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Abstract: We investigate flavor phenomenology and dark matter in the context of the scotogenic model. In this

model, the neutrino masses are generated through radiative corrections at the one-loop level. Considering the neutrino

mixing matrix to be of tri-bimaximal form with additional perturbations to accommodate the recently observed non-

zero value of the reactor mixing angle θ13, we obtain the relation between various neutrino oscillation parameters

and the model parameters. Working in a degenerate heavy neutrino mass spectrum, we obtain light neutrino masses

obeying the normal hierarchy and also study the relic abundance of fermionic dark matter candidates, including

coannihilation effects. A viable parameter space is thus obtained, consistent with neutrino oscillation data, relic

abundance and various lepton flavor violating decays such as lα → lβγ and lα → 3 lβ .
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1 Introduction

The Standard Model (SM) of particle physics has
been very successful in explaining physics at the funda-
mental level. However, there are still many open ques-
tions for which it does not provide any satisfactory an-
swer. The existence of dark matter (DM) and the obser-
vation of non-zero neutrino masses stand as some of the
few robust pieces of evidence for physics beyond the SM.

Considerable progress has been made in the deter-
mination of neutrino mass squared differences and mix-

ing parameters from the data of various solar and at-
mospheric neutrino oscillation experiments. Theoreti-
cally, the smallness of neutrino mass can be generally ex-
plained by the well known seesaw mechanisms, namely:
type-I [1], type-II [2], type-III [3] and radiative seesaw
[4]. In standard parametrization, the mechanism of mix-
ing can be described by the unitary Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix VPMNS [5] written in
terms of three rotation angles θ12, θ23, θ13 and three CP-
violating phases namely δCP (Dirac type) and ρ,σ (Ma-
jorana type) as

VPMNS ≡UPMNS ·Pν =







c12c13 s12c13 s13e
−iδCP

−s12c23−c12s13s23e
iδCP c12c23−s12s13s23e

iδCP c13s23

s12s23−c12s13c23e
iδCP −c12s23−s12s13c23e

iδCP c13c23






Pν , (1)

where cij ≡ cosθij , sij ≡ sinθij and Pν ≡{eiρ,eiσ,1} is
a diagonal phase matrix. The mixing angles as well as
the mass squared differences have been well constrained
by various neutrino oscillation experiments. Recently,
the Daya Bay [6, 7], RENO [8] and T2K [9] collabora-
tions have precisely measured the reactor mixing angle
θ13 with a moderately large value. However, there are
several missing pieces such as the neutrino mass hierar-
chy, the magnitude of the CP violating phase δCP , the
absolute scale of the neutrino mass, and the nature of
neutrinos (whether Dirac or Majorana). Various neu-
trino oscillation parameters derived from a global anal-

ysis of recent oscillation data taken from Ref. [10] are
presented in Table 1.

Turning to dark matter, its particle nature is still a
mystery. The recent survey by PLANCK [11] reveal that
DM constitutes about 26.8% of the total energy bud-
get of the Universe. Various cosmological observations
suggest that this unknown particle is non-relativistic in
nature and is stable on cosmological time scales. Numer-
ous beyond-SM scenarios study DM phenomenology by
imposing additional discrete symmetry such as R-parity,
Z2 symmetry etc. Weakly Interacting Massive Particles
(WIMPs) are the best motivated DM candidate. They
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are massive particles with cross sections of approximately
the order of the weak interaction cross section.

Table 1. Best-fit values with their 3σ ranges of
the neutrino oscillation parameters from Ref. [10]
where NO indicates normal ordering.

mixing parameters best fit value 3σ range

sin2 θ12 0.323 0.278→ 0.375

sin2 θ23 (NO) 0.567 0.392→ 0.643

sin2 θ13 (NO) 0.0234 0.0177→ 0.0294

δCP (NO) 1.34π (0→ 2π)

∆m2
31/10−3 eV2 (NO) 2.48 2.3→ 2.65

∆m2
21/10−5 eV2 7.60 7.11→ 8.18

It would be interesting to study extensions of the
Standard Model that can relate these two issues. The
scotogenic model proposed by Ma [4] is one such frame-
work in which neutrino mass generation involves inter-
action with dark matter. In this model an unbroken dis-
crete symmetry forbids neutrinos attaining a tree level
mass and also assures the stability of DM particles. It
is a suitable platform to simultaneously explain neutrino
oscillation data and DM phenomenology.

In this work, we consider the scotogenic model to
correlate some of the neutrino oscillation parameters,
like the mass squared differences and the mixing angles
with the model parameters. We examine the neutrino
radiative mass matrix using the mixing matrix of TBM
type with added perturbation to achieve large θ13. We
solve for suitable flavor structure to study neutrino phe-
nomenology. We then use the best fit values on neutrino
oscillation parameters to constrain the parameter space
of this model. In addition, we study DM relic abundance
choosing the lightest odd particle as the DM candidate.
We scan over the entire parameter space of the model
imposing the constraints from neutrino data, DM ob-
servables and lepton flavor violating decays.

The paper is organized as follows. In Section 2 we de-
scribe the scotogenic model. In Section 3 we diagonalize
the neutrino radiative mass matrix and obtain solutions
to explain neutrino oscillation data. The fermionic DM
relic abundance considering the coannihilation effects is
studied in Section 4 and then in Section 5 we estimate
the branching ratios of various LFV decays. We conclude
our discussion in Section 6.

2 Scotogenic model

The scotogenic model is a minimal extension of the
SM with an additional inert scalar doublet η and three
heavy Majorana right-handed neutrinos Ni (i = 1,2,3).
The potential is imposed with a discrete symmetry un-
der which all the new particles i.e., Ni and η, are odd,
and SM particles are even. The unbroken discrete sym-
metry guarantees the coupling of the inert doublet to

fermions vanish and doesn’t get a vacuum expectation
value (VEV), while the SM Higgs doublet φ obtains a
VEV 〈φ0〉 = v by the spontaneous symmetry breaking
of SU(2)L×U(1)Y global symmetry. This model is rich
in phenomenology providing scalar and fermionic dark
matter candidates. Scalar dark matter in this model has
been studied extensively in the literature [12–14].

The scalar potential of this model is given by [15]

V =m2
φφ†φ+m2

ηη
†η+

1

2
λ1(φ

†φ)2

+
1

2
λ2(η

†η)2 +λ3(φ
†φ)(η†η)

+λ4(φ
†η)(η†φ)+

1

2
λ5[(φ

†η)2 +(η†φ)2], (2)

where the two scalar doublets φ and η are defined as

φ =

(

φ+

φ0

)

, η =

(

η+

η0

)

. (3)

After spontaneous symmetry breaking, the masses of
the charged component (η+) and neutral components of
η0 = (ηR +iηI)/

√
2 are given by

m2
η+ = m2

η +λ3v
2,

m2
R = m2

η +(λ3 +λ4 +λ5)v
2,

m2
I = m2

η +(λ3 +λ4−λ5)v
2. (4)

The Yukawa Lagrangian of this model is [15]

LN =Nii∂/PRNi +(Dµη)
†
(Dµη)

−Mi

2
Ni

cPRNi +hαi`αη†PRNi +h.c., (5)

where hαi are the Yukawa couplings, α denotes the lep-
ton flavor and Mi are the masses of heavy neutrinos Ni.

In this model, neutrinos get their mass by a loop cor-
rection called the “radiative seesaw mechanism”. The
corresponding neutrino mass matrix is given by

(Mν)αβ =

3
∑

i=1

hαihβiΛi, (6)

where Λi is defined as

Λi =
λ5v

2

8π2Mi

I (ri) , I(x) =
x2

1−x2

(

1+
x2

1−x2
lnx2

)

,

(7)
Here the parameters ri are defined as ri = Mi/m0 and
m0

2 = (mR
2 +mI

2)/2. We take λ5 ∼ 10−10, a very small
value, in order to have correct neutrino masses and also
probe for lepton flavor violation [15–18]. We now diag-
onalize the radiative mass matrix (6) using the PMNS
matrix to explain neutrino oscillation data.
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3 Neutrino phenomenology

Various neutrino experiments have confirmed that
neutrinos have tiny mass and that they oscillate from one
flavor to another as they propagate. The phenomenon
of neutrino oscillation is described by solar (θ12), atmo-
spheric (θ23) and reactor (θ13) mixing angles. Of these
three rotation angles, two are large (θ12 and θ23), and one
is not so large (θ13). Originally, it was believed that the
reactor mixing angle would be very small and with this
motivation numerous models were proposed which are
generally based on some discrete flavor symmetries such
as S3, S4, A4, etc [19] to explain the neutrino mixing pat-
tern. For instance, the tri-bimaximal (TBM) mixing pat-

tern [20], a well motivated model which has sin2 θ12 =
1

3

and sin2 θ23 =
1

2
and which can be expressed in a gener-

alized form as

U 0
ν =













cosθ sinθ 0

− sinθ√
2

cosθ√
2

1√
2

sinθ√
2

−cosθ√
2

1√
2













, (8)

with θ ' 35◦. However, in the TBM mixing pattern the
value of θ13 turns out to be zero. After the experimen-
tal evidence of a moderately large θ13, it was found that
by adding suitable perturbation terms, the TBM mix-
ing pattern can still describe the neutrino mixing pat-
tern with sizeable θ13. As discussed in Ref. [21], here
we consider a simple perturbation matrix, i.e., a rota-
tion matrix in the 13 plane, which can provide the re-
quired corrections to the various mixing angles of the
TBM mixing matrix. Assuming the charged lepton mass
matrix is diagonal (i.e., the identity matrix), one can
write the PMNS mixing matrix, which relates the flavor
eigenstates to the corresponding mass eigenstates, as

UPMNS = U 0
ν







cosϕ 0 e−iζ sinϕ

0 1 0

−eiζ sinϕ 0 cosϕ






. (9)

In our work, we consider the phase ζ to be zero for con-
venience. Now we diagonalize the mass matrix (6) by the
mixing matrix (9) using the relation UT

PMNSMνUPMNS =
diag(m1,m2,m3). This in turn provides the following
conditions (vanishing off-diagonal elements of the mass
matrix) to be satisfied:

3
∑

i=1

h2
ei

2
sin2θ cosϕ+

hei(hµi−hτi)√
2

cos2θ cosϕ

− (hµi−hτi)
2

4
sin2θ cosϕ

−hei(hµi +hτi)√
2

sinθ sinϕ

− (h2
µi−h2

τi)

2
cosθ sinϕ = 0,

(10a)
3
∑

i=1

h2
ei

2
sin2θ sinϕ+

hei(hµi−hτi)√
2

cos2θ sinϕ

− (hµi−hτi)
2

4
sin2θ sinϕ

+
hei(hµi +hτi)√

2
sinθ cosϕ

+
(h2

µi−h2
τi)

2
cosθ cosϕ = 0,

(10b)
3
∑

i=1

h2
ei

2
cos2 θ sin2ϕ− hei(hµi−hτi)

2
√

2
sin2θ sin2ϕ

+
(hµi−hτi)

2

4
sin2 θ sin2ϕ

+
hei(hµi +hτi)√

2
cosθ cos2ϕ− (h2

µi −h2
τi)

2
sinθ cos2ϕ

− (hµi +hτi)
2

4
sin2ϕ = 0. (10c)

The neutrino mass eigenvalues are given by

m1 =

3
∑

i=1

(

h2
ei cos2 θ cos2 ϕ− 1√

2
hei(hµi−hτi)sin2θ cos2 ϕ

− 1√
2
hei(hµi +hτi)cosθ sin2ϕ

+
1

2
(hµi +hτi)

2 sin2 ϕ+
1

2
(h2

µi−h2
τi)sinθ sin2ϕ

+
1

2
(hµi−hτi)

2 sin2 θ cos2 ϕ

)

Λi ,

m2 =

3
∑

i=1

(

h2
ei sin

2 θ+
1√
2
hei(hµi−hτi)sin2θ

+
1

2
(hµi−hτi)

2 cos2 θ

)

Λi ,

m3 =

3
∑

i=1

(

h2
ei cos2 θ sin2 ϕ− 1√

2
hei(hµi−hτi)sin2θ sin2 ϕ

+
1√
2
hei(hµi +hτi)cosθ sin2ϕ

+
1

2
(hµi +hτi)

2 cos2 ϕ− 1

2
(h2

µi−h2
τi)sinθ sin2ϕ

+
1

2
(hµi−hτi)

2 sin2 θ sin2 ϕ

)

Λi . (11)

Solving (10a), (10b) and substituting in (10c), we obtain
two solutions given by

043102-3



Chinese Physics C Vol. 41, No. 4 (2017) 043102

1) hµi1 6=−hτi1 , tanθ =
(hτi1 −hµi1)√

2hei1

,

tan2ϕ =

−
(

hei1(hµi1 +hτi1)√
2

cosθ−
(h2

µi1
−h2

τi1
)

2
sinθ

)

(

h2
ei1

2
cos2 θ− hei1(hµi1 −hτi1)

2
√

2
sin2θ+

(hµi1 −hτi1)

4

2

sin2 θ− (hµi1 +hτi1)
2

4

) ,

2) hµi2 =−hτi2 , tanθ =
hei2√
2hµi2

, (12)

where i1, i2 can take any value of i(= 1,2,3). As
shown in Ref. [21], the above mixing matrix can ex-
plain recent neutrino oscillation data with the unper-
turbed mixing as TBM type (i.e., with θ = 35◦) and the
perturbed angle ϕ = 12◦, which accommodates the ex-
perimentally measured mixing angles. Thus, Eq. (12)
gets further simplified to three simple solutions and the
obtained flavor structure, written in terms of hei(= hi)
in a matrix labelled with the lepton flavor α as row index
and i = 1,2,3 as column index, is given by

hαi =







h1 h2 h3

−0.68 h1 h2 3.56 h3

0.31 h1 −h2 4.55 h3






. (13)

Here i1 = 1,3 and i2 = 2 is assumed so that the mass
eigenvalues (11) get non-zero contributions given as

m1 = c1(h
2
1Λ1),

m2 = c2(h
2
2Λ2),

m3 = c3(h
2
3Λ3), (14)

where the coefficients c1 = 1.55, c2 = 3.04, c3 = 34.44.
Thus, the flavor structure (13) is suitable to explain nor-
mal hierarchy i.e., (m3 �m2 > m1) provided we assume
that N1 and N2 are degenerate. Imposing the best fit
values given in Table 1, the constraints from neutrino
mass squared differences are given by

[(c2h
2
2)

2−(c1h
2
1)

2]Λ2
1 = 7.6×10−5 eV2,

[(c3h
2
3Λ3)

2−(c2h
2
2Λ1)

2] = 2.4×10−3 eV2. (15)

Thus, we have a free parameter space spanned by hi, r1,3

and M1,3. We now proceed to constrain the parameter
space with the DM relic abundance, choosing the lightest
of the odd particles as a DM candidate.

4 Relic abundance

We choose N1 as the lightest odd particle and since
N2 is its degenerate partner, the relic abundance gets
contributions from annihilation as well as coannihilation
channels. To include the coannihilation effects, we adopt

the procedure given in Ref. [22] in the estimation of
relic abundance. We introduce a parameter δ given by
δ ≡ (M2−M1)/M1, which depicts the mass splitting ra-
tio of the degenerate neutrinos. The effective cross sec-
tion σeff , including contributions from coannihilations, is
given by

σeff =
g2

N1

g2
eff

σN1N1
+2

gN1
gN2

g2
eff

σN1N2
(1+δ)3/2e−δx

+
g2

N2

g2
eff

σN2N2
(1+δ)3e−2δx,

geff = gN1
+gN2

(1+δ)3/2e−δx. (16)

Here geff denotes the effective degrees of freedom, gN1,2

are the number of degrees of freedom for Majorana
fermions and x = M1/T , where T is the temperature.
The (co)annihilation cross section of Ni and Nj is given
by [15]

σNiNj
|vrel|=

1

8π

M 2
1

(M 2
1 +m2

0)2

[

1+
m4

0−3m2
0M

2
1 −M 4

1

3(M 2
1 +m2

0)2
v2
rel

]

×
∑

α,β

(hαihβj −hαjhβi)
2

+
1

12π

M 2
1 (M 4

1 +m4
0)

(M 2
1 +m2

0)4
v2
rel

∑

α,β

hαihαjhβihβj. (17)

In the above expression i, j can be 1 or 2 and vrel repre-
sents the relative velocity of annihilating particles. The
effective annihilation cross section is defined as σeff |vrel|=
aeff+beffv2

rel. The coefficients aeff and beff for the obtained
flavor structure (13) are given by

aeff =
1

16π

M 2
1

(M 2
1 +m2

0)2
(s12h

2
1h

2
2), (18)

beff =
1

48π

M 2
1 (M 4

1 +m4
0)

(M 2
1 +m2

0)4
[(s1h

4
1 +s2h

4
2)]

+
1

16π

M 2
1

(M 2
1 +m2

0)2

[

m4
0−3m2

0M
2
1 −M 4

1

3(M 2
1 +m2

0)2

]

(s12 h2
1h

2
2),

(19)
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where s1 = 2.42,s2 = 9.24 and s12 = 9.47. Now the
thermally averaged cross section is given as 〈σeff |vrel|〉=
aeff +6beff/x. If the decoupling temperature is given by
Tf = M1/xf , the relic abundance can be estimated by

ΩN1
h2 =

1.07×109 GeV−1

g1/2
? mpl

1

J(xf )
, (20)

where mpl = 1.22×1019 GeV and g? = 106.75 and J(xf )
is given by

J(xf ) =

∫ ∞

xf

〈σeff |vrel|〉eff
x2

dx. (21)

Using the first relation in Eq. (15), we eliminate h2 and
since N1 is the lightest odd particle, we take r1 < 1
[15, 18] and |hi|< 1.5 [16]. Figure 1 depicts the allowed
parameter space (h1, r1) consistent with current bounds
on relic abundance [11]. Figure 2 displays the relic abun-
dance as a function of DM mass for various values of h1

at two representative values of r1, i.e., r1 = 0.5 in the left
panel and r1 = 0.6 in the right panel. This shows that
the mass range of DM mass consistent with current relic

abundance is proportional with the parameter r1 and the
Yukawa coupling h1.

Fig. 1. Parameter space of h1 and r1 consistent
with 3σ relic abundance.

As the light neutrinos oscillate in flavor, one-loop di-
agrams contribute to lepton flavor violating decays. We
now further constrain the parameter space of the model
using these decays.

Fig. 2. (color online) Variation of relic abundance with DM mass for various values of h1 at r1 = 0.5 (left panel)
and r1 = 0.6 (right panel) where the horizontal line (magenta) represents the central value of the relic density and
the black lines denote their corresponding 3σ range.

5 Lepton flavour violating decays

The observation of neutrino oscillations has provided
an unambiguous signal for lepton number violation in
the neutral lepton sector, even though individual lep-
ton number is conserved in electroweak interactions in
the SM. The evidence of light neutrino masses and mix-
ing and the violation of family lepton number could in
principle allow flavor changing neutral current (FCNC)
transitions in the charged lepton sector as well, such as
lα → lβγ and lα → lβ lβlβ .

The expression for the branching ratio of lepton fla-
vor violating decay process lα → lβγ written in terms of
dipole form factor AD is given by [17]

Br(lα → lβγ) =
3(4π)3αem

4G2
F

|AD|2Br (lα → lβνανβ) , (22)

where αem = e2/4π is the electromagnetic fine structure
constant, GF is the Fermi constant and α(β) represents
the lepton flavor. The diagrams contributing to AD are
shown in Fig. 3 and the expression is given by

AD =
3
∑

i=1

h∗
iβhiα

2(4π)2
1

m2
0

F2 (ri) . (23)

Here the expression for the loop function F2(x) is given
in Appendix A and for simplicity we consider λ4 � λ3,
thus we get η+ and η0 to be degenerate [15]. Applying
the flavour structure (13), the relation (22) becomes

Br(µ→ eγ)=
3αem

64πG2
Fm4

0

|(h2
2−0.68h2

1)F2 (r1)

+(3.56h2
3)F2 (r3)|2 . (24)
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We consider r3 > 1, M1 < 2 TeV and M3,m0 < 8 TeV and
thus we work in the mass regime M1 ' M2 < m0 < M3.
Of all the lepton flavor violating (LFV) decays, the decay
channel µ→ eγ provides the most stringent constraint on
the parameter space of this model.

Imposing the constraints from neutrino mass squared
differences, relic abundance and current upper bounds on
Br(µ→ eγ) [23], Fig. 4 (left panel) shows the allowed re-

gion in the (h3, r3) parameter space of the model. From
the figure, the lower bound on r3 is 2 (i.e., r3 > 2) and
the upper bound on h3 is 0.33 (i.e., h3 < 0.33 ). Figure 4
(right panel) depicts the variation of h1 with the mass of
DM. It shows that Br(µ→ eγ) excludes the values above
1.2 for h1. Now taking all the constraints from the flavor
and dark sector, one can tabulate the allowed parameter
space shown in Table 2.

Fig. 3. Diagrams contributing to lα → lβγ.

Fig. 4. Parameter space of h3 and r3 (left panel) and variation of h1 with M1 (right panel) consistent with neutrino
oscillation data, relic density and Br(µ→ eγ).

Table 2. Scotogenic model parameters with their range.

parameters range

r1 0.2→ 1

r3 2→ 12

|h1| 0.2→ 1.2

|h2| 0.2→ 1.0

|h3| 0.1→ 0.33

We follow a similar procedure to compute the branch-
ing ratios of τ → eγ and τ → µγ decays. Using the
allowed parameter space given in Table 2, we show in
Fig. 5 the correlation plot between Br(τ → eγ) and
Br(τ → µγ). In our analysis, we have used the mea-
sured branching ratios for µ→νµeν̄e, τ

− →ντµ
−
ν̄µ and

τ
− →ντe−ν̄e processes from Ref. [23] as

Br(µ→νµeν̄e)=100% ,

Br(τ→ντµν̄µ)=(17.41±0.04)% ,

Br(τ→ντeν̄e)=(17.83±0.04)% . (25)

Now we study lepton flavor violation in 3-body de-
cays. As discussed in Ref. [17], these decays get con-
tributions from three types of loop diagrams, namely :
γ-penguin, Z-penguin and box diagrams. The branching
ratio for lα → 3lβ in the scotogenic model is given by [17]

Br
(

lα → lβlβ lβ
)

=
3(4π)2α2

em

8G2
F

[

|AND |2 + |AD|2
(

16

3
log

(

mα

mβ

)

− 22

3

)

+
1

6
|B|2 +

(

−2ANDA∗
D +

1

3
ANDB∗− 2

3
ADB∗+h.c.

)]

×Br (lα → lβνανβ) . (26)

The coefficient AD denotes the photon dipole con-
tributions given in Eq. (23), while the coefficient AND

represents the form factor with the photonic non-dipole
contributions given by
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AND =

3
∑

i=1

h∗
iβhiα

6(4π)2
1

m2
0

G2 (ri) . (27)

Here G2(x) is a loop function, which is given in Appendix
A. The Z-penguin diagrams shown in Fig. 6 give a neg-
ligible contribution to the decay width, as explained in
Refs. [17, 18]. Apart from photon dipole and non-dipole
penguin contributions, the box diagrams shown in Fig. 7
also contribute to the decay width given by

B =
1

(4π)2e2m2
0

3
∑

i, j=1

[

1

2
D1(ri, rj)h

∗
jβhjβh∗

iβhiα

+rirjD2(ri, rj))h
∗
jβh∗

jβhiβhiα

]

. (28)

The loop functions D1(x,y) and D2(x,y) are provided in
Appendix A.

Using the allowed parameter space from Table 2, we
show in Fig. 8 the correlation plot between µ→ eγ and
µ → eee (left panel). Similarly, the right panel in Fig.

8 depicts the correlation plot between branching ratios
of τ → eee and τ → µµµ. From these figures we con-
clude that all the obtained branching ratios in the viable
parameter space are within the experimental limits.

Fig. 5. Correlation plot between Br(τ → eγ) and
Br(τ→µγ)

Fig. 6. Penguin diagram contributions to lα → 3 lβ . The mediator (wavy line) denotes either a photon or a Z-boson.

Fig. 7. Box diagram contributions to lα → 3 lβ .

Fig. 8. Correlation plot between Br(µ→ eee) and Br(µ→ eγ) (left panel) and between Br(τ→ µµµ) and Br(τ→

eee) (right panel).
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6 Summary and conclusion

In this paper we have considered the scotogenic
model, which is an extension of the Standard Model with
an additional inert scalar doublet and three heavy Majo-
rana right-handed neutrinos. It is a novel scenario con-
necting neutrino physics and dark matter. We have di-
agonalized the neutrino radiative mass matrix using the
TBM matrix with an additional perturbed matrix as a
rotation matrix in the 13 plane. The mixing angles are
chosen (θ = 35◦ and ϕ = 12◦) to accommodate a size-

able θ13. Working in a degenerate heavy neutrino mass
spectrum, we have obtained a flavor structure favourable
to explain normal neutrino mass ordering. Choosing the
lightest of the odd particles as dark matter, we have com-
puted the relic abundance including the coannihilation
effects. Scanning over the entire parameter space and
applying the constraints from neutrino oscillation data,
dark matter observables and bounds from lepton flavor
violating decays such as lα → lβγ and lα → 3lβ, we have
shown the suitable range for various parameters in the
model.

Appendix A

Loop functions

The loop functions used in LFV decays are given by

F2(x)=
1−6x2 +3x4 +2x6

−6x4 logx2

6(1−x2)4
, (A1)

G2(x)=
2−9x2 +18x4

−11x6 +6x6 logx2

6(1−x2)4
, (A2)

D1(x,y)=−

1

(1−x2)(1−y2)
−

x4 logx2

(1−x2)2(x2
−y2)

−

y4 logy2

(1−y2)2(y2
−x2)

, (A3)

D2(x,y)=−

1

(1−x2)(1−y2)
−

x2 logx2

(1−x2)2(x2
−y2)

−

y2 logy2

(1−y2)2(y2
−x2)

. (A4)

In the limit y→x, the functions D1 and D2 become

D1(x,x)=
−1+x4

−2x2 logx2

(1−x2)3
, (A5)

D2(x,x)=
−2+2x2

− (1+x2) logx2

(1−x2)3
. (A6)
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