduce the
deuteron charge, magnetic, and particularly, quadrupole
form factors simultaneously. The estimated quadrupole
moment is much improved due to the inclusion of the
D-state contribution. It should be stressed that our
present approach is fully relativistic and it is different
from the potential model calculations based on the three-
dimensional framework.

Of course, the present calculation can be further im-
proved, since we still cannot correctly reproduce the
crossing point of the deuteron magnetic form factor as
pointed out by Ref. [28]. It is found that the experi-
mental data for GC(Q2) or GM(Q2) show the existence
of a zero (or a crossing) point, at Q2

0C=0.7 GeV2 or at
Q2

0M=2 GeV2, respectively (see Figs. 4–5). We can re-
produce the zero point at Q2∼0.55 GeV2 for the charged
form factor due to the cancellation among the terms in
the trace of Eq. (18). However, the cancellation among
the trace terms of the magnetic form factor cannot pro-
vide a crossing point in the region of 0 6 Q2 6 2 GeV2.
The estimated magnetic form factor decreases monoton-
ically in the region. This is probably due to the fact
that our selected correlation functions are still simple.
Moreover, the explicit form of the D-state contribution,
as shown in Eq. (10), is not unique [14]. A more so-
phisticated calculation is in progress. Finally, it is ex-
pected that future calculations of the deuteron general-
ized parton distribution functions with help of this ap-
proach could be promising.
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