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Near integrability of kink lattice with higher order interactions *
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Abstract: We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at

large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential

pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the

equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice.

With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two

sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is

not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink

lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We

also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary

deformed Toda.
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1 Introduction

Solitons are non-dissipative objects which occur in
many physical models. In many works, solitonic waves
have been found from an integrable system by solving
the equations directly. In the other direction, a few stud-
ies have constructed many-body systems, and even inte-
grable systems, from soliton objects. Since solitons can
be approximated by quasi particles from a dynamical
point of view, one can in principle construct integrable
models from solitons. This work aims to construct the
Toda lattice from the kink lattice.

The interaction between kink and anti-kink is im-
portant for scattering processes. Manton proposed an
analytical method to calculate such a static force [1–3],
and found that the force is universal for many scalar
field models in 1+1 dimensional field theory. In Man-
ton’s work, only the leading order interactions between
the kink pair are considered. Recently, we studied the
interaction up to second order, and found it to be uni-
versal for ϕ4, ϕ6 and ϕ8 models [4]. In this work, we aim

to investigate the static force with infinite order correc-
tions. We study the ϕ4 theory as an illustration. The
coefficients for each order are determined. We find that
the dynamics of excitations around the vacuum deter-
mine the interaction pattern. The interaction between
the kink pair may play an important role in kink colli-
sion phenomena, especially to explain the escape window
and the bounce resonance [5–9].

The Toda lattice is one of the most representative
and fundamental types of finite dimension Hamiltonian
integrable systems [10]. Its integrability was established
by Flaschka, Henon and Manakov [11–13]. In our re-
search, the form of the kink lattice Hamiltonian is very
similar to the Toda lattice Hamiltonian. Looking only
at the leading order interaction, the kink lattice is ex-
actly the same as the Toda lattice. When higher order
interactions are included, the kink lattice turns out to
be a special deformed Toda lattice. Sawada and Kotera
proved that the Toda lattice potential is a unique inte-
grable potential of Hénon type [14]. Higher order terms
will therefore break the integrability of the kink lattice.
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A kink lattice with higher order corrections become a
near or quasi integrable system [15–17]. We show such
near integrability in terms of the Flaschka variables. The
“Lax pair” has been constructed for the kink lattice and
the generalized deformed Toda lattice. This “Lax pair”
can represent the integrable Lax pair of the Toda lattice,
and can show how the higher order interactions break the
integrability. We find some non-trivial algebraic relations
for the Flaschka variables. Several cases are discussed to
show the rich physics of the kink lattice. The paper is
organized as follows. We construct the kink lattice in
Section 2. Many aspects of the kink lattice are discussed
in Section 3. Discussion and conclusions are given in the
last section.

2 The kink lattice

To construct the kink lattice, we use the ϕ4 kink for
illustration. The 1+1 dimension Lagrangian for ϕ4 theory
reads

L=
1

2
∂µϕ∂µϕ−λ(ϕ2−v2)2, (1)

where µ=0,1 and λ is the coupling constant. The Euler-
Lagrange equation is written as

ϕ̈−ϕ′′+
dV

dϕ
=0. (2)

The soliton exists in a static condition, and the energy
of the system is given by

E=

∫ +∞

−∞
(
1

2
ϕ′2±V (φ))dx>∓

∫ +∞

−∞

√

2V (ϕ)dϕ, (3)

where the equals sign stands for the Bogomol’nyi bound.
The BPS equation for the kink is written as

ϕ′=±
√

2V (ϕ). (4)

The kink solution must interpolate between v and −v.
Here, we define (ϕ−∞,ϕ∞) = (−v,v) as the kink, and
(v,−v) as the antikink. The kink solution can be writ-
ten as

ϕ(x)=vtanh
[√

2λv(x−x0)
]

, (5)

where x0 denotes the position of the kink. The antikink
solution can be obtained by replacing x with −x.

The momentum of the system is written as1)

P =−T01=−
∫ b

−∞
ϕ̇ϕ′dx. (6)

Here we consider the generic case rather than the static
case. The classical force is then derived by

F =
dP

dt
=

[

−1

2
(ϕ̇2+ϕ′2)+V (ϕ)

]b

−∞
, (7)

which is also valid for the motion of the field. We have
not considered the static kink solution up to this step.

Now we consider the static interaction between the
kink ϕ1 and the antikink ϕ2, whose positions are x01

and x02 respectively. ϕ1 and ϕ2 are written as

ϕ1=vtanh[
√

2λv(x−x01)],

ϕ2=vtanh[−
√

2λv(x−x02)]. (8)

We set R=x02−x01>0 to be large but not infinite. The
kink and antikink pair configuration is represented by

ϕ=ϕ1+ϕ2−v, (9)

where v is the vacuum at the center of the pair. Now ϕ
is independent of time. One can omit the first term in
Eq. (7). At −∞, both ϕ1 and ϕ2 approach the vacuum,
and their derivatives are zero. So, the force is related
only to the pressure at b. We also set b to be the center
of the pair, i.e., b= 1

2
(x01+x02).

At point b, both ϕ1 and ϕ2 approach the vacuum v.
One can set

ϕ1≡v+χ1, ϕ2≡v+χ2, (10)

where χ1,2 denotes the perturbation field around the vac-
uum. The potential V (ϕ) can be expanded around the
vacuum v as a power series of the perturbation χ[1], i.e.,

V (v+χ)=

∞
∑

n=0

1

n!
V(n)χ

n, (11)

where V(n)=
dnV
dnϕ

|ϕ=v. Equation (2) indicates that χ sat-
isfies the following equation:

d2χ

dx2
−m̃2χ=

∞
∑

n=2

1

n!
V(n+1)χ

n, (12)

where m̃=2
√

2λv is the mass of ϕ. Near the vacuum, χ
can be expanded as

χ(x)=
∞
∑

k=1

akexp(−km̃|x−x0|). (13)

a1 take arbitrary values, and other coefficients can be
determined subsequently as

a1,a2=a2
1

V(3)

6m̃2
,a3=a3

1

(

V 2
(3)

48m̃4
+

V(4)

48m̃2

)

,... (14)

For a1=−2v, it can be verified from Eq (14) that a2=2v,
a3=−2v, etc. The kink solution enables us to expand ϕ
field by Taylor expansion. One can obtain the expression

1) The momentum tensor is defined as Tµν = δL
δ∂µφ

∂νφ−gµνL.
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for χ1,2 from Eq. (8), i.e.,

χ1=2v
∞
∑

k=1

(−1)ke−km̃(x−x01),

χ2=2v

∞
∑

k′=1

(−1)k′

ek′m̃(x−x02). (15)

Here we expand the field near the vacuum v at point b,
where χ1 is equal to χ2 = 2v

∑∞
k=1

(−1)ke−km̃R/2. Com-
paring Eq. (13) and Eq. (15), χ is equal to either χ1 or
χ2. This proves that the coefficients of the Taylor expan-
sion are indeed the solutions of Eq. (12). The agreement
between these two theories is not a coincidence, since the
static field equation (12) is just the spatial derivation of
the BPS equation (4) for 1+1 dimensional scalar theory.
Since the static field equation is a second differential, a1

are arbitrary. However, if we consider the first differen-
tial BPS equation, a1 can be determined uniquely at the
boundary. The χ field denotes the perturbation around
the vacuum in the theory. The argument here indicates
that the static kink configuration can be used to study
the dynamics of excitations classically.

Now we consider the static force between the kink
and antikink in Eq. (7). The first time-differential term
can be ignored for the static condition. Then, the force
can be calculated by substituting Eq. (9) and Eq. (10)
into Eq. (7), i.e.,

F =−1

2
(χ′

1+χ′
2)

2+
∞
∑

n=0

V(n)

n!
(χ1+χ2)

n. (16)

For the ϕ4 potential, V can only be expanded up to the
fourth derivation V(4). Substituting the expression for
χ1,2, one obtains the results

F =8m̃2v2

∞
∑

n=1

αne−
n+1

2
m̃R, (17)

where αn =− (−1)n

3
(n+2n3). In Eq. (17), the first term

disappears since χ′
1+χ′

2=0 at point x=b. Thus, the force
originates completely from the potential term. The sign
of each order correction is against the next order, which
indicates an alternative attractive or repulsive force. The
force in Eq. (17) includes all orders of corrections. It
has been stated that the force should be universal for
all species of kink and antikink interaction in one di-
mension [1], which needs to be verified for the ϕ6, ϕ8

and sine-Gordon theories. It is well-known that there
are no interactions between BPS solitons. The analyti-
cal method to obtain the static force between kink and
anti-kink here considers the point b, at which the kink
and anti-kink are actually non-BPS. The perturbation
around the vacuum represents the non-BPS excitation

mode in the background of kink and anti-kink. These
modes actually affect the soliton scattering. Therefore,
the analytical method here can be generalized to study
other kinds of soliton interactions.

With the normalization λ = 1 and v = 1

2
√

2
, one can

write out the interaction energy according to F =dU/dR.
The potential U is given by

U =

∞
∑

n=1

βne−
n+1

2
R, (18)

where βn = (−1)n 2(n+2n3)

3(n+1)
. One can construct the kink

lattice along one line with kink and antikink alternating.
The i−th kink or antikink experiences the following force

dpi

dt
=

∞
∑

n=1

αn

[

−e−
n+1

2
(qi−1−qi)+e−

n+1

2
(qi−qi+1)

]

. (19)

Thus, the kink lattice becomes a kind of deformed Toda
lattice1). In this way, we have constructed the integrable
system from the soliton section directly. The deformed
Toda lattice system produced has not previously been
studied, to our knowledge.

The Hamiltonian for the kink lattice can be given by
the kink momentum and potential directly. For the non-
periodic (open) kink lattice, the Hamiltonian is written
as

H=
N
∑

i=1

1

2
p2

i +
N−1
∑

i=1

∞
∑

n=1

(

βne−
1+n

2
(qi−qi+1)

)

, (20)

where N is the number of lattice sites. For the periodic
(closed) case, the Hamiltonian is given by

H=
N
∑

i=1

1

2
p2

i +
N
∑

i=1

∞
∑

n=1

(

βne−
1+n

2
(qi−qi+1)

)

, qN+1=q1. (21)

In the kink lattice, the periodic condition means to glue
the right arm of the Nth kink to the left arm of the
first kink. The vacua must be correctly connected by
the kink and antikink. Therefore, N should be an even
integer for the periodic kink lattice. However, there is no
such constraint for the periodic deformed Toda lattice,
N can be any integer. We will consider the integrability
of the kink lattice in the following.

3 Near integrability

Although we have obtained the Hamiltonian of the
kink lattice, its integrability needs to be verified. The
Lax pair representation of the system is essential to prove
the integrability classically. Flaschka’s transformation
enables us to give the Lax pair [11]. Instead of variables
pi and qi, we set new variables to describe the system.

1) Here, the deformed Toda lattice has the same Lagrangian as the kink lattice. The generic Toda lattice in this work refers to the
deformed Toda lattice with generalized coupling coefficients.
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For the open Toda lattice, one can set

ai≡

√

√

√

√

∞
∑

n=1

(

βne−
1+n

2
(qi−qi+1)

)

, i=1,...,N−1 (22)

bi≡pi. (23)

In terms of ai and bi, the Hamiltonian of the open Toda
is written as

H=
1

2

N
∑

i=1

b2
i +

N−1
∑

i=1

a2
i . (24)

The Lax pair satisfies L̇=[M,L], which are assumed to
have the forms

L=





















b1 a1 0 ... 0

a1 b2 a2

...

0 a2 b3

. . .
...

...
. . .

. . . aN−1

0 ... ... aN−1 bN





















,

M =





















0 −c1 0 ... 0

c1 0 −c2

...

0 c2 0
. . .

...
...

. . . 0 −cN−1

0 ... ... cN−1 0





















. (25)

Here ci are unknown parameters. The evolution of L
leads to the equations for ci, i.e.,

ȧi=ci(bi−bi+1), i=1,··· ,N−1 (26)

ḃ1=−2c1a1, (27)

ḃi=2(ci−1ai−1−ciai), i=2,···,N−1 (28)

ḃN =2aN−1cN−1. (29)

The kink lattice system goes back to the Toda system if
we only keep the leading n=1 term of the potential. In
the Toda theory, the solution for ci is simply written as

ci=
∂ai

∂qi

. (30)

The Hamiltonian equations of motion of ai and bi read

ȧi=ci(bi−bi+1), ḃi=2ci(ai−1−ai). (31)

The Hamiltonian equations of motion for qi and pi agree
with Eqs. (26) to (29). The Poisson bracketss of ai and
bi are given by

{ai,bi}=ci, {ai,bi+1}=−ci, i6N−1 (32)

We find that the (i,i+2) component of [M,L] is

aici+1−ai+1ci, (33)

which is not zero in general. Thus, the validity of the
Lax pair needs the constraint that aici+1=ai+1ci. If one

finds a solution for ci which satisfies the equations of
motion in Eq. (26) and the constraint aici+1=ai+1ci, we
can claim that the system is integrable. Otherwise, the
system is not integrable.

Flaschka’s form indicates that the kink lattice has a
generic algebraic structure in the dynamics. In the kink
lattice, βn is determined by αn. The coefficients can be
generalized without hindering the equations of motion
(in terms of ai,bj and ck). The integer and half inte-
ger index in the exponential term can be generalized to
an arbitrary real number. However, the physical system
should have finite energy, which puts strong constraints
on the coefficients. The Hamiltonian of the proposed
most generic open Toda lattice is given by

H=
1

2

N
∑

i=1

p2
i +

N−1
∑

i=1

Ñ
∑

n=1

βne−kn(qi−qi+1). (34)

where kn is positive. Ñ can be infinite when the sum-
mation of all terms is convergent. Then, the algorithm
of the Flashcka transformation repeats the Lax pair rep-
resentation as above, setting

ai≡

√

√

√

√

Ñ
∑

n=1

βne−kn(qi−qi+1), bi≡pi. (35)

The Lax representation does not change for this new de-
formed Toda lattice. Flaschka’s variables enable us to
discuss the integrability of several special cases.

3.1 Case studies

First, if we keep only the leading order interaction in
the kink lattice, the theory goes back to the Toda theory
exactly. The constraint in Eq. (33) is satisfied automat-
ically, since

ci=−1

2
ai. (36)

This shows that the Toda lattice is integrable, which is
a well known result. The integrals of the motion can be
obtained by

Hk=
1

k
TrLk, k=1,2,··· ,N (37)

The first invariant H1 gives the conservation of the
momentum. The second invariant H2 = 1

2
TrL2 is the

Hamiltonian. The invariants also satisfy the relation
{Hi,Hj}=0.

Secondly, if we keep only the leading interaction in
the generic Toda lattice in Eq. (34), the Hamiltonian in
Eq. (34) becomes

H=
1

2

N
∑

i=1

p2
i +

N−1
∑

i=1

βie
−ki(qi−qi+1). (38)
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which is the Hamiltonian of the inhomogeneous Toda
theory. One can check that

aici+1−ciai+1=
1

2
aiai+1(ki−ki+1) 6=0, (39)

which is not zero. Thus, the inhomogeneous Toda lattice
is not integrable. Physically, the different couplings be-
tween different sites break the integrability. We give the
N =3 case for illustration. According to the definition in
Eq. (37), the three variables H1,H2 and H3 are given by

H1=b1+b2+b3, (40)

H2=
1

2
(b2

1+b2
2+b2

3)+a2
1+a2

2, (41)

H3=
1

3
(b3

1+b3
2+b3

3)+(b1+b2)a
2
1+(b2+b3)a

3
2. (42)

The Poisson brackets between them are given by

{H1,H2}=0, (43)

{H1,H3}=0, (44)

{H2,H3}=(k2−k1)a
2
1a

2
2. (45)

These relations show that the system has momentum and
energy conservation, but we do not have the third inte-
gral of motion. H3 is not a conserved integral of motion.
The evolution of H3 is corrected by the difference of the
couplings. The inhomogeneous Toda is not an integral
system.

Thirdly, for the case with only two sites, i.e. N =2,
the deformed Toda theory with high order exponential
terms is exact integrable, since there are no constraint
conditions any more. For the same reason, the two-site
kink lattice is integrable. For a two-site system, we only
need two integrals of motion to manifest the integrability.
The dynamics of the Lax pair agrees with the Hamilto-
nian equations of motion, which are given by

ȧ1=c1(b2−b1), ḃ1=2a1c1, ḃ2=−2a1c1. (46)

One can construct two integrals of motion, which are the
momentum and the energy of the system.

A system with N degrees of freedom is super-
integrable if it has 2N−1 independent constants of mo-
tion. We can further ask whether the system we are
considering is super-integrable [18]. Moser proposed to
make use of new variables (λi,ri) to replace the variables
(ai,bi). The function f(λ) is defined as:

f(λ)=
1

λ−b2−
a2

1

λ−b1

. (47)

f(λ) can be expanded in a series of powers of 1/λ, i.e.,

f(λ)=

∞
∑

j=0

cj

λj+1
, (48)

where cj =
∑N

i=1
r2

i λ
j
i/
∑N

i=1
r2

i . The corresponding rela-

tions between a1,bi and λ1,ri are given by

a2
1=

r2
1r

2
2(λ2−λ1)

2

(r2
1+r2

2)2
, (49)

b1=
r2
1λ2+r2

2λ1

r2
1+r2

2

, (50)

b2=
r2
1λ1+r2

2λ2

r2
1+r2

2

. (51)

The equations of motion for λi and ri are

λ̇i=0, (52)

ṙi=−λiri. (53)

This agrees with the Lax pair representation, i.e.,

L=

(

b1 a1

a1 b2

)

, M =

(

0 a1

−a1 0

)

. (54)

However, such a Lax pair representation does not agree
with the Hamiltonian equations of motion of the de-
formed Toda, see Eq. (46). One has a1 6= c1. This
probably indicates that the deformed Toda is integrable
but not super-integrable. In order to prove super-
integrability, one needs to represent c1 with λi and ri,
which has not yet been solved.

Fourth, for the N >3 case, there is no solution of ci

which satisfies the equations of motion and the constraint
simultaneously. For instance, for the N =3 case, c1 and
c2 are unknown. There are no self-consistent solutions,
or, equally, the equation of motion conflicts with the con-
straint. The components (ciai+1−aici+1) are higher order
interaction corrections. One can decompose the Hamil-
tonian in Eq. (20) as

H(q,p)=H0(q,p)+V (q,p), (55)

where H0 represents the Hamiltonian for the Toda lat-
tice, and

V (q,p)=

N−1
∑

i=1

∞
∑

n=2

βne−
1+n

2
(qi−qi+1)

denotes the higher order interactions, which can be con-
sidered as the perturbation part. This indicates that the
kink lattice is not exactly but “near” integrable. One can
use the canonical perturbation method to study its dy-
namics [17]. The “near” integrable system interpolates
between the integrable system and the chaotic system.
The kink lattice offers a nice toy model for such a near
integrable system. Recently, Ferreira et al. have used the
parameter expansion method to study the sine-Gordon
kink model for the breathers and wobbles phenomena
[15, 16]. Our exact analytical results for the kink inter-
action here can also be used to study such phenomena.
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3.2 Higher Hamiltionians

For the ordinary Toda lattice, one can construct the
higher Hamiltonians by taking the trace of many powers
of the Lax matrix, which are all integrable. The Hamil-
tonian of the Toda lattice system is given by

H=
1

2
Tr(L2). (56)

One can construct the systems with higher Hamiltonians
as

Hk=
1

k
Tr(Lk), (57)

where k is an integer larger than 2. If L represents the
ordinary Toda, then all the systems with higher Hamil-
tonians are integrable. For each k, one can have a Lax
representation, i.e.,

L̇=[Mk,L], (58)

where Mk is a skew-symmetric matrix.
In the following, we will present the higher Hamil-

tonians for the deformed Toda lattice, which are near
integrable systems. If L represents the deformed Toda
lattice in Eq. (25), one can also construct the higher
Hamiltonian for the generalized Toda lattice. Similar to
the generic Toda, systems with higher Hamiltonians are
not integrable, but they are near integrable. We find a
“Lax representation” for these near integrable systems.
For instance, we consider the H3 = 1

3
TrL3 system. The

M3 matrix can be given by

M3=

































0 ζ1 η1 0 ··· ··· 0

−ζ1 0 ζ2 η2 ··· ··· 0

−η1 −ζ2 0 ζ3

. . . ··· 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . ζn−2 ηn−2

...
. . . −ζn−2 0 ζn−1

0 0 0 ··· −ηn−2 −ζn−1 0

































. (59)

The components are given by

ζi=ci(bi+bi+1), k=1,...,n−1 (60)

ηi=ciai+1. k=1,...,n−2 (61)

The Lax representation leads to the equations of motion,
which are given by

ȧi=−ai−1ci−1ai+ci(a
2
i+1−b2

i +b2
i+1),

for k=1,...,n−1 (62)

ḃi=−2ai−1ci−1(bi−1+bi)+2aici(bi+bi+1),

for k=1,...,n (63)

where one also sets a0 =an = cn = b0 = bn+1 =0. Besides
that, other non-zero components in the [Mk,L] matrix

are proportional to (aici+1−ai+1ci). We take the n = 4
case for illustration. One obtains that

[M3,L]13=(b2+b3)(a2c1−a1c2), (64)

[M3,L]14=a3(a2c1−a1c2), (65)

[M3,L]24=(b3+b4)(a3c2−a2c3). (66)

The subscripts 13, 14 and 24 denote the matrix compo-
nents. One concludes that these new higher Hamiltonian
systems are still near integrable systems. For the ordi-
nary Toda case, ai∝ci, all these terms disappear. Thus,
the Hamiltonian of the kink lattice is near integrable,
and the higher Hamiltonians of the kink lattice are still
near integrable systems.

3.3 The closed case

For representation of the closed Toda lattice, one can
repeat the technique with the generalized Hamiltonian
in Eq. (21). Assume that the system is integrable. The
Lax formula can be constructed as [4, 19]

L=





















b1 a1 0 ... λ−1aN

a1 b2 a2

...

0 a2 b3

. . .
...

...
. . .

. . . aN−1

λaN ... ... aN−1 bN





















, (67)

where aN =

√

∑Ñ

n=1
(βne−kn(qN−q1)), and λ is the spectral

parameter. The M matrix is given by [19]

M =





















0 −c1 0 ... λ−1cN

c1 0 −c2

...

0 c2 0
. . .

...
...

. . . 0 −cN−1

−λcN ... ... cN−1 0





















. (68)

The periodic condition is given by qN+i=qi. We list the
equations of motion for several cases in the following.

For the N = 2 case, the system is integrable. The
Hamiltonian is given by

H=
1

2
(b2

1+b2
2)+a2

1. (69)

The equation of motion is given by

ȧ1=
c1

λ
(b2−b1)=λc1(b2−b1),

ḃ1=a1c1(
1

λ
+λ)=−ḃ2. (70)

λ is equal to ±1 for consistency. Thus, the spectral curve
reduces to the two-point trivial case. The two integrals
of motion denote the total momentum and energy con-
servation, respectively.
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For the N =3 case, one obtains the equations of mo-
tion

ḃi=2(ai−1ci−1−aici), (71)

ȧ1=ci(bi−bi+1)−
1

λ
(ai−1ci+1−ai+1ci−1)

=ci(bi−bi+1)−λ(ai−1ci+1−ai+1ci−1), (72)

where i = 1,2,3. Here we have considered the periodic
conditions. The constraint term aici+1−ciai+1 appears.
For the ordinary periodic Toda, these constraints disap-
pear. The non-zero constraint will involve λ in the equa-
tions of motion. Also, the consistence requires λ =±1.
Thus, the higher order perturbation term will trivialize
the spectral curve. From this evidence, the higher Hamil-
tonian systems of the deformed Toda lattice are near or
quasi integrable systems [15, 17].

4 Discussion and conclusions

In this paper, we have calculated the effective po-
tential of a kink and anti-kink pair at large separation.
The assumption of large distance is essential for Man-
ton’s method. The resulting potential contains infinite
order corrections of the exponential type. All coefficients
for these orders are obtained exactly. Such an effective
potential may play an important role in the kink an-
tikink collision test. Many studies have been done to
investigate kink scattering by the numerical method [5–
9]. Moshir [5] first studied kink and antikink scatter-
ing by solving the relativistic ϕ4 theory. They found a
threshold escape velocity of 0.2594. Below this value,
there are also escape windows for the solitons to scat-
ter off after two oscillations. Campbell [6] further indi-
cated that the escape windows are related to the orbital
frequency of the bound kink-antikink pair and the os-
cillation field localized in the pair center. The effective
theory obtained in this work can be used to study these
phenomena, since the perturbation field around the vac-
uum plays the role of the oscillation field in Campbell et
al.’s work. The effective theory from Manton’s method
may help to explain the escape window more physically,
since the higher order corrections in the potential are
most related to the frequency and radiation of the soli-
ton scattering. We observed that the fluctuation of the
ϕ4 theory around the vacuum satisfies a second differ-
ential equation, and its solution agrees with the BPS
equation. This phenomenon helps us to calculate the
quantum theory from the topological section. If we con-
sider the theory in one time and zero space dimensions,

the Lagrangian in Eq. (1) will become an anharmonic
oscillator with a double well potential theory [20]. The
kink solution here will become the instanton solution.
Our effective potential of the kink and antikink can help
to study the instanton and anti-instanton contribution to
the kernel. It can be expected that discrete energy levels
for the anharmonic oscillator are related to the instanton
configurations. Manton’s method here can also be used
to study kink dynamics in other theories, for instance
the kink solutions (which are confined monopoles on the
vortex string) in SQCD theories [21–23]. Several articles
have studied the dynamics of such kinks [24–26]. It was
found that the potential for kink interactions has a simi-
lar exponential pattern. The procedure here to calculate
the high order potentials and construct the kink lattice
can also be applied to the massive sigma model. One
can expect that these confined monopoles form a near
integrable system. All these predictions should be tested
in the future.

The kink can be considered as a pseudoparticle,
whose dynamics shows rich structure. We have presented
the effective total Hamiltonian for the kink lattice, and
generalized the kink lattice to the generic deformed Toda
lattice. Keeping only the leading order potential, the
kink lattice is exactly the Toda lattice, which is inte-
grable. If higher order terms are included, the kink lat-
tice and the deformed Toda lattice are near integrable,
except for the two sites case. In terms of Flaschka’s
variables, we studied the Lax representation of the kink
lattice. Although the potential has infinite correction
terms, the Lax equation shows a simple algebraic struc-
ture. The integrability is broken by the higher order
corrections. This shows that the kink lattice is a near
integrable system. It has been stated that the Toda po-
tential is the unique potential for integrability [14], but
this theorem indicates that the inclusion of higher order
corrections will break the integrability. We found that
the two-site kink lattice is integrable, which is mostly
related to the breather phenomenon of the kink and an-
tikink. The two-site kink lattice is most probably not
super-integrable, i.e., there are no 2N−1 integrals for the
kink lattice, and further study is needed to verify this
point. The higher Hamiltonians for the kink lattice were
constructed, and they are all near integrable systems.
The evolution of near integrable systems is also inter-
esting, since they will evolve from integrable to chaotic
systems. The kink lattice is a nice model for studies of
near integrable systems.

113107-7



Chinese Physics C Vol. 41, No. 11 (2017) 113107

References

1 N. S. Manton, Nucl. Phys. B, 150: 397 (1979)
2 N. S. Manton and P. Sutcliffe, Topological solitons, First Edi-

tion (Cambridge, England: Cambridge University Press, 2004),
p.114

3 T. Vachaspati, Kinks and domain walls: An introduction to

classical and quantum solitons, First Edition (Cambridge, Eng-
land: Cambridge University Press, 2006), p.10

4 S. He, Y. Jiang, and J. Liu, arXiv:1605.06867
5 M. Moshir, Nucl. Phys. B, 185: 318–332 (1981)
6 D. K. Campbell, J. F. Schonfld, and C. A. Wingate Physica D,

9: 1–32 (1983)
7 P. Dorey, K. Mersh, T. Romanczukiewicz, and Y. Shnir, Phys.

Rev. Lett., 107: 091602 (2011)
8 V. A. Gani, A. E. Kudryavtsev, and M. A. Lizunova, Phys.

Rev. D, 89(12): 125009 (2014)
9 V. A. Gani, V. Lensky, and M. A. Lizunova, JHEP, 1508: 147

(2015)
10 M. Toda, Journal of the Physical Society of Japan, 20(11):

2095A (1965)
11 H. Flaschka, Phys. Rev. B, 9(4): 1924–1925 (1974)
12 M. Henon, Phys. Rev. B, 9(4): 1921–1923 (1974)
13 S. Manakov, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki

67: 543–555 (1974); Soviet Journal of Experimental and The-

oretical Physics, 40(2): 269–274 (1975)
14 K. Sawada and T. Kotera, Supplement of the Progress of The-

oretical Physics, 59: 101–106 (1976)
15 L. A. Ferreira and W. J. Zakrzewski, JHEP, 1105: 130 (2011)
16 L. A. Ferreira, P. Klimas, and W. J. Zakrzewski, JHEP, 1605:

065(2016)
17 C. Gignoux, B. Silvestre-Brac, Solved problems in Lagrangian

and Hamiltonian Mechanics, First Edition (Springer, 2009)
18 M. A. Agrotis, P. A. Damianou, and C. Sophocleous, Phys-

ica A Statistical Mechanics and its Applications, 365: 235–243
(2006)

19 O. Babelon, D. Bernard, and M. Talon, Introduction to clas-

sical integrable systems, First Edition (Cambridge University
Press, 2003)

20 E. Gildener and A. Patrascioiu, Phys. Rev. D, 16: 423(1977)
Erratum: Phys. Rev. D, 16: 3616 (1977)

21 M. Shifman and A. Yung, Phys. Rev. D, 70: 045004 (2004)
22 M. Eto, T. Fujimori, S. B. Gudnason, Y. Jiang et al, JHEP,

1112: 017 (2011)
23 A. Alonso-Izquierdo, M. A. Gonzalez Leon, and J. Mateos

Guilarte, Phys. Rev. Lett. 101: 131602 (2008)
24 D. Harland, J. Math. Phys. 50: 122902 (2009)
25 M. Arai, F. Blaschke, M. Eto, and N. Sakai, JHEP, 1409: 172

(2014)
26 D. Tong, JHEP, 0304: 031 (2003)

113107-8


