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Analysis of B→a1(1260)(b1(1235))K
∗ decays in the perturbative

QCD approach *

ZHANG Zhi-Qing(Ü��)1) FU Jian-Hua(Îïu)

Department of Physics, Henan University of Technology, Zhengzhou 450001, China

Abstract: Within the framework of the perturbative quantum chromodynamics (PQCD) approach, we study the

charmless two-body decays B→a1(1260)K
∗, b1(1235)K

∗. Using the decay constants and the light-cone distribution

amplitudes for these mesons derived from the QCD sum rule method, we find the following results. (a) Our predictions

for the branching ratios are consistent with the QCD factorization (QCDF) results within errors, but much larger

than the naive factorization approach calculation values. (b) We predict that the anomalous polarizations occurring

in the decays B→φK∗, ρK∗ also happen in B→a1K
∗ decays, while they do not happen in B→b1K

∗ decays. Here the

contributions from the annihilation diagrams play an important role in explaining the larger transverse polarizations

in the B→a1K
∗ decays, while they are not sensitive to the polarizations for the B→b1K

∗ decays. (c) Our predictions

for the direct CP -asymmetries agree well with the QCDF results within errors. The decays B̄0
→b+

1 K∗−, B−
→b0

1K
∗−

have larger direct CP -asymmetries, which could be measured by the present LHCb experiment and the forthcoming

Super-B experiment.
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1 Introduction

In general, mesons are classified in JPC multiplets.
There are two types of orbitally excited axial-vector
mesons, namely, 1++ and 1+−. The former includes
a1(1260), f1(1285), f1(1420), and K1A, which compose
the 3P1 nonet; the latter includes b1(1235), h1(1170),
h1(1380), and K1B, which compose the 1P1 nonet. With
the exception of a1(1260) and b1(1235), these axial-
vector mesons have an important characteristic: each
flavor state can mix with any other flavor state from the
other nonet or the same nonet. There is no mixing be-
tween a1(1260) and b1(1235) because of their opposite C
parities. They also do not mix with the other mesons.
So, compared with other axial-vector mesons, these two
mesons should have less uncertainty regarding their inner
structures.

Like the decay modes B → VV, the charmless de-
cays B→a1(1260)K∗, b1(1235)K∗ also have three polar-
ization states and so are expected to have rich physics.
In many B → VV decays, the information on branch-
ing ratios and polarization fractions among various he-

licity amplitudes have been studied by many authors [1–
4]. Through polarization studies, some underlying he-
licity structure in the decay mechanism is suggested.
It has been found that the polarization fractions fol-
low the naive counting rule, that is fL∼1−O(m2

V/m2
B),

fN ∼ fT ∼O(m2
V/m2

B), where fL,N,T denote the longitu-
dinal, parallel, and perpendicular polarization fractions,
respectively, and mB(mV) is the B(V) meson mass. If
the contributions from the factorizable emission ampli-
tudes are suppressed for some decay modes, however, this
counting rule might be modified dramatically by other
contributions. For example, highly anomalous longitudi-
nal polarization fractions of about 50% have been mea-
sured in the decays B→ ρK∗, φK∗ [5], apart from the
decay B−→K∗−ρ0, which has a large longitudinal polar-
ization fraction of (96+6

−16)% [5] (the newer measurement
is (90±20)% [6]). Whether similar results also occur in
the decay modes B→ a1(1260)K∗, b1(1235)K∗ is worth
researching. We know that a1(1260) has some similar
behaviors to the vector meson, so one can expect the
branching ratios and polarization fractions of the decays
B→a1(1260)K∗ and B→ρK∗, where a1(1260) and ρ are
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scalar partners of each other, to have similar character-
istics. This is not the case for b1(1235) because of the
different characteristics of its decay constant and light-
cone distribution amplitudes (LCDAs) compared with
those of a1(1260). For example, the longitudinal decay
constant is very small for the charged b1(1235) states
and vanishes under the SU(3) limit. It is zero for the
neutral b0

1(1235) state. The transverse decay constant of
a1(1260), on the other hand, vanishes under the SU(3)
limit. In the isospin limit, the chiral-odd (-even) LCDAs
of the b1(1235) meson are symmetric (antisymmetric)
under the exchange of quark and antiquark momentum
fractions, which is exactly opposite to the symmetric be-
havior for a1(1260). In view of these differences, one can
expect that B→a1(1260)K∗ and B→b1(1235)K∗ should
give very different results. On the theoretical side, the
decays B → a1(1260)K∗, b1(1235)K∗ have been studied
by Cheng and Yang in [7], where the branching ratios
are very different to those calculated by the naive fac-
torization approach [8]. To clarify such large differences
is another motivation of this work. On the experimental
side, only the upper limits for some of the considered
decays are available [9, 10].

In the following, a1(1260) and b1(1235) are denoted
as a1 and b1 in some places for convenience. The layout
of this paper is as follows. In Section 2, we analyze these
decay channels using the perturbative quantum chromo-
dynamics (PQCD) approach. The numerical results and
discussion are given in Section 3. The conclusions are
presented in the final part.

2 The PQCD calculation

The PQCD approach has proven an effective theory
to handle hadronic B decays in many works [2, 3, 11, 12].
Because the transverse momentum of the valence quarks
in the hadrons is taken into account, one will encounter
double logarithm divergences when the soft and the
collinear momenta overlap. Fortunately, these large dou-
ble logarithms can be re-summed into the Sudakov fac-
tor [13]. There is also another type of double logarithm
which arises from the loop corrections to the weak decay
vertex. These double logarithms can also be re-summed
and result in the threshold factor, which decreases faster
than any other power of the momentum fraction in the
threshold region, which removes the endpoint singular-
ity. This factor is often parameterized into a simple form
which is independent of channels, twists and flavors [14].
Certainly, when the higher order diagrams only suffer
from soft or collinear infrared divergence, it is easy to
cure using the eikonal approximation [15]. Controlling
these kinds of divergences reasonably makes the PQCD

approach more self-consistent.
In the standard model, the related weak effective

Hamiltonian Heff mediating the b → s type transitions
can be written as [16]

Heff =
GF√

2

[

∑

p=u,c

VpbV
∗
ps (C1(µ)Op

1 (µ)

+C2(µ)Op
2 (µ))−VtbV

∗
ts

10
∑

i=3

Ci(µ)Oi(µ)

]

.

(1)

Here the function Qi(i = 1,··· ,10) is the local four-
quark operator and Ci is the corresponding Wilson coeffi-
cient. Vp(t)b, Vp(t)s are the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements. The standard four-quark oper-
ators are defined as:

Ou
1 = s̄αγµLuβ·ūβγµLbα ,

Ou
2 = s̄αγµLuα·ūβγµLbβ ,

O3 = s̄αγµLbα·
∑

q′ q̄′
βγµLq′

β ,

O4 = s̄αγµLbβ·
∑

q′ q̄′
βγµLq′

α ,

O5 = s̄αγµLbα·
∑

q′ q̄′
βγµRq′

β ,

O6 = s̄αγµLbβ·
∑

q′ q̄′
βγµRq′

α ,

O7 =
3

2
s̄αγµLbα·

∑

q′ eq′ q̄′
βγµRq′

β ,

O8 =
3

2
s̄αγµLbβ·

∑

q′ eq′ q̄′
βγµRq′

α ,

O9 =
3

2
s̄αγµLbα·

∑

q′ eq′ q̄′
βγµLq′

β ,

O10 =
3

2
s̄αγµLbβ·

∑

q′ eq′ q̄′
βγµLq′

α ,

(2)

where α and β are the SU(3) color indices; L and R
are the left- and right-handed projection operators with
L=(1−γ5), R=(1+γ5). The sum over q′ runs over the
quark fields that are active at the scale µ=O(mb), i.e.
(q′ε{u,d,s,c,b}). At leading order, there are eight types
of single hard gluon exchange diagrams which contribute
to the decays we are considering. These can be divided
into emission type diagrams and annihilation type dia-
grams, each type including two factorizable and two non-
factorizable diagrams. Due to space limitations, these
diagrams are not shown here.

Combining the contributions from the different dia-
grams, the total decay amplitudes for these decays can
be written as
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√
2Mj(K̄

∗0a0
1) = ξu(F

LL,j
eK∗ a2+MLL,j

eK∗ C2)−ξt

[

F LL,j
eK∗

(

3C7

2
+

C8

2
+

3C9

2
+

C10

2

)

−(F LL,j
ea1

+F LL,j
aa1

)
(

a4−
a10

2

)

+MLL,j
eK∗

3C10

2
+MSP,j

eK∗

3C8

2

−(MLL,j
ea1

+MLL,j
aa1

)

(

C3−
1

2
C9

)

−(MLR,j
ea1

+MLR,j
aa1

)

(

C5−
1

2
C7

)

−(F SP,j
ea1

+F SP
aa1

)(a6−
1

2
a8)

]

, (3)

Mj(K̄
∗0a−

1 ) = ξu

[

MLL,j
aa1

C1+F LL,J
aa1

a1

]

−ξt

[

F LL,j
ea1

(

a4−
a10

2

)

+F LL,j
aa1

(a4+a10)

+MLL,j
ea1

(

C3−
1

2
C9

)

+MLL,j
aa1

(C3+C9)+MLR,j
ea1

(

C5−
1

2
C7

)

+MLR,j
aa1

(C5+C7)+F SP,j
aa1

(a6+a8)
]

, (4)

√
2Mj(K̄

∗−a0
1) = ξu

[

F LL,j
eK∗ a2+MLL,j

eK∗ C2+MLL,j
aa1

C1+F LL,j
aa1

a1

]

−ξt

[

MLL,j
eK∗

3

2
C10

+MSP,j
eK∗

3

2
C8+MLL,j

aa1
(C3+C9)+MLR,j

aa1
(C5+C7)

+F LL,j
aa1

(a4+a10)+F SP,j
aa1

(a6+a8)
]

, (5)

Mj(K̄
∗−a+

1 ) = ξu

[

F LL,j
ea1

a1+MLL,j
ea1

C1

]

−ξt

[

F LL,j
ea1

(a4+a10)+MLL,j
ea1

(C3+C9)

+MLR,j
ea1

(C5+C7)+MLL,j
aa1

(

C3−
1

2
C9

)

+MLR,j
aa1

(

C5−
1

2
C7

)

+F LL,j
aa1

(

a4−
1

2
a10

)

+F SP,j
aa1

(

a6−
1

2
a8

)]

, (6)

where F LL,j
ea1

denotes the amplitudes of the factorizable
emission diagrams, where one can extract out the B→a1

transition form factor. If we exchange the positions of a1

and K̄∗, we get the amplitudes F LL,j
eK∗ and F SP,j

eK∗ . As for the
amplitudes of the non-factorizable emission diagrams,
MLL,j

ea1
and MLR,j

ea1
are those relevant to the decays con-

sidered. The amplitudes MLL,j
eK∗ and MSP,j

eK∗ are obtained
by exchanging a1 and K̄∗ in the non-factorizable emission
diagrams. In a similar way, for the annihilation diagram
amplitudes F LL,j

aa1
and F SP,j

aa1
are from the factorizable an-

nihilation diagrams, while MLL,j
aa1

and MLR,j
aa1

are from the
non-factorizable annihilation diagrams. Note that the
upper labels LL, LR, and SP denote the (V−A)(V−A),
(V −A)(V +A), and (S−P )(S+P ) currents, respectively,
and j denotes three types of polarizations (one longi-
tudinal and two transverse), denoted by L, N and T .
Limitations of space prevent us from giving the analyti-
cal expressions for these amplitudes. The combinations
of the Wilson coefficients are defined as usual:

a1(µ) = C2(µ)+
C1(µ)

3
, a2(µ)=C1(µ)+

C2(µ)

3
, (7)

ai(µ) = Ci(µ)+
Ci+1(µ)

3
, i=3,5,7,9, (8)

ai(µ) = Ci(µ)+
Ci−1(µ)

3
, i=4,6,8,10. (9)

The amplitudes for those decays involving the b1 meson
can be found from Eq. (4)–Eq. (6) above by substituting
the b1 meson wave functions for a1 ones.

3 Numerical results and discussions

For the wave function of the heavy B meson, we take
[11]

ΦB(x,b)=
1√
2Nc

(6PB+mB)γ5φB(x,b). (10)

Here only the contribution of the Lorentz structure
φB(x,b) is taken into account, since the contribution of
the second Lorentz structure φ̄B is numerically small [17]
and has been neglected. For the distribution amplitude
φB(x,b) in Eq. (10), we adopt the following model:

φB(x,b)=NBx2(1−x)2exp

[

−M 2
Bx2

2ω2
b

−1

2
(ωbb)

2

]

, (11)

where ωb is a free parameter, taken to be ωb=0.4±0.04
GeV in numerical calculations, and NB = 91.745 is the
normalization factor for ωb=0.4. This is the same wave
function as in Ref. [11], which gives the best fit for most
of the measured hadronic B decays.

In these decays, both the longitudinal and the trans-
verse polarizations are involved for the vector meson K∗.
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Its distribution amplitudes are defined as

〈K∗(P,ε∗L)|q̄2β(z)q1α(0)|0〉

=
1√
2Nc

∫1

0

dxeixp·z [mK∗ε/∗
LφK∗(x)+ε/∗

LP/φt
K∗(x)

+mK∗φs
K∗(x)]

αβ
, (12)

〈K∗(P,ε∗T)|q̄2β(z)q1α(0)|0〉

=
1√
2Nc

∫1

0

dxeixp·z
[

mK∗ε/∗
Tφv

K∗(x)+ε/∗
TP/φT

K∗(x)

+mK∗ iεµνρσγ5γ
µε∗vT nρvσφa

K∗(x)]
αβ

, (13)

where n(v) is the unit vector having the same (opposite)
direction as the motion of the vector meson and x is the
momentum fraction of quark q2. The upper (sub)leading
twist wave functions can be parameterized as

φK∗(x) =
fK∗

2
√

2Nc

φ‖(x),φT
K∗(x)=

fT
K∗

2
√

2Nc

φ⊥(x),

φt
K∗(x) =

fT
K∗

2
√

2Nc

h(t)

‖ (x),φs
K∗(x)=

fT
K∗

2
√

4Nc

d

dx
h(s)

‖ (x),

φv
K∗(x) =

fK∗

2
√

2Nc

g(v)
⊥ (x),φa

K∗ (x)=
fK∗

8
√

2Nc

d

dx
g(a)
⊥ (x),

(14)

where

φ‖,⊥=6x(1−x)
[

1+3a‖,⊥
1K∗t+3/2a‖,⊥

2K∗(5t2−1)
]

, (15)

h(t)

‖ (x)=3t2, h(s)

‖ (x)=6x(1−x), (16)

g(a)
⊥ (x)=6x(1−x), g(v)

⊥ (x)=3/4(1+t2). (17)

The distribution amplitudes of the axial-vectors
a1(b1) have the same format as those of the K∗ meson
except for the factor iγ5 from the left-hand side:

〈A(P,ε∗L)|q̄2β(z)q1α(0)|0〉

=
iγ5√
2Nc

∫1

0

dxeixp·z[mAε/∗
LφA(x)

+ε/∗
LP/φt

A(x)+mAφs
A(x)]αβ,

〈A(P,ε∗T)|q̄2β(z)q1α(0)|0〉

=
iγ5√
2Nc

∫1

0

dxeixp·z
[

mAε/∗
Tφv

A(x)+ε/∗
TP/φT

A(x)

+mAiεµνρσγ5γ
µε∗vT nρvσφa

A(x)]
αβ

, (18)

where A represents a1 and b1. Their (sub) leading twist
wave functions also have the same parameter formats as
those of the K∗, which can be obtained by replacing K∗

with A in Eq. (14). The corresponding functions φ(x),

h(x), g(x) for the axial-vector are written as

φ‖,⊥=6x(1−x)

[

a‖,⊥
0 +3a‖,⊥

1 t+
3a‖,⊥

2

2
(5t2−1)

]

, (19)

h(t)

‖ (x)=3a⊥
0 t2+

3

2
a⊥

1 t(3t2−1), (20)

h(s)

‖ (x)=6x(1−x)(a⊥
0 +a⊥

1 t), (21)

g(a)
⊥ (x)=6x(1−x)(a‖

0+a‖
1t), (22)

g(v)
⊥ (x)=

3

4
a‖

0(1+t2)+
3

2
a‖

1t
3, (23)

where the zeroth Gegenbauer moments a⊥
0 (a1)=a‖

0(b1)=
0 and a‖

0(a1)=a⊥
0 (b1)=1. Here t=2x−1, and the other

decay constants and Gegenbauer moments are listed in
Table 1.

Table 1. Decay constants and Gegenbauer mo-
ments for K∗, a1 and b1 (in MeV). The values
are taken at µ=1 GeV.

fK∗ fTK∗ fa1 fTb1

209±2 165±9 238±10 −180±8

a
‖
1(K∗) a⊥

1 (K∗) a
‖
2(K∗) a⊥

2 (K∗)

0.03±0.02 0.04±0.03 0.11±0.09 0.10±0.08

a
‖
2(a1(1260)) a⊥

1 (a1(1260)) a
‖
1(b1(1235)) a⊥

2 (b1(1235))

−0.02±0.02 −1.04±0.34 −1.95±0.35 0.03±0.19

The following input parameters are also used in our
numerical calculations [18, 19]:

fB = 190 MeV, MB=5.28 GeV, (24)

τB± = 1.638×10−12 s, τB0 =1.525×10−12 s, (25)

|Vub| = 3.89×10−3, |Vtb|=1.0, (26)

|Vus| = 0.2252, |Vts|=38.7×10−3, (27)

MW = 80.41 GeV, γ=(67.2±3.9)◦. (28)

First, we use the PQCD approach to calculate the
form factors AB→K∗

0 , V B→a1
0 and V B→b1

0 , which are usu-
ally the input parameters in other QCD approaches such
as QCD factorization (QCDF). For comparison, we list
both the results calculated by the PQCD approach and
the light-cone sum rules (LCSR) in Table 2, the lat-
ter being the input parameters for QCDF calculations.
Certainly, our calculations are consistent with previous
PQCD calculation results [20].

The decay widths for these channels can be expressed
as

Γ =
G2

F(1−r2
a1(b1)−rK∗)

32πMB

∑

L,N,T

Mσ†M, (29)

where ra1(b1) =ma1(b1)/MB. Mσ is the decay amplitude
and can be calculated in the PQCD approach; the sub-
script σ represents the helicity states of the two final
mesons with the longitudinal (L), normal (N) and trans-
verse (T) components. According to Lorentz structure
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analysis, the amplitudes are decomposed into

Mσ = M 2
BML+M 2

BMNε∗2(σ=T)·ε∗3(σ=T )

+iMTεµνρσεµ∗
2 εµ∗

3 P ρ
2 P σ

3 . (30)

We can define the longitudinal H0 and transverse H±

helicity amplitudes as

H0=M 2
BML, (31)

H±=M 2
BMN∓ma1(b1)mK∗

√
κ2−1MT, (32)

where κ=
P2·P3

ma1(b1)mK∗

. They satisfy the relation

∑

L,N,T

Mσ†M =|H0|2+|H+|2+|H−|2. (33)

When we consider the polarization fractions, another
equivalent set of definitions of helicity amplitudes is often
used,

A0 = −ζM 2
BML, A‖=ζ

√
2M 2

BMN,

A⊥ = ζma1(b1)mK∗

√
κ2−1MT. (34)

If the normalization factor satisfying |A0|2+|A‖|2+|A⊥|2=
1, then A0, A‖, A⊥ denote the longitudinal, parallel and
perpendicular polarization fractions, respectively.

Table 2. Form factors predicted by PQCD ap-
proach and light-cone sum rules (LCSR) [21, 22].
The errors in this work include the B meson shape
parameter ωb, the QCD scale Λ

(4)
QCD, the threshold

resummation parameter c, and the Gegenbauer
moments in K∗ or a1(b1) meson.

this work LCSR

AB→K∗

0 (q2=0) 0.30+0.04+0.00+0.04+0.00
−0.04−0.01−0.04−0.01 0.374

AB→K∗

1 (q2=0) 0.19+0.03+0.01+0.03+0.02
−0.02−0.01−0.02−0.01 0.292

V B→K∗

(q2=0) 0.25+0.05+0.01+0.03+0.03
−0.03−0.02−0.02−0.01 0.411

V
B→a1
0 (q2=0) 0.33+0.05+0.01+0.08+0.11

−0.04−0.01−0.07−0.09 0.30±0.05

V
B→a1
1 (q2=0) 0.30+0.06+0.03+0.10+0.08

−0.04−0.04−0.09−0.08 0.37±0.07

AB→a1 (q2=0) 0.23+0.05+0.03+0.04+0.05
−0.03−0.01−0.04−0.05 0.48±0.09

V
B→b1
0 (q2=0) 0.44+0.06+0.00+0.07+0.04

−0.05−0.01−0.06−0.04 −0.39±0.07

V
B→b1
1 (q2=0) 0.29+0.05+0.01+0.06+0.03

−0.03−0.01−0.05−0.04 −0.20±0.04

AB→b1(q2=0) 0.19+0.04+0.00+0.04+0.03
−0.02−0.01−0.04−0.03 −0.25±0.05

Using the input parameters as specified in this sec-
tion, it is easy to get the branching ratios for the decays
considered. The results are listed in Table 3, where the
first error comes from the uncertainty in the B meson
shape parameter ωb =0.40±0.04 GeV, the second error
is induced by the hard scale-dependent variation from
Λ(4)

QCD=0.25±0.05, the third is from the threshold resum-
mation parameter c varying from 0.3 to 0.4, and the last
error is from the Gegenbauer moments in K∗ and a1(b1)
mesons.

Table 3. Branching ratios (in units of 10−6) for the
decays B→ a1(1260)K

∗ and B→b1(1235)K
∗. In

our results, the errors for these entries correspond
to the uncertainties from ωB, Λ

(4)
QCD, the threshold

resummation parameter c, and the Gegenbauer
moments in the final state mesons, respectively.
For comparison, we also list the results predicted
by the QCDF approach [7] and the naive factor-
ization approach [8].

this work [7] [8]

B̄0
→a+

1 K∗− 9.9+1.6+0.4+3.7+6.2
−1.1−0.6−3.7−4.2 10.6+5.7+31.7

−4.0−8.1 0.92

B̄0→a0
1K̄

∗0 7.1+1.5+0.4+3.1+4.0
−0.9−0.6−3.1−3.5 4.2+2.8+15.5

−1.9−4.2 0.64

B−→a−1 K̄∗0 10.8+2.0+0.7+4.6+7.1
−1.4−0.8−4.6−4.7 11.2+6.1+31.9

−4.4−9.0 0.51

B−
→a0

1K
∗− 4.8+0.6+0.2+1.6+3.0

−0.5−0.3−1.6−2.1 7.8+3.2+16.3
−2.5−4.3 0.86

B̄0→b+
1 K∗− 18.0+3.3+1.3+6.3+3.5

−2.6−2.3−6.3−3.2 12.5+4.7+20.1
−3.7−9.0 0.32

B̄0→b0
1K̄

∗0 9.6+2.1+1.0+3.8+1.9
−1.5−1.1−3.8−1.6 6.4+2.4+8.8

−1.7−4.8 0.15

B−
→b−

1 K̄∗0 23.0+4.5+2.3+8.4+4.5
−3.5−2.9−8.4−4.1 12.8+5.0+20.1

−3.8−9.6 0.18

B−→b0
1K

∗− 10.6+1.9+0.7+3.4+4.2
−1.5−1.4−3.4−2.0 7.0+2.6+12.0

−2.0−4.8 0.12

In our predictions, the branching ratio of the decay
B̄0→a0

1K̄
∗0 is larger than that of the decay B−→a0

1K
∗−.

This is mainly due to the amplitudes of the factorizable
emission diagrams, Fea1

and FeK∗ , having opposite inter-
ference effects for these two decays: constructive for the
decay a0

1K̄
∗0, destructive for the decay a0

1K
∗−. The decay

B̄0 → a0
1K̄

∗0 therefore receives a larger real part for the
penguin amplitudes. Though the decay B−→a0

1K
∗− has

much larger contributions from tree amplitudes, these
are CKM suppressed and cannot change the branching
ratio too much. In order to characterize the contribu-
tions from tree operators and the symmetry breaking
effects between B− and B̄0 mesons, it is useful to define
two ratios:

R1 =
B(B−→a−

1 K̄∗0)

B(B̄0→a+
1 K∗−)

× τB̄0

τB−

, (35)

R2 =
B(B−→b0

1K
∗−)

B(B̄0→b+
1 K∗−)

× τB̄0

τB−

. (36)

If one neglects the tree operators and the electro-weak
penguins, the ratios obey the following limits

R1=1, R2=0.5. (37)

Here our predictions for these two ratios are 1.02 and
0.55, respectively. The results predicted by the QCDF
approach are 0.98 and 0.52, respectively. If the fu-
ture data for R1 show a large deviation from our value,
the contributions from electro-weak penguin operators
might have an important effect, as the contributions
from tree operators cannot change the branching ratio
of B̄0→a+

1 K∗− too much. If the future data for R2 have
a large deviation from our value, some mechanism be-
yond factorization, or even new physics, might have an
important effect, because the factorizaton formulae for
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B̄0→b+
1 K∗− and B−→b0

1K
∗− are exactly the same if the

neutral b0
1 meson decay constant vanishes.

Table 3 shows that, when compared with other re-
sults, our predictions are consistent with the QCDF re-
sults within (large) theoretical errors, while in stark dis-
agreement with the naive factorization approach, where
the nonfactorizable effects are described by the effective
number of colors N eff

c . For some decays, where the con-
tributions from the emission diagrams are dominant or
the branching ratios have a strong dependence on the
correlative form factors, the naive factorization approach
can give a reasonable prediction, while for decays where
the annihilation diagrams play an important role, this
approach shows some disadvantages. On the experimen-
tal side, BarBar has searched for the decays B→a−

1 K̄∗0,
b1K

∗ and set upper limits on their branching ratios rang-
ing from 3.3 to 8.0×10−6 at the 90% confidence level
[9, 10]. These upper limits are obtained, however, by
assuming that B(a±

1 →π+π−π±)=B(a±
1 →π0π0π±) and

B(a±
1 (b±

1 )→ρ0(ω)π±)=1. Furthermore, the background
signals may have an important effect on these upper lim-
its, such as the background decay channel B→a2K̄

∗0 in
studies of the decay B→a1K̄

∗0. In view of these disagree-
ments, we strongly suggest that LHCb and the forthcom-
ing Super-B experiments accurately measure these decay
modes.

From Table 4, we find that the polarization charactis-
tics for the decays B→a1K

∗ and B→b1K
∗ are very differ-

ent: the transverse polarization amplitudes have almost
equal values with (even a little stronger than) the lon-
gitudinal polarization amplitudes for the former, while
the longitudinal polarization states are dominant for the
latter. It seems that the anomalous polarizations which
occur in B→φK∗, ρK∗ decays also happen in B→a1K

∗

decays, while they do not occur in B → b1K
∗ decays.

We also find that the contributions from the annihila-
tion diagrams are very important for the final polariza-
tion fractions for B → a1K

∗ decays: if these contribu-
tions are neglected, the longitudinal polarization frac-
tion of the decay B−→ a0

1K
∗− becomes 98.8%, those of

B̄0 →a+
1 K∗−, a0

1K̄
∗0 increase to about 90%, and that of

the decay B− → a−
1 K̄∗0 changes from 50.3% to 70.0%.

The longitudinal polarizations of B → b1K
∗ decays de-

crease very little if the annihilation type contributions
are neglected, except for the decay B−→b−

1 K̄∗0, which
has a larger reduction, changing from 96.2% to 86%. In
short, compared to B → a1K

∗ decays, the longitudinal
polarizations of B→b1K

∗ decays are not very sensitive
to the annihilation type contributions.

Now we turn to evaluations of the CP -violating
asymmetries in the PQCD approach. Here we only re-
search the decays B → b1K

∗, where the transverse po-
larization fractions are very small and range from 3.8 to
5.2%. It is easy to see that for these b1K

∗ decay modes,
the contributions from the transverse polarizations are
very small, so we neglect them in our calculations. Con-
sider these two matrix elements

ML = VubV
∗
usTL−VtbV

∗
tsPL

= VubV
∗
usTj(1+zje

i(γ+δj)), (38)

ML = V ∗
ubVusTL−V ∗

tbVtsPL

= V ∗
ubVusTL(1+zLei(−γ+δL)), (39)

where γ is the CKM weak phase angle, defined via

γ = arg

[

− VtbV
∗
ts

VubV ∗
us

]

; δL is the relative strong phase be-

tween the tree and the penguin amplitudes, which are
denoted as ‘TL’ and ‘PL’, respectively; and the term zL

describes the ratio of penguin to tree contributions and
is defined as

zL=

∣

∣

∣

∣

VtbV
∗
ts

VubV ∗
us

∣

∣

∣

∣

∣

∣

∣

∣

PL

TL

∣

∣

∣

∣

. (40)

Using Eq. (38) and Eq. (39), one can get the expression
for the direct CP -violating asymmetry:

Adir
CP =

|M|2−|M|2
|M|2+|M|2

=
2zLsinγsinδL

(1+2zLcosγcosδL+z2
L)

. (41)

Table 4. Longitudinal polarization fraction (fL) and two transverse polarization fractions (f‖, f⊥) for decays B→

a1(1260)K
∗ and B→b1(1235)K

∗. In our results, the uncertainties are the same as those in Table 3. For comparison,
the results of fL as predicted by the QCDF approach are displayed in parentheses.

fL(%) f‖(%) f⊥(%)

B̄0
→a+

1 K∗− 48.9+5.1+7.4+4.9+8.8
−4.7−8.0−4.9−7.2 (37+39

−29) 26.1+2.5+3.8+2.6+3.2
−2.8−4.1−2.6−3.1 25.0+2.2+3.8+2.3+2.8

−2.3−3.5−2.3−2.8

B̄0→a0
1K̄

∗0 59.6+4.7+7.7+4.3+4.5
−4.9−7.8−4.3−5.1 (23+45

−19) 20.2+2.6+3.8+2.2+0.1
−2.5−3.8−2.2−2.2 20.2+2.3+4.0+2.1+0.2

−2.2−3.5−2.1−2.1

B−→a−1 K̄∗0 50.3+5.1+8.6+5.0+7.4
−4.9−9.9−5.0−8.6 (37+48

−37) 24.1+2.6+5.0+2.5+3.9
−2.7−3.7−2.5−3.5 25.6+2.3+5.0+2.5+4.7

−2.4−4.9−2.5−3.9

B−
→a0

1K
∗− 49.0+3.3+6.2+4.7+5.9

−4.3−6.2−4.7−5.1 (52+41
−42) 25.5+2.3+0.0+2.4+2.5

−2.5−2.5−2.4−2.9 25.5+2.0+3.2+2.2+2.6
−2.2−3.7−2.2−3.0

B̄0→b+
1 K∗− 95.9+0.1+1.1+0.0+0.6

−0.1−1.3−0.0−1.3 (82+18
−41) 1.1+0.2+0.4+0.2+0.4

−0.0−0.2−0.2−0.3 3.0+0.0+0.9+0.2+0.4
−0.1−0.7−0.2−0.6

B̄0→b0
1K̄

∗0 95.4+0.1+1.0+0.1+0.4
−0.1−1.4−0.1−1.3 (79+21

−74) 0.9+0.0+0.2+0.4+0.2
−0.0−0.2−0.4−0.3 3.7+0.1+1.2+0.3−0.5

−0.1−0.8−0.3−0.9

B−
→b−

1 K̄∗0 96.2+0.0+0.9+0.1+0.6
−0.0−1.7−0.1−0.7 (79+21

−74) 1.0+0.0+0.3+0.3+0.2
−0.0−0.3−0.3−0.4 2.8+0.0+0.9+0.2+0.4

−0.0−0.6−0.2−0.5

B−→b0
1K

∗− 96.5+0.0+0.8+0.1+0.2
−0.1−1.3−0.1−0.8 (82+16

−26) 0.7+0.1+0.2+0.2+0.3
−0.0−0.1−0.2−0.2 2.8+0.0+0.9+0.3+0.3

−0.0−0.6−0.3−0.4
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Fig. 1. Direct CP -violating asymmetry as a func-
tion of CKM angle γ. The dashed line is for the
decay B−

→ b−
1 K̄∗0, the solid line represents the

decay B̄0
→b0

1K̄
∗0, the dotted line represents the

decay B−
→b0

1K
∗−, and the dot-dashed line is for

the decay B̄0
→b+

1 K∗−.

Note that the contributions from the transverse po-
larizations have been neglected in the derivation of the
direct CP -violating asymmetry.

Using the input parameters and the wave functions
as specified in this section, one can find the PQCD pre-
dictions (in units of 10−2) for the direct CP -violating
asymmetries of the decays considered:

Adir
CP (B̄0→b+

1 K∗−) = 38.5+1.2+8.8+4.5+0.8
−1.7−7.4−4.5−1.3, (42)

Adir
CP (B−→b0

1K
∗−) = 54.3+0.9+7.8+4.4+1.2

−1.7−6.7−4.4−2.2, (43)

Adir
CP (B̄0→b0

1K̄
∗0) = −18.7+2.0+0.7+1.8+1.6

−1.3−0.3−1.8−1.4, (44)

Adir
CP (B−→b−

1 K̄∗0) = −0.18+0.23+0.47+0.33+0.11
−0.28−0.00−0.33−0.11 , (45)

where the errors are induced by the uncertainties in the
B meson shape parameter ωb=0.4±0.04, the hard scale-

dependent variation from Λ(4)
QCD=0.25±0.05, the threshold

resummation parameter c varying from 0.3 to 0.4, and
the Gegenbauer moments in the final state mesons. In
Fig. 1, we show the CKM angle γ dependence of the di-
rect CP -violating asymmetries for the four decays above.
It is particularly noteworthy that our predictions about
the direct CP asymmetries of these decays are consistent
with the QCDF results [23]:

Adir
CP (B̄0→b+

1 K∗−) = (44+3
−58)%, (46)

Adir
CP (B−→b0

1K
∗−) = (60+6

−73)%, (47)

Adir
CP (B̄0→b0

1K̄
∗0) = (−17+21

−10)%, (48)

Adir
CP (B−→b−

1 K̄∗0) = (2+0
−2)%, (49)

where the error comes from the parameters ρA,H and ar-
bitrary phases φA,H. These are phenomenological param-
eters to cure the endpoint divergences in the amplitudes
for the annihilation and hard spectator scattering dia-
grams.

4 Conclusion

In this paper, by using the decay constants and light-
cone distribution amplitudes derived from the QCD sum-
rule method, we studied the B→ a1K

∗, b1K
∗ decays in

the PQCD factorization approach and found that:
1) Our predictions for the branching ratios are con-

sistent with the QCDF results within errors, but larger
than the values calculated by the naive factorization ap-
proach. On the experimental side, some primary upper
limit values are inexplicable. In view of these disagree-
ments, we strongly suggest that LHCb and the forth-
coming Super-B experiments perform further studies to
accurately measure these decay modes.

2) The anomalous polarizations which occur in B→
φK∗, ρK∗ decays also happen in B→ a1K

∗ decays, but
not in B→b1K

∗ decays. Here, the contributions from the
annihilation diagrams play an important role in explain-
ing the larger transverse polarizations in the B→ a1K

∗

decays, while they are not sensitive to the polarizations
in B→b1K

∗ decays.
3) Our predictions for the direct CP -asymmetries

agree well with the QCDF results, within errors. The
decays B̄0→b+

1 K∗−, B−→b0
1K

∗− have larger direct CP -
asymmetries, which could be measured by the present
LHCb and the forthcoming Super-B experiments.
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YANG Mao-Zhi. Eur. Phys. J. C, 2002, 23: 275

12 Li Hsiang-nan, Mishima S, Sanda A I. Phys. Rev. D, 2005, 72:
114005

13 Li Hsiang-nan, Tseng B. Phys. Rev. D, 1998, 57: 443
14 Li Hsiang-nan, Ukai K. Phys. Lett. B, 2003, 555: 197
15 Li Hsiang-nan, YU Hoi-Lai. Phys. Rev. D, 1996, 53: 2480
16 Buchalla G, Buras A J, Lautenbacher M E. Rev. Mod. Phys.,

1996, 68: 1125
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