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Chiral extrapolation of nucleon axial charge gA in effective field theory *
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Abstract: The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral

effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite

range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three

different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the

experimental value.
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1 Introduction

The nucleon axial charge, gA, is a fundamental prop-
erty of the nucleon, which reveals how the up and down
quark intrinsic spins contribute to the spin of the proton
and neutron, governing β decay and providing a quanti-
tative measure of spontaneous chiral symmetry breaking
in low energy hadronic physics. The axial charge gA is
of great importance to any further calculation of hadron
structure.

The axial charge gA is defined as the axial vector form
factor at zero four-momentum transfer, gA =GA(0). The
axial vector form factor is given by the nucleon matrix
element of the axial vector current, Aa

µ =ψγµγ5 (τa/2)ψ,
with u, d quark doublet ψ, 〈N(p′,s′)|A3

µ |N(p,s)〉 =

iū(p′,s′)[γµγ5GA(q2) +
qµ

2MN

γ5GP (q2)]
τ 3

2
u(p,s), where

GP is the induced pseudoscalar form factor, τ a is an
isospin Pauli matrix, and qµ = p′µ−pµ is the momentum
transfer. At zero momentum transfer, the axial charge
gA is the spin difference between u and d quarks in the
proton, i.e.

gA = ∆u−∆d. (1)

Experimentally, gA has been obtained very precisely
through neutron β decay, with the Particle Data Group
value gA = 1.27±0.003 [1]. Theoretically, there are many
calculations in different methods, such as the cloudy
bag model [2], the perturbative chiral quark model [3],

the relativistic constituent quark model [4], Schwinger-
Dyson formalism [5], chiral perturbation theory [6], etc.
There are also many lattice simulations of axial charge
[7–12]. Due to the limitations of computing ability, all
the simulations of gA are at large quark mass. The ob-
tained gA at large quark mass are smaller than the ex-
perimental data. Therefore, it is interesting to see how
the axial charge gA changes at low pion mass.

In this paper, we will extrapolate nucleon axial charge
gA in the framework of heavy baryon chiral perturbation
theory with finite range regularization (FRR). FRR has
been applied in the extrapolation of nucleon mass, mag-
netic form factors, strange form factors, charge radii, first
moments, etc [13–27]. It is proved that FRR can pro-
vide good convergent behaviour of pion mass expansion.
Therefore, it is expected to have a good description of
the pion mass dependence of axial charge gA over a wide
range of pion mass.

2 Nucleon axial charge

The lowest-order chiral Lagrangian including the
octet and decuplet baryons is expressed as

Lv =iTrBv (v ·D)Bv +2DTrBvS
µ
v {Aµ,Bv}

+2FTrBvS
µ
v [Aµ,Bv ]− iT

µ

v (v ·D)Tvµ

+C
(

T
µ

vAµBv +BvAµT
µ
v

)

, (2)
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where Sµ
v is the covariant spin operator defined as

Sµ
v =

i

2
γ5σµνvν . (3)

Here, vν is the nucleon four-velocity. In the rest frame,
we have vν = (1,0,0,0)). D, F and C are the standard
SU(3)-flavour coupling constants.

Fig. 1. The one-loop Feynman diagrams for calcu-
lating the quark contribution to the proton spin.
The thin and thick solid lines are for the octet
and decuplet baryons, respectively.

According to the Lagrangian, the one-loop Feynman
diagrams, which contribute to axial charge gA of the pro-
ton, are plotted in Fig. 1. The axial charge is the spin
difference between u and d quark. The contributions
of the u- and d-quark sector to the proton spin, from
Fig. 1a, are expressed as

∆ua =
[

CNπ I
NN
2π

+CΣK I
NΣ
2K +CΛΣK I

NΛΣ
5K

+CNη I
NN
2η

]

su , (4)

∆da =

[

7

2
CNπ I

NN
2π

+
1

5
CΣK I

NΣ
2K −CΛΣK I

NΛΣ
5K

−
1

4
CNη I

NN
2η

]

sd, (5)

where the coefficients, C are expressed as

CNπ =−
(D+F )2

288π3f 2
π

, (6)

CΣK =−
5(D−F )2

288π3f 2
π

, (7)

CΛΣK =
(D−F )(D+3F )

288π3 f 2
π

, (8)

CNη =−
2

3

(3F −D)2

288π3f 2
π

. (9)

The tree level contributions to the proton spin from
u and d quark of intermediate octet baryons are used in
the above formulas. For example, for the intermediate
proton and neutron, their spins are expressed as

sp =
4

3
su−

1

3
sd , sn =

4

3
sd−

1

3
su . (10)

su and sd are the single quark spin of u and d quark.
With the SU(2) symmetry, su = sd = sq and sq can be
written as

sq (m2
π
) = c0 +c2m

2
π
+c4m

4
π
, (11)

where c0, c2 and c4 are the low energy constants.
The contribution of u-, d-quark sector to the proton

spin, described by diagram (b) of Fig. 1, are expressed
as

∆ub =
[

C∆π I
N∆
2π

+CΣ∗K I
NΣ∗

2K

]

su , (12)

∆db =

[

2

7
C∆π I

N∆
2π

+
1

5
CΣ∗K I

NΣ∗

2K

]

sd. (13)

where the coefficients C∆π and CΣ∗K are

C∆π =
35C2

648π3f 2
π

, (14)

CΣ∗K =
5

28
C∆π . (15)

Similar to the case of the octet intermediate state, the
tree level quark contributions to the spin of decuplet
baryons are also used. For example

s∆+ = 2su +sd , sΣ∗− = 2sd +ss . (16)

Diagrams (c) and (d) of Fig. 1 provide contributions
from intermediate states involving an octet-decuplet
transition. The u-, d-quark-sector contribution to the
proton spin from these diagrams are expressed as

∆uc+d =
[

CN∆π I
N∆
3π

+CΣΣ∗K I
NΣΣ∗

5K +CΛΣ∗K I
NΛΣ∗

5K

]

×su , (17)

∆dc+d =

[

−CN∆π I
N∆
3π

+
1

5
CΣΣ∗K I

NΣΣ∗

5K

−CΛΣ∗K I
NΛΣ∗

5K

]

sd . (18)

where

CN∆π =−
(D+F )C

27π3f 2
π

, (19)

CΣΣ∗K =−
5

8

(D−F )C

27π3 f 2
π

, (20)

CΛΣ∗K =−
1

8

(D+3F )C

27π3 f 2
π

. (21)

The integrals in the above equations, Iαβ
2j , Iαβγ

5j and Iαβ
3j

are defined in Ref. [15].
The total u-, d- quark sector contributions to the spin

of the proton are written as

∆u=Z

[

4

3
(c0 +c2m

2
π
+c4m

4
π
)+∆ua +∆ub +∆uc+d

]

,

∆d=Z

[

−
1

3
(c0 +c2m

2
π
+c4m

4
π
)+∆da +∆db +∆dc+d

]

,

(22)
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where Z is the wave function renormalization constant,
expressed as

Z=1/

[

1+
1

48π3f 2
π

(βNN
π

INN
2π

+βN∆
π

IN∆
2π

+βNΛ
K INΛ

2K

+βNΣ
K INΣ

2K +βNΣ∗

K INΣ∗

2K +βNN
η INN

2η )

]

. (23)

The above coefficients are expressed as

βNN
π

=
9

4
(D+F )

2
, βN∆

π
= 2C2

βNΛ
K =

1

4
(3F +D)2, βNΣ

K =
9

4
(D−F )2

βNΣ∗

K =
1

2
C2, βNN

η
=

1

4
(3F −D)

2
. (24)

The K- and η- meson masses have relationships with
the pion mass as

m2
K =

1

2
m2

π
+m2

K|phy
−

1

2
m2

π
|
phy
, (25)

m2
η
=

1

3
m2

π
+m2

η

∣

∣

phy
−

1

3
m2

π
|
phy
. (26)

This enable a direct relationship between the nucleon
axial charge and the pion mass. By fitting the lattice
data with different pion mass, we can get the low energy
constants c0, c2 and c4.

In our calculation, the one-gluon-exchange is also in-
cluded. Although it lies outside the framework of chiral
effective field theory, the effect of one-gluon-exchange
(OGE) is particularly important for spin dependent
quantities. Hogaason and Myhrer [28] showed that the
incorporation of the exchange current correction arising
from the effective one-gluon-exchange (OGE) force shifts

the tree-level non-singlet charge, gA, from
5

3
sq to

5

3
sq−G,

where G is about 0.05. The OGE correction shifts the
tree-level singlet charge g0 from sq to sq −3G. In other
words, the spin of each constituent quark gain a OGE
correction −G at tree level.

3 Numerical results

In the numerical calculations, the couplings constant
D and F are D = 0.8, F = 0.46. The decuplet coupling
C is chosen to be −1.2 as in Ref. [29]. The regulator in
the integrals is chosen to be of a dipole form

u(k) =
1

(1+k2/Λ2)
2 , (27)

with Λ = 0.8 GeV. This regulator has been used in our
previous study of nucleon mass, magnetic form factors,
strange form factors, charge radii, first moments, etc [13–
27].

In Fig. 2, the pion mass dependence of gA with
Λ = 0.8 GeV is shown for lattice data of Ref. [7]. The
dotted, dashed and solid lines are for tree level, loop and
total contribution, respectively. At large pion mass, the
axial charge gA changes little. At small pion mass, gA

decreases with the decreasing pion mass. Compared with
the pion mass dependence of proton magnetic form fac-
tors [15, 23], at low pion mass, the curvature is small and
opposite. This is because the leading diagram in the case
of magnetic form factor has no contribution for gA. At
physical pion mass, the extrapolated gA is 1.10, which is
smaller than the experimental value 1.27.

Fig. 2. gA fitted by the lattice data of Ref. [7] at
Λ = 0.8. The dotted, dashed and solid lines are
for the tree level, loop and total contribution, re-
spectively.

To provide an estimate of the uncertainty in these
results, we vary the regulator parameter, Λ, governing
the size of meson cloud contributions to proton struc-
ture. Considering Λ = 0.8± 0.2 GeV, the obtained low
energy constants c0, c2, c4 as well as the quark spin at
physical pion mass are listed in Table 1. By varying
Λ, we can provide an error bar for gA. For example,
the highest and lowest gA at physical pion mass are 1.14
(0.805− (−0.333)) and 1.07 (0.772− (−0.302)). From
the table, one can see that the loop/tree contribution
increases/decreases with the increasing Λ. The highest
and lowest value of gA versus pion mass as well as the
central value of gA are shown in Fig. 3. It is clear that
the extrapolated gA with error bar is still smaller than
the experimental value.

There are also other lattice groups simulating the ax-
ial charge gA. Figure 4 and Fig. 5 are results for the lat-
tice data from Refs. [8–9]. The same as in Fig. 3, the lines
in the middle are for Λ= 0.8 GeV. The upper and lower
lines are obtained by varying Λ from 0.6 to 1 GeV. The
extrapolated gA from Ref. [8] at physical pion mass is
1.12+0.03

−0.03. The lattice data from Ref. [9] varied a lot with
the change of the pion mass though the extrapolated gA

at physical pion mass is a little larger than the other two
lattice groups. At large pion mass, Fig. 4 and Fig. 5 show
that gA changes quickly with the increasing pion mass for
the data of ETMC and data from Ref. [9]. This is be-
cause, different from the data of LHPC, there is no con-
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straint from these lattice data at large pion mass. Over-
all, one can see the results from different lattice groups
are comparable and all the extrapolated gA at physi-
cal pion mass are smaller than the experimental values,

within the error bars. The obtained results with central
Λ = 0.8 GeV for these three lattice groups are listed in
Table 2.

Table 1. The parameters fitted by the lattice data of Ref. [7] and the obtained quark spin of the proton at physical
pion mass for the regulator parameter Λ = 0.6, 0.8, 1.0 GeV.

Λ/GeV c0 c2/GeV−2 c4/GeV−4 Z ∆u ∆d gA tree loops

0.6 0.74 −0.04 0.04 0.84 0.80 −0.30 1.107 0.99 0.12

0.8 0.77 −0.09 0.07 0.71 0.79 −0.32 1.104 0.87 0.23

1.0 0.81 −0.12 0.09 0.58 0.77 −0.33 1.106 0.75 0.36

Table 2. The parameters fitted by three group lattice data [7–9] and the obtained quark spin of the proton at
physical pion mass for the regulator parameter Λ = 0.8 GeV.

lattice data c0 c2/GeV−2 c4/GeV−4 Z ∆u ∆d tree loops gA with error bar

Ref. [7] 0.77 −0.09 0.07 0.71 0.79 −0.32 0.87 0.23 1.10+0.04
−0.03

Ref. [8] 0.78 −0.21 0.60 0.71 0.80 −0.32 0.88 0.24 1.12+0.03
−0.03

Ref. [9] 0.83 −0.06 −0.20 0.71 0.85 −0.34 0.94 0.25 1.19+0.04
−0.03

Fig. 3. Error band of gA fitted by the lattice data of
Ref. [7]. The upper (dotted) line is for the upper
limit with gA = ∆u(Λ = 0.6 GeV) −∆d(Λ = 1.0
GeV). The middle (solid) line is for the central
value of gA (Λ = 0.8 GeV). The lower (dashed)
line is for the lower limit with gA = ∆u(Λ = 1.0
GeV) −∆d(Λ= 0.6 GeV).

Fig. 4. Error band of gA fitted by the lattice data of
Ref. [8]. The upper (dotted) line is for the upper
limit with gA = ∆u(Λ = 0.6 GeV) −∆d(Λ = 1.0
GeV). The middle (solid) line is for the central
value of gA (Λ = 0.8 GeV). The lower (dashed)
line is for the lower limit with gA = ∆u(Λ = 1.0
GeV) −∆d(Λ= 0.6 GeV).

Fig. 5. Error band of gA fitted by the lattice data of
Ref. [9]. The upper (dotted) line is for the upper
limit with gA = ∆u(Λ = 0.6 GeV) −∆d(Λ = 1.0
GeV). The middle (solid) line is for the central
value of gA (Λ = 0.8 GeV). The lower (dashed)
line is for the lower limit with gA = ∆u(Λ = 1.0
GeV) −∆d(Λ= 0.6 GeV).

4 Summary

In summary, we extrapolated the axial charge gA in
chiral effective field theory with finite range regularisa-
tion. The dipole regulator is used as our previous extrap-
olation for nucleon mass, form factors, first moments, etc.
The lattice data are from three lattice groups where the
volume corrections are given explicitly. Different from
the proton magnetic form factor, the axial charge gA de-
creases with decreasing pion mass whenmπ is small. The
lattice data over a wide pion mass range can be well de-
scribed with the FRR chiral effective field theory. At
physical pion mass, the extrapolated gA are compara-
ble to each other and all of them are smaller than the
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experimental value. To estimate the error bars for the
extrapolation, we vary Λ in the regulator from 0.6 to 1
GeV. The upper limit of the extrapolated gA at physical
pion mass is still smaller than the experimental value.

We should mention that the volume correction is given
by the lattice groups. It will be interesting to extrapo-
late the lattice data directly without volume correction
in finite volume chiral effective field theory.
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