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Abstract: The cyclotron cavity presented in this paper is modeled by a feed-forward neural network trained by the

authors’ optimized back-propagation (BP) algorithm. The training samples were obtained from simulation results

that are for a number of defined situations and parameters and were achieved parametrically using MWS CST

software; furthermore, the conventional BP algorithm with different hidden-neuron numbers, structures, and other

optimal parameters such as learning rate that are applied for our purpose was also used here. The present study shows

that an optimized FFN can be used to estimate the cyclotron-model parameters with an acceptable error function. A

neural network trained by an optimized algorithm therefore shows a proper approximation and an acceptable ability

regarding the modeling of the proposed structure. The cyclotron-cavity parameter-modeling results demonstrate

that an FNN that is trained by the optimized algorithm could be a suitable method for the estimation of the design

parameters in this case.
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1 Introduction

1.1 The 10 MeV cyclotron

The IranCYC10 is an azimuthally varying field
(AVF) 10 MeV cyclotron with straight sectors. It ac-
celerates protons to different energies, and the applica-
tions are isotope production, nuclear reactions, and med-
ical nuclear-spectroscopy studies. The 10 MeV cyclotron
comprises two parallel accelerating electrodes called dees,
with an oscillating electric field generated by the radio-
frequency generator between them [1]; here, the charged
particles are produced by an ion source located in the
central region. The magnetic field of the main magnet
of the cyclotron causes the particles to move in an ap-
proximately circular orbit.

The radius of the orbit is a function of the particle
velocity; therefore, the radius increases with the energy,
and the particles pursue a spiral path from the ion source
to the edge of the magnet, where they are pulled out
from the cyclotron by an electrostatic deflector. The ex-
tracted beam is guided by a beam-transportation system
to the experimental stations. The neural-network system
will help a designer to determine the values of a set of
the parameters that are required to accelerate a particle
to a certain frequency, and to obtain the desired scat-

tering parameter of S11 for the reflected power. These
parameters are related to the following components of
the cyclotron:

• Tuner-disk diameter and gap: There are two cou-
pling parts on both sides of the cavity, one of which is
the tuner that is located at the end of the cavity and is
connected to the dee. The tuner has two circular disks
for the capacitance coupling.

• Coupler-disk diameter and gap (as described
above).

• Stem dimensions
Figure 1 illustrates these parameters through a cross-

sectional view of the cyclotron cavity. As one of the most
widely used neural-network paradigms, the feed-forward
neural network (FNN) is composed of a vast number of
parallel simple processing units (neurons) that form a
layered architecture. In a properly trained FNN, the
complex relationships between the groups of related pa-
rameters are stored in the connected weights and the
threshold values of each processing neuron. The FNN
belongs to a large category of supervised neural net-
works that can be further categorized based on different
training algorithms, e.g., conventional back-propagation
(BP) algorithm, generalized regression algorithm, ge-
netic algorithm (GA), etc. Among these algorithms, the
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BP algorithm is the most extensively studied, with ma-
jor successes in varieties of process-modelling and real-
time-control regimes [2, 3]; however, despite these suc-
cesses, the BP algorithm is hampered by a number of
inherent disadvantages when it is applied as a crude,
gradient-descent optimization algorithm, including non-
convergence, a slow convergent rate, and over-fitting [4].

Fig. 1. (color online) Description of the different
parts of the RF cavity of the cyclotron.

In this paper, a numerical FNN model that has been
trained through an optimization of the neural-network
parameters is proposed, and it is developed to simulate
a cyclotron cavity with a high accuracy. Although a va-
riety of training-algorithm types have been used in other
fields to decrease the training time, they have not been
used for the modelling of cyclotron-cavity designs. How-
ever, in Ref. [3] a neural network system was developed
to determine the parameters of new operating modes for
a cyclotron, to guide the operator in using this new op-
eration mode, such as the currents to be applied to the
coils of the magnetic lenses, correctors and the concentric
coils. They did not perform any parameter estimation to
design a specific part of the cyclotron, such as the RF
cavity, as we do.

Also in this paper, the optimal BP algorithm is com-
pared with the basic algorithm in terms of their approxi-
mation and generalization abilities, which are important
regarding the application of the FNN for simulations. In
fact, an attempt was made in this study to train a net-
work to learn the relations between the cyclotron-cavity
parameters with respect to the resonance frequency and
the reflected power. For this purpose, the output from a
CST simulation was considered for some of the param-
eter changes in limited situations, followed by the use
of artificial neural-network training inputs with known
outputs. An artificial neural network can therefore learn

the relation between a parameter and the desired out-
puts, and a general structure that can be applied for any
other situations and parameters was also performed. Af-
ter this stage, the proposed designed network can ob-
tain the resonance frequency and the reflected power
of each structure for different parameters without time-
consuming simulations.

The first part of this paper presents the background
of the FNN structure and its working principles, the pro-
posed optimal BP algorithm, and the conventional basic
BP algorithm; the advantages of the optimal BP algo-
rithm in relation to the conventional BP algorithm are
also discussed, including approximation and generaliza-
tion ability. In the second part, the performance of the
proposed algorithm is extensively tested with the use of
the simulated data of this study, followed by a compar-
ison of the results regarding the convergence property
and the average error of the test data that are for the
attainment of the best FNN structure. In the last part,
the modeled cavity is compared with the test results of
the proposed algorithm, and a very sound fit is identi-
fied between them. As a result, the proposed optimal BP
algorithm attains to our expected outcomes and we see
the ability of the neural network with optimized param-
eters to estimate the cyclotron-cavity design parameters
accurately and quickly.

2 Artificial neural network and training

algorithm

2.1 Network architecture

Figure 2 schematically shows the typical two-hidden-
layer FNN structure used in this paper, composed of one
input layer with four input nodes, two hidden layers with
optimized neurons, and one output layer with two neu-
rons. For the introduction of the proposed model, it is
proper to provide an overview of the perceptron type
of neural network and its associated mathematical rela-
tions. In general, multi-layer perceptrons (MLPs) with
two or more hidden layers are mostly used; for example,
the following expression is for an MLP with two hidden
layers:

ŷ(x) = ϕ2

(

N
∑

i=1

w2
i ϕ

1

(

N
∑

j=1

w1
j x+b1

)

+b2

)

, (1)

where w denotes the vector of the weights, x is the vec-
tor of the inputs, b is the bias, and ϕ is the activation
function [5].

2.2 BP algorithm and its optimization

The principle of using the FNN for the modeling of
the cyclotron cavity is the utilization of its function-
approximation ability to describe the relation between

017003-2



Chinese Physics C Vol. 41, No. 1 (2017) 017003

the parameters in the cavity. To achieve this, the neural
network is trained with the use of a number of sam-
ples (shown as input–output pairs) that are taken from
a CST simulation such that the input–output relation
of the network can properly fit the given samples. The
conventional training method uses the BP algorithm or
the gradient descent to minimize the mean square error
between the given outputs in the samples and the neural-
network outputs. For any set of input data and weights, a
magnitude of error that is measured by an error function
is derived [6]. The Delta Rule utilizes the error function
of what is known as “gradient-descent learning,” which
consists of the amendment of the weights along the most
direct path to minimize the error that is incurred. The
change that is applied to a given weight is the nega-
tive derivative of the error that is proportional to that
weight [7].

Fig. 2. (color online) Network structure of a two-
hidden-layer feed-forward neural network (FNN).

The error function is often given as the sum of the
squares of the differences between all of the targeted de-
sired outputs and the response of the neural-network-
output layer. The error function is usually taken as the
following equation:

min Err(..) =
1

M

∑

(X,y)∈T

(ŷ(X)−y)2, (2)

where ŷ is the desired output in each sample, y is the
corresponding FNN output, and M is the number of the
input–output in a designated set of training data accord-
ing to T = {(Xi,Yi)}

M
i=1, where each Xi the input matrix

and Yi is the desired output response of the ith input.
It becomes evident that the input–output relation in an
FNN is fully determined by all of the weights and biases;
for example, in this modeling, the desired output of the
authors is the resonance frequency of the cavity and its
scattering parameters.

The intrinsic idea of back-propagation is the incor-
poration of a non-linear multi-layer perceptron system
that is capable of modifying the weights with the error
function of the Delta Rule [7]. The BP algorithm uses a
simple iteration formula to sequentially update W , start-
ing from a random vector W0, until a stable solution is
obtained. The iteration formula is as follows:

Wi(t+1) = Wi(t)−η
dErr

dWi

, (3)

where η is the learning rate (LR) and
dErr

dWi

is the gra-

dient vector of the error function with respect to the
weighting vector W . The error function, as well as the
gradient vector, can be explicitly expressed in terms of
the weighting vector W . Each weight multiplies to the
previous layer-output delta and is employed as an input
of the activation function of the next layer; also, it ob-
tains the gradient of the weight and then a ratio of the
gradient of the weight is subtracted. This ratio η affects
the speed and quality of the learning; that is, this ratio
is the “learning rate.” The greater the η value, the faster
the neuron trains; the lower the η value, the higher the
accuracy of the training. The sign of the gradient of a
weight indicates where the error is increasing [8]. All of
the components in the gradient vector can be analytically
expressed as follows [9]:

δErr(..)

δb1
k

=
1

M

∑

(X,y)∈T

(ŷ(X)−y)

·f 2′(W:,k×a1
k +b2) ·W:,k ·f

1′(W:,k ×a1 +b1
k)

δErr(..)

δWk,l

=
1

M

∑

(X,y)∈T

(ŷ(X)−y)

·f 1′(Wk,l×a1 +b2
k) ·a1,

(4)
where y is the output vector, X is the input matrix, W
is the weight matrix of the hidden and output layer, bi

is the bias of the layers, f i is the activation function of
each layer, a1 is the output hidden layer, and k is the
number of hidden-layer neurons [9].

Additionally, the technique that can help the net-
work out of local minima and improve the convergence
property is the use of a momentum term. The speed
of the convergence of a network can be improved by in-
creasing the η value; but, increasing η will usually lead
to an increase of the network instability, whereby the
weight values oscillate erratically as they converge on a
solution. Instead of changing η, most standard back-
propagation algorithms use a momentum term to in-
crease the speed of the convergence while avoiding in-
stability. The momentum term is added to Eq.(3) so
that the change in weight occurs in the previous weight.
By adding the fractions of previous weight changes, the
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weight changes can be maintained on a faster and more-
even path [10]. With the momentum m, Eq.(5) shows
what the weight update at a given time t becomes, as
follows:

Wi(t+1) = Wi(t)−η
dErr

dWi

+m×∆Wi. (5)

According to the above discussion, an optimal BP al-
gorithm was developed using proper network parameters
such as optimized learning rate, appropriate momentum
value, suitable learning function and so on. These were
implemented via minimizing the error function for such
inputs to achieve desired performance.

2.3 Dataset

The input data from this network are some of the
cavity parameters. Table 1 illustrates some of them, in-
cluding stem, dee, and the coupling-disk parameters.

Table 1. Parameters and adjustable ranges in the
cyclotron-cavity modeling.

parameter adjust range

stem diameter 155 to 215

tuner diameter 30 to 130

tuner gap 0.6 to 3

coupler diameter 30 to 130

coupler gap 0.6 to 3

dee & liner distance 5 to 20

These are the main parts of the cyclotron structure.
Figure 3 shows the cavity structure beside the coupling
and the tuning capacitive disks on the left, and the
electric-field distribution on the right.

The desired network output is the resonance fre-
quency and the reflected power, or scattering parameters
such as S11.

Fig. 3. (color online) Structure of the RF cavity of the cyclotron with the capacitive coupling and tuning disks on
the left, and the electric-field distribution on the right.

2.4 Dataset preparation

The input is a vector of the different possible values
of the cavity parameters called Xt, which is defined by
Xt ≡ cavity parameters. For the first step of this study,
100 samples are considered. The target value for this
vector is defined by yt ≡ resonant frequency and the re-
flected power at this frequency. The target is the neural-
network output, and the aim is to reach it. The set of
training data is defined by Straining = {(Xt,yt)}

4×101

t=1
that

are the input/output pairs of 101 samples that the tar-
get value provided from a MWS CST Studio software
simulation.

3 CST simulation

In this work, some of the parameters of the cav-
ity are used for the cyclotron-cavity modeling, includ-
ing the dimensions of the stem, dees, and couplings.

The computer model of our 10 MeV cyclotron was de-
veloped using the general-purpose simulation software
CST STUDIO SUITE [11, 12]. The ranges of the pa-
rameters that were used are listed in Table 1. Magnetic-
field modeling and beam dynamics were used to deter-
mine the orbital frequency of the ions equal to 17.75
MHz. As the RF cavities will be operated in the 4th

harmonic mode, the resonance frequency must be 71
MHz; here, it is arranged so that normal conducting
RF cavities [4, 13, 14] can be used for ion-beam ac-
celeration in the IranCYC10 cyclotron. The geomet-
ric model of the cavity that is housed inside the val-
ley of the magnetic system of the IranCYC10 cyclotron
was developed in CST. A number of models with differ-
ences regarding the above-mentioned parameters were
studied for this paper, so that the results could be used
to train the artificial neural network to learn the rela-
tions between these parameters in terms of the obtained
results.
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Fig. 4. (color online) Training error versus learning cycles (maximum, minimum, and average error).

4 Results and discussion

The best method for determining a neural-network
structure, including the number of layers and each neu-
ronal layer and the importance of the connections, com-
prises a survey of the hidden-layer growth and an opti-
mization of the neuron quantity and their connections.
An attempt was therefore made to change network pa-
rameters such as the hidden layers and the number of
neurons in each step, via a consideration of the error
function and the convergence of the network, to achieve
the optimal design.

As illustrated in Fig. 4, the training error decreased
through an increasing of the iteration numbers, and
the training stopped with an average training error of
1×10−4, while the maximum error is 1.079×10−3. The
network information is expressed in Table 2; these are
for the network structure with four neurons in the input
layer, two neurons in the output layer, 12 neurons for
the 1st hidden layer, and 10 neurons for the 2nd hidden
layer.

Table 2. Maximum, minimum, and average error
of trained neural network.

parameter value

learning rate 0.6

momentum 0.8

number of training data 101

min.training error 2.7×10−7

max.training error 1.079×10−3

average training error 9.97e×10−5

One of the network parameters that is usually help-
ful for the annealing of the learning rate over time is
the above-mentioned learning rate, which is a training
parameter that controls the sizes of the weight and the
bias changes in the learning of the training algorithm.

Also, similar to the annealing schedules for the learning
rates, an optimization can sometimes benefit from those
momentum schedules where the momentum increases in
the later stages of the learning. As described in subsec-
tion 2.2, the momentum parameter is used to prevent
the system from converging to a local minimum or the
saddle point. The adaptive learning rate, for which the
final learning rate and the momentum value are 0.6 and
0.8, respectively, is used in this structure.

The linear normalized regression between the net-
work outputs and the corresponding targets is shown in
Fig. 5. The red and green dots indicate the predicted
resonance frequency (70.623 MHz to 73.57 MHz) and
the reflected power (−53.78 dB to −2.606 dB) at this
frequency, respectively. Since the values are normalized,
this curve just shows a sound conformity between the
predicted and true outputs.
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Fig. 5. (color online) Linear normalized regression
between the network outputs and the correspond-
ing targets. Red and green dots indicate the
predicted resonance frequency (70.623 MHz to
73.57 MHz) and the reflected power (−53.78 dB
to −2.606 dB) at this frequency, respectively.
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Also, a general goal of statistical modelling is the
identification of the relative importance of the illustra-
tive variables with respect to their relation to one or
more response variables [15]. This is an indication of the
parameters that can help with the reaching of a desired
output that is quicker and more accurate.

The aim of the relative-importance analysis is the
division of the explained variance among multiple pre-
dictors to attain a better understanding of the role that
is played by each predictor. The relative importance of
the predictor or the input variables is the contribution of
each of the variables for the prediction of the dependent
variable [16, 17].

The relative importance of the input data is consid-
ered and expressed in Fig. 6. According to this analysis,
the tuner-gap distance followed by the tuner diameter
are the most important regarding the network training.
The relative sensitivity to the cavity parameters, which
is also illustrated by the red color in Fig. 6, is also con-
sidered. The general aim of the sensitivity analysis is
similar to that of an evaluation of the relative impor-
tance of the illustrative variables, with the exception of
a few important distinctions. For both analyses, the rela-
tionships between the illustrative and response variables,
as demonstrated by the model, are of interest, and it is
expected that the neural network provides the explana-
tion for this relation. Using Garson’s algorithm, an idea
of the magnitude and the sign of the relationship between
the variables that are relative to each other is obtained;
conversely, the sensitivity analysis allows us to obtain
information about the relation between the variables in-
stead of a definite explanation [18]. The effect of the
tuner-gap distance regarding the results could therefore
be greater than that of the other parameter, whereby
it could help with an appropriate tuning of the cavity-
resonance frequency.

The sensitivity coefficients demonstrate the change of
the systemic outputs that are due to the variations of the
parameters that affect the system. A large sensitivity to
a parameter proposes that the systemic performance can

severely change with a slight variation of the parameter,
whereas a small sensitivity proposes a small performance
change. A few methods can be used for the consideration
of the sensitivity of the ANN model [19].

Fig. 6. (color online) Relative importance and sen-
sitivity of input data vs. coupler, tuner diameters,
and gap distances.

The simulated results for the four example struc-
tures have been reported in terms of a comparison with
the proposed-neural-network outputs, and Table 3 shows
these examination results. As can be seen, the trained
neural network was used for an estimation of the desired
outputs of this study with respect to the parameters of
the different systems and with acceptable errors. The
considered outputs of this research are parameters that
are very different from each other, but the proposed neu-
ral network could estimate both of them with almost the
same error function.

The modeling of such structures that comprise many
effective parameters, where a nonlinear relationship ex-
ists between these parameters and the desired outputs,
is not suitable via conventional methods, and the results
are not satisfactory. But a machine-learning methods,
like that which is used in this study, can be used to
very effectively estimate non-linear relations, and this
can also be seen in the results of the present research
study.

Table 3. Instances for the testing of the trained proposed neural network in comparison with the CST-simulation results.

pattern No.
neural network inputs CST simulation output neural network outputs

tuner Dia. tuner gap coupler Dia. coupler gap Freq. S11 Freq. S11
1 55 1.7 115 1.9 71.07 −53.78 71.0381 −52.0083
2 55 1.7 120 1.9 70.96 −45.9 70.9594 −45.9856
3 50 1.6 50 1.9 72.429 −9.3436 72.3768 −9.4174
4 50 2 95 1.95 72.508 −12.365 72.4876 −12.2516

5 Conclusion

Many factors affect the design of an RF cavity,
thereby changing the resonant frequency and the scat-
tering parameters. A selection of the appropriate val-

ues for each parameter, especially those that are variable
in practice after the manufacturing process, such as the
tuner, is therefore very important. The formulation of an
algorithm for the estimation of these values will result in
a high efficiency that will facilitate a faster achievement
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of the desired results.
The results here show that a numerical modelling of

the cyclotron cavity for which the optimized FNN algo-
rithm is used can produce proper results with accept-
able errors. The overall average and the maximum error
are within 9.97×10−5 and 1.079×10−3, respectively, and
these are sufficiently accurate for the provision of reliable
simulation results that provide an understanding of the
relation of the parameters of the cavity to its resonant

frequency. The simulated results of some of the example
structures are also consistent with the CST-simulation
results; therefore, the FNN that is trained by the op-
timized algorithm can be used to develop a parametric
cyclotron-cavity design. While this research does not
completely cover the effects of all of the cavity param-
eters, it shows the capability of an FNN estimation re-
garding the cavity design. This structure can be used for
most AVF cyclotron cavities.
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