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Abstract: The free electron laser (FEL) gain formulas for a non-resonant case are studied, and some new rigorous

analytical formulas are given explicitly. For the mono-energetic and non-resonant electron beam, the exact expression

of the solution of the FEL characteristic cubic equation is obtained with a form much more simple than that in the

literatures, and the gain length as the function of the detuning parameter is explicitly given. Then the gain for

different detuning parameters and from low to high can be easily calculated. A simplified approximation formula is

also given for the exponential gain calculation in the non-resonant case. For the case of the electron beam with an

energy spread, the solution of the characteristic cubic equation is given explicitly for rectangular energy distribution

and Lorentz distribution, respectively. Moreover the explicit expression also can be used for the solution of the

characteristic cubic equation including the impact of the space charge. The transition from the low gain to the high

gain is analyzed. The variations of the gain bandwidth and of the detuning parameter for the maximum gain are

demonstrated. The applicable ranges of the small signal gain formula and the exponential gain formula are analyzed.
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1 Introduction

The optical field gain is one of most important pa-
rameters in a free electron laser (FEL), which is defined
as the ratio of the optical power increment to the initial
power. In the linear regime, the FEL optical field is un-
der saturation; usually it has a low gain per pass in the
oscillator mode and a high gain in the single-amplifying
mode. The level of the optical field gain of FEL is deter-
mined by the intensity of the electron current density and
the length of the undulator. The effects of the two fac-
tors can be characterized by the number of gain lengths
in the length of the undulator. The gain length is defined
as the e-folding length of the optical power increased by
a factor of e=2.718···.

Though analytical gain formulas are convenient for
calculation and analysis compared with the numerical
method, they exist only for special cases of FEL gain
calculation. Typically there are the small signal gain
formula in the low gain regime and the exponential gain
formula in the high gain regime. The former is the ini-
tial gain in the multi-amplifying of oscillator FEL and the
latter is the gain in single-amplifying high gain FEL. The
existing exponential gain formula is only for the electron
beam at the resonant energy. In this paper we consider
the exponential gain for the non-resonant case, includ-

ing the mono-energetic electron beam but non-resonant
and the electron beam with an energy spread. We try to
give some analytical expressions of the gain, and we also
analyze the transition from the range of the small signal
gain to the range of the exponential gain.

The paper is organized as follows: in the second sec-
tion we give a brief review of the existing analytical the-
ory of the exponential gain; then in the third section the
general non-resonant case will be analyzed; the case of
the electron beam with an initial energy spread will be
considered in the fourth section; and at last we give an
analysis on the relation between the different gain for-
mulas.

2 The existing analytic theory of expo-
nential gain [1–5]

The optical field in the linear regime for the mono-
energetic electron beam is given as

ãs(ẑ) = i

3
∑

m=1

m6=l,k

ãs0e
µ̂m ẑ

µ̂m(µ̂m−µ̂l)(µ̂m−µ̂k)

= ãs0

3
∑

m=1

µ̂m+iη̂

3µ̂m+iη̂
eµ̂m ẑ, (1)
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where ãs0 is the initial dimensionless vector potential of
the optical field, ẑ=2kuρz is the scaled position along
the undulator, ku is the wave number of the undulator,
ρ is FEL parameter, η̂ = δγ/γρ is the scaled detuning
parameter, δγ/γ is the beam energy deviation from the
resonance, µ̂m (m=1, 2, 3) is the roots of the well-known
characteristic cubic equation:

µ̂(µ̂+iη̂)2=i. (2)

When η̂<3/ 3
√

4=1.89, the cubic equation has one imag-
inary root corresponding to the oscillatory mode of the
optical field, and two complex roots with the real parts of
equal magnitude but opposite sign, corresponding to the
exponential amplifying mode and the exponential decay-
ing mode, respectively (and if η̂>1.89, the cubic equation
will have three imaginary roots). For a sufficiently long
undulator the leading role is the exponential growth term
corresponding to the root with a positive real part.

The maximum gain rate occurs at the resonant en-
ergy. For this case, the detuning parameter η̂=0, the
three roots are µ̂1,2,3 =(i±

√
3)/2, −i, then the gain for-

mula can be given analytically
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where P0 is the input optical power (seeding) for am-
plifier FEL, and for self-amplified spontaneous emission
(SASE) it is the effective noise power. In the above equa-
tion, the last approximation of exponential gain is valid
for a large rate of L/Lg (see Section 5), L is the length of
the undulator, Lg=1/2ku

√
3ρ is the power gain length.

For the case of non-resonance, if the detuning is small
|η̂| �1, namely near the resonance, the standard ap-
proach (e.g. in Refs. [1–3]) expands the cubic equation
near η̂=0 to the second order in η̂ and has

µ̂=µ̂0−i
2

3
η̂− 1

9µ̂0

η̂2, (4)

then the root corresponding to the exponential growth
term is
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and the exponential gain of the optical field is

ãs/ãs0∝e
√

3ẑei[ 1
2
− 2

3
η̂]ẑe

− η̂2

4σ2
η

[

1− i
√

3

]

, (6)

where σ2
η = 3

√
3/2ẑ is the gain bandwidth, following

from which the radiation bandwidth can be given as
σω/ω=2ρση. It decreases with the increase of z and goes
to ρ when the optical field tends to saturation, which
happens where the length of the undulator equals about
twenty gain length for SASE.

It should be pointed out that actually besides the ex-
ponential factor in Eq. (6), the pre-exponential factor is
also relevant to the detuning parameter.

3 The general non-resonant case

For the mono-energetic and non-resonant electron
beam, the exact solution of the cubic equation (Eq. (2))
was given, but in a very complicated form (for example
as in Refs. [1, 6]). By careful reduction we get the exact
solution with a much more simple form as follows:
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From the root µ̂1 we obtain the rigorous gain length for-
mula explicitly as:
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, (8)

where Lg0 is the gain length for the resonant case. From
Eq. (8) it is obvious to the requirement of η̂<3/ 3

√
4=1.89.

Variation of the gain length with the detuning parame-
ter (i.e. the electron energy) is shown as Fig. 1, the solid
curve is exactly the same as in the literatures (e.g. in
Refs. [1, 2, 7]) where it was given numerically, but here
it is given by the formula. Therefore the gain length of
the general case can be calculated conveniently. At the
resonance the detuning parameter is equal to zero, and
the gain length is the shortest, the growth rate reaches
its maximum. The gain length increases sharply for the
detuning parameter larger than zero and slowly for the
detuning parameter smaller than zero. The result given
by Eq. (5) is also plotted in Fig. 1. It can be seen that
it is only applicable for the case of |η̂|<1.

By using Eq. (7) and Eq. (1), the variation of the gain
with the detuning parameter can be calculated. The re-
sult for the case near the saturation (L∼20Lg) is shown
in Fig. 2. It is seen that for the high gain, the gain
bandwidth ∆η̂FWHM∼1, this agrees with the result from
Eq. (6): ση̂∼1/2. From Fig. 2 one can also see that the
maximum gain is not at the resonance η̂ = 0 as is the
maximum growth rate (Fig. 1), but is at η̂≈0.12, and for
the detuning parameter smaller than zero, the gain does
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not vary slowly as the gain length does (Fig. 1). This is
because, for the non-resonant case, the non-exponential
factor in the optical field expression (Eq. (1)) is also re-
lated to the detuning as we previously pointed out.

Fig. 1. The gain length vs. the detuning parameter
(Eq. (8)). The dashed line is given by Eq. (5).

Fig. 2. The variation of the gain with the detuning
parameter (z=20Lg). The solid line: Eq. (7) and
(1); the dashed line: Eq. (9).

Furthermore, we give a simplified approximation for-
mula for the exponential gain calculation in the non-
resonant case as follows:
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It agrees well with the exact result from Eq. (7, 8) and
Eq. (1) (Fig. 2). If the cubic term in Eq. (10) is neglected,
it becomes the result of Eq. (5).

4 Influence of beam energy spread

For the electron beam having an initial energy spread,
the situation is more complex, the characteristic equation
(the dispersion relation) now has the form

µ̂−i

∫
f0

(µ̂+iη̂)2
dη̂=0 (11)

where f0 is normalized distribution of the initial detun-
ing parameter. Generally, the dispersion relation has to
be solved numerically for a given initial detuning distri-
bution; the analytic solutions exist only for a few types
of distributions. Here we consider a simple case: the
rectangular distribution with a half-width ∆η̂=δ

f(η̂)=1/2δ, η̂m−δ<η̂<η̂m+δ.

Then the cubic equation becomes

µ̂[(µ̂+i
_
ηm)2+δ2]=i. (12)

The corresponding optical field expression Eq. (1) be-
comes
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Solving Eq. (12), we give its solution which has the same
form as Eq. (7) but the p, q in it are replaced with
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From the root corresponding to the growing mode, the
gain length as the function of the detuning can be given.
In Fig. 3 the gain length versus

_
ηm is plotted by the

formulas for different values of the energy spread δ.
The curves are the same as that numerically given in
Ref. [1]. It shows that as the energy spread increases,

the gain length increases, and the detuning parameter
corresponding to the shortest gain length also increases.

The optical field gain for a rectangular distribution
of the beam energy can be calculated by Eq. (13). Fig. 4
shows the influence of the energy spread on the gain
bandwidth near the saturation. As the energy spread
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increases, the detuning parameter corresponding to the
maximum gain also increases, and the gain bandwidth
becomes a little bit narrower. The optical power evo-
lutions for different energy spreads are calculated and
shown in Fig. 5. We can see that compared with
the mono-energetic beam case, achieved optical power
dropped about two orders for an energy spread of δ=0.5.

Fig. 3. Energy spread effect on the gain length for
a rectangular energy distribution with different
half-width δ.

Fig. 4. Normalized gain vs. the detuning parame-
ter for different energy spread (rectangular energy
distribution).

In addition, we find that the characteristic cubic
equation including the impact of the space charge for
a mono-energetic beam

µ̂

[

(µ̂+i
_
η )2+

_

k
2

p

]

=i (15)

is the same as that for a beam with rectangular energy
distribution (Eq. (12)), only the δ2 in it is substituted

by
_

k
2

p =k2
p/(2kuρ)2, k2

p =λsω
2
p/λuc

2γ. Therefore the im-
pact of the space charge on the gain also can be explicitly
given by the corresponding substitution in Eqs. (13)–(14)
and Fig. 3–5. We obtain the requirement of the practical
physical quantities for neglecting the space charge field

from
_

k
2

p<1

ρ<
a2

uJJ2

2(1+a2
u)

, (16)

where au is the dimensionless vector potential of the rms
undulator field, JJ is the usual Bessel function factor.

Fig. 5. The optical power evolution with different
energy spread (rectangular energy distribution).

Besides rectangular energy distribution, the analytic
solution also exists for the Lorentz distribution

f(η̂)=
1

π

δ

(η̂−η̂m)2+δ2
, (17)

here δ=σγ/γ0ρ is normalized energy spread. The cubic
characteristic equation now is

µ̂(µ̂+iη̂m+δ)2=i. (18)

Comparing it to Eq. (2), we can give its explicit solution
in a similar way, we only need to replace the η̂ in Eq. (2)
with η̂m−iδ.

5 From low gain to high gain

From the expressions of the optical field and the char-
acteristic roots (Eq. (1) and Eq. (7)), not only the expo-
nential gain, the gain for the general case from the low
gain to the high gain can be given. The transition from
the low gain to the high gain was involved in several pub-
lications (e.g. in Refs. [1, 2]); here we give an analysis of
it in detail. The level of FEL gain is determined by the
number of the gain lengths included in the undulator.
In the low gain regime, the small signal gain formula is
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often used:

gss=−ẑ3 ∂
∂x

sinc2 x

2
, (x=η̂ẑ). (19)

The comparison between it and the exact result is pre-
sented in Fig. 6. It shows when the length of the undu-
lator is larger than two gain lengths, the deviation of the
small signal gain formula becomes large.

Fig. 6. Low gain, the exact result (from Eq. (7)
and Eq. (1)) and the result of the small signal
gain formula (Eq. (19), dashed line).

The variation of the gain with the detuning param-
eter for several different lengths of undulator is shown
in Fig. 7. From Fig. 6 and Fig. 7, it can be seen that
as the length of the undulator increases, the gain band-
width decreases, from ∆γ/γ≈1/2N for the small signal
gain to ∆γ/γ≈ ρ for the exponential gain, and the de-
tuning parameter corresponding to the maximum gain
decreases from η̂ ≈4.5Lg/L for the small signal gain to
η̂≈0.12 (∼2.6Lg/L) for the exponential gain.

The variation of the maximum gain with the undula-
tor length is calculated and plotted in Fig. 8. For com-
parison, the gain at the resonance (Eq. (3)), the expo-
nential gain (the approximation of Eq. (3)) and the small

signal gain (Eq. (19)) are also plotted in Fig. 8. We can
find that the small signal gain formula is more accurate
for the case of L <2Lg, while the exponential gain for-
mula is more accurate for the case of L>5Lg, the gain
curves of two formulas cross at L/Lg∼3.2.

Fig. 7. The variation of the normalized gain with
the detuning parameter for a different number of
gain lengths.

Fig. 8. The gain vs undulator length. The solid
line (m): the maximum gain; The dotted line (s):
the small signal gain formula (Eq. (19)); The solid
line (r): the gain at the resonance (Eq. (3)); The
dashed line (e): the exponential gain formula (the
approximation of Eq. (3)). Notice that for the
lines of the maximum gain and the small signal
gain, the detunings are dependent on the longitu-
dinal position.

6 Summary

We have studied the FEL gain formulas for the non-
resonant case, and explicitly given some new rigorous an-
alytical formulas. For the non-resonant electron beam,
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we give the explicit solution of the FEL characteristic
cubic equation with a form much more simple than in
the literatures [1, 6]§and explicitly give the exact ex-
pression of the gain length as the function of the detun-
ing parameter. We also give a simplified approximation
formula for the exponential gain calculation in the non-
resonant case. Then one can calculate the gain easily for
different detuning parameters and from low to high, and
calculate the gain length of the general case conveniently.

For the case of the electron beam having an initial
energy spread, we give the solution of the characteristic
cubic equation explicitly for the rectangular energy dis-
tribution and Lorentz distribution, respectively. More-
over we find that the explicit solution also can be used
for the characteristic cubic equation including the im-
pact of space charge, and give the requirement for the
space charge field to be neglected.

We analyzed the transition of the gain from low

to high. As the number of the gain length increased,
the gain changes from the small signal gain to the
exponential gain, the gain bandwidth decreases, from
∆γ/γ ≈ 1/2N to ∆γ/γ ≈ ρ, and the detuning parame-
ter corresponding to the maximum gain decreases from
δγ/γ ≈2.6/2kuL to δγ/γ ≈0.12ρ, though the maximum
exponential growth rate is at the resonance δγ/γ = 0.
The relations of the different gain formulas are revealed.
It is shown that the small signal gain formula is more ac-
curate in the case of L<2Lg, while the exponential gain
formula is more accurate in the case of L>5Lg. Roughly,
the small signal gain formula can be used for the undu-
lator length smaller than about three gain lengths, and
conversely, the exponential gain formula can be used.

The obtained analytical results provide convenience
for the gain calculation, will help in the analysis and de-
sign of an FEL experiment, and will also help to develop
insights into the FEL gain process.
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