
Chinese Physics C Vol. 41, No. 6 (2017) 066201

Design and development of JUNO event data model *

Teng Li(oC)1;1) Xin Xia(gc)1;2) Xing-Tao Huang(�57)1;3) Jia-Heng Zou(qZð)2

Wei-Dong Li(o¥À)2 Tao Lin(�ë)2 Kun Zhang(Ü%)2 Zi-Yan Deng("fý)2

1 School of Physics, Shandong University, Jinan 250100, China
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract: The Jiangmen Underground Neutrino Observatory (JUNO) detector is designed to determine the neu-

trino mass hierarchy and precisely measure oscillation parameters. The general purpose design also allows measure-

ments of neutrinos from many terrestrial and non-terrestrial sources. The JUNO Event Data Model (EDM) plays a

central role in the offline software system. It describes the event data entities through all processing stages for both

simulated and collected data, and provides persistency via the input/output system. Also, the EDM is designed to

enable flexible event handling such as event navigation, as well as the splitting of MC IBD signals and mixing of MC

backgrounds. This paper describes the design, implementation and performance of the JUNO EDM.

Keywords: JUNO, event data model, offline software, ROOT

PACS: 29.40.Mc, 29.85.Fj DOI: 10.1088/1674-1137/41/6/066201

1 Introduction

The Jiangmen Underground Neutrino Observatory
(JUNO) [1, 2] is a multi-purpose neutrino experiment
being built in Guangdong, China. JUNO is designed to
determine the neutrino mass hierarchy by precise mea-
surement of the reactor antineutrino energy spectrum at
a distance of 53 km from the Yangjiang and Taishan nu-
clear power plants. The JUNO detector is capable of
observing not only reactor neutrinos but also geoneutri-
nos, atmospheric neutrinos, solar neutrinos and neutri-
nos from supernova bursts.

The JUNO detector is a liquid scintillator (LS) de-
tector which consists of a central detector (CD) and a
veto system, as shown in Fig. 1. The CD is an acrylic
sphere filled with 20 000 tons of LS and monitored with
∼18 000 20-inch photomultiplier tubes (PMTs) to reach
an unprecedented energy resolution of 3% at 1 MeV. The
veto system consists of a Water Cherenkov detector and
a Top Tracker system, which is used for muon detection,
muon induced background studies, and muon reduction.

The JUNO offline software is designed to fulfill many
requirements including Monte Carlo (MC) data produc-
tion, raw data calibration, and event reconstruction as
well as to provide tools for the physics analysis. The

JUNO offline software is based on the general SNiPER
(Software for Non-collider Physics ExpeRiment) frame-
work [3] with the main components implemented as
SNiPER plugins, as shown in Fig. 2, and dependen-
cies on external packages including ROOT [4], Geant4
[5] etc.

Fig. 1. (color online) Schematic view of JUNO detector.

Figure 3 illustrates the JUNO offline software work-
flow, with the data processing stages represented by di-
amonds and the event data they consume and produce
represented by ovals. The event data is held in a dynami-
cally allocated region of memory named DataBuffer. The

Received 4 January 2017

∗ Supported by Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532258), the Program for New Century Excellent
Talents in University (NCET-13-0342), the Shandong Natural Science Funds for Distinguished Young Scholar (JQ201402) and the Strategic
Priority Research Program of the Chinese Academy of Sciences (XDA10010900)

1) E-mail: liteng@hepg.sdu.edu.cn

2) E-mail: xiax@hepg.sdu.edu.cn

3) E-mail: huangxt@sdu.edu.cn
©2017 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

066201-1



Chinese Physics C Vol. 41, No. 6 (2017) 066201

event data at all stages can be persisted to files in the
form of ROOT TTrees.

Fig. 2. (color online) Structure of JUNO offline
software system.

GenEvent SimEvent CalibEvent RecEvent

RawEvent

generator calibrationsimulation reconstruction

DataBuffer I/O
DataFiles

Fig. 3. Workflow of JUNO offline software system.

For simulated data production, the Generator stage
applies physics generators to produce GenEvent objects
which are held in the DataBuffer. These GenEvent
objects are used as the input to the Simulation stage,
which models the detector and electronics response. Sim-
ilarly, the Calibration and Reconstruction stages read
data from the previous step and produce CalibEvent
and RecEvent objects, respectively. All event data ob-
jects, such as GenEvent, SimEvent, RawEvent, Cal-
ibEvent and RecEvent, are defined and implemented by
the JUNO Event Data Model (EDM). The ROOT-based
persistent data objects from all stages are also defined
and controlled by the EDM. Therefore, the EDM is a
critical component for offline data processing and physics
analysis.

2 Requirements

2.1 Inverse beta decay reaction

In JUNO, electron anti-neutrino signals are detected
via the inverse beta decay (IBD) reaction [1]:

νe + p → e+ + n (1)

As shown in Fig. 4 in the CD, an anti-electron neu-
trino interacts with a proton in the LS, producing a
positron and a neutron. The positron promptly anni-
hilates, producing two 511 keV gammas within a few ns.
The neutron, however, is captured by free protons with
a lifetime of ∼200 µs, producing a delayed signal of a 2.2
MeV gamma. The time correlated prompt-delayed sig-
nals are triggered separately by the detector and are read
out as separate events. Also, natural radioactive decays

and cosmic muon induced processes yield backgrounds
that potentially mix with or mimic the IBD signals.

Fig. 4. Inverse beta decay reaction of the anti-
electron neutrino.

2.2 Specific requirements of JUNO

The IBD reaction is the most important detection
channel for the study of reactor neutrinos, supernova
burst neutrinos, geoneutrinos, etc. Discrimination of the
IBD signals from real data requires time coincidence and
vertex correlation as well as an energy selection and a
muon veto. However, for the MC data, a correlation
mechanism of the simulated prompt-delayed signals can
be used to make the process much easier.

When producing the MC simulation data, we first
generate the IBD events and all kinds of backgrounds
such as muon-induced backgrounds and radioactivity
backgrounds separately at the detector simulation stage.
Then at the electronics simulation stage, we split the IBD
events and mix the backgrounds together according to
their nominal event rates. This process requires a mech-
anism to correlate the prompt-delayed signals among the
backgrounds to facilitate convenient analysis of the MC
IBD event candidates. Moreover, several other detection
channels [2] in JUNO also lead to prompt-delayed coin-
cident signals, such as the charged-current interactions
on 12C of supernova burst neutrinos and the decay of
protons. They will also benefit from such a correlation
mechanism.

In order to study the detection efficiency and evaluate
the systematic uncertainty during physics analysis, the
analysers may also need the event information of multi-
ple processing stages (i.e. the reconstructed data and the
MC truth of one event). Therefore, the EDM also needs
to support the correlation between processing stages.

In addition, the large data volumes from ∼18 000
PMTs necessitate the EDM to adopt efficient data ac-
cess and storage techniques.

3 Design

3.1 Design schema

The JUNO EDM classes are implemented based on
ROOT TObjects in order to benefit from features such as

066201-2



Chinese Physics C Vol. 41, No. 6 (2017) 066201

Fig. 5. Design schema of JUNO EDM.

schema evolution, I/O streamers and runtime type iden-
tification. Also, such a design is able to provide a familiar
working environment for JUNO analysers, since ROOT
is widely used in high energy physics experiments.

Figure 5 shows the design schema of the JUNO EDM.
Separate metadata header objects and event object pairs
are used at each data processing stage in order to pro-
vide efficient data access tailored to the requirements of
the users. The small metadata header objects derived
from the HeaderObject contain only summary informa-
tion such as tags, whereas the EventObject subclass in-
stances contain the full infomation. Using header tags
allows efficient event filtering by avoiding the loading of
event data that is not required by users.

The association between header object instances and
their paired event object instances is implemented via
Smart Ref [6], which provides control of the loading of
the full data, as explained in Section 4.2.

3.2 Correlation mechanism

Besides the association between the header and event
objects, another two kinds of event data correlation are
implemented via an EvtNavigator class, to facilitate cor-
related analysis between processing stages as well as the
analysis of simulated IBD events. As shown in Fig. 6,
an EvtNavigator instance keeps a list of SmartRef point-
ers that associate the event information from all the
processing stages, such as Simulation, Reconstruction,
etc. and allows itself to act as an index to the event
data. For example, the EvtNavigator allows users to
retrieve MC truth information corresponding to the re-
constructed events. In addition to navigating within a
single event, the EvtNavigator also allows navigation to

prior and subsequent events.

Fig. 6. Schematic diagram of EvtNavigator.

EvtNavigator is also capable of correlating the sim-
ulated IBD signals, since the simulated IBD MC data
is represented by single GenEvent and SimEvent ob-
jects at the generator and detector simulation stages, re-
spectively. At the electronics simulation stage, however,
the simulated readouts are split into separate prompt-
delayed ElecEvent objects. However, as the associations
among multiple events and processing stages are retained
by the EvtNavigator, and a path based interface is pro-
vided to follow the associations, users are able to trace
the full processing history through the various stages and
thus identify the IBD signal pairs. As illustrated by the
dashed line in Fig. 6, navigations from any processing
stage to the corresponding GenEvent are implemented.

4 Implementation

The simple association between the header objects
and the event objects, as well as the correlation between
processing stages, require flexible object referencing that
survives even when the objects are persisted into multi-
ple ROOT files.

066201-3



Chinese Physics C Vol. 41, No. 6 (2017) 066201

4.1 Smart reference

A smart pointer class named SmartRef has been de-
veloped to provide persistable object referencing. The
design of the SmartRef shown in Fig. 7 is based on the
ROOT TRef [7] but with some new features such as lazy
loading and cross-file object referencing.

Fig. 7. Structure of the SmartRef.

Every ROOT process creates at least one TProcessID
instance which uniquely identifies the process in space
and time by using a globally unique identifier TUUID
[8] instance. Also, the TProcessID instance maintains a
pointer array which holds the EventObjects referenced
by SmartRefs.

When a SmartRef and a referenced EventObject are
associated, a unique ID is assigned to both SmartRef
and the referenced object, then the referenced object
pointer is stored within the array maintained by the cur-
rent TProcessID instance. For example, this happens
when an EDM header object is associated with the paired
event objects.

As shown in Fig. 8, the same unique ID held within
the SmartRef and the referenced EventObject, and the
uniqueness of the TUUID, enable the association to be
maintained both in memory and when being persisted
to ROOT files. When a SmartRef or a referenced ob-
ject is written out to a ROOT file, the corresponding
TProcessID is also saved. When a ROOT file is opened
in the input process, the TProcessID in the input file is
loaded into memory, and the pointer array handled by
this TProcessID is created again. After a referenced ob-
ject is read in from the input file, it will accordingly be
put into that pointer array to recover the association.

4.2 Lazy loading mechanism

The SmartRef supports a lazy loading feature com-
pared to the ROOT TRef. Lazy loading means that the

referenced object of SmartRef is not loaded from the in-
put file until it is explicitly requested by the user, avoid-
ing the performance overhead of data input until the data
is actually needed.

Fig. 8. Working principle of the SmartRef.

The lazy loading mechanism is implemented within
SmartRef, together with the ROOT I/O systems. Dur-
ing the output process, for each TTree holding the ref-
erenced EDM objects, a table named TablePerTree is
created correspondingly. It includes the unique ID and
branch ID of each referenced object saved in this TTree,
which are used for reading the data back from ROOT
files. The TablePerTrees are automatically built by the
output service, and before the output file is closed, the
current TProcessID instance and all TablePerTrees are
written as metadata together with the data TTrees, as
shown in Fig. 9.

Fig. 9. Schematic diagram of the ROOT file structure.

During the initialization of the ROOT input system,
a singleton module named InputElementKeeper is cre-
ated, that manages all input files and TTrees. It first
scans all the input files quickly and reads their file meta-
data to construct a mapping between the TProcessID
instances and the input files. When users attempt to ac-
cess a referenced object via a SmartRef, it first searches
the memory, and if the referenced object is not already
loaded, the SmartRef queries the InputElementKeeper
with its TProcessID to find the appropriate file. If the

066201-4



Chinese Physics C Vol. 41, No. 6 (2017) 066201

file is found, the SmartRef uses its unique ID to locate the
position of the referenced object from the TablePerTrees,
and loads it from this ROOT file.

5 Performance

Good performance, including space and I/O effi-
ciency, is essential for the offline software system. A
series of tests have been performed to measure the perfor-
mance. To avoid interference from unrelated processes,
the tests are executed on a single blade server (Intel(R)
Xeon(R) CPU E5-2620 0 @ 2.00GHz) with all unneces-
sary processes suspended.

5.1 Space consumption

To quantify the size of the extra data for the lazy
loading mechanism, a set of MC data samples was pro-
duced with the JUNO offline software, containing from
2500 to 50000 events. The samples were saved in two
formats: plain TTree and TTree with SmartRef and the
required metadata. Figure 10 shows the comparison of
the file sizes of the two formats. With the same TFile
compression level, SmartRef and required metadata add
less that 1% to the file size.

Fig. 10. File size comparison of the plain TTree
format and the persistent EDM format.

5.2 I/O efficiency

The input performance with and without SmartRef
lazy loading was measured by comparing file loading
times for MC samples containing from 2500 to 50000
events. Figure 11 shows the relative time difference be-
tween normal loading and lazy loading for four different
selection fractions. To avoid statistical fluctuations, an
average of 100 measurements is used for each plotted
point.

The loading times are found to scale linearly with
the file size for all selections. The loading times without
any selection are represented by the triangles in the plot,

which show that the overheads caused by SmartRef and
metadata are very small (less than 5%). The crosses,
squares and circles represent the relative difference of
loading events with a random selection ratio of 50%,
30% and 10% of the total respectively. The results show
that the lazy loading mechanism provides an efficiency
increase factor of about 30%, 67% and 110%, respec-
tively.

Fig. 11. (color online) Comparison of data sample
loading times.

5.3 Discussion

The performance measurements show that lazy load-
ing of SmartRef can provide a significant improvement
on event loading time and costs only a minor increase
of disk space for the necessary metadata. The improve-
ment factor depends on the actual events accessed and
the relative size of the Header and Event objects. JUNO
analyses will typically require small selection fractions
due to the high backgrounds compared to the neutrino
signals, so lazy loading is foreseen to provide substantial
performance improvements for most users.

6 Conclusion and prospects

The EDM introduced in this paper plays a central
role in the JUNO offline software. It describes the event
data entities through all processing stages for both sim-
ulated and collected data and provides persistency via
the I/O system. To facilitate convenient analysis of sim-
ulated IBD events as well as the navigation between pro-
cessing stages, the EvtNavigator and SmartRef classes
have been developed. Based on the SmartRef, a lazy
loading mechanism has been implemented to improve
the performance of data I/O. The performance measure-
ments show that the design of the EDM and the lazy
loading mechanism provide substantial performance im-
provements for event data loading.

Based on the JUNO EDM, the MC data production
chain has been developed, including the detector and

066201-5



Chinese Physics C Vol. 41, No. 6 (2017) 066201

electronics simulation, the waveform reconstruction, the
vertex and track reconstruction, etc.

The primary feature of this EDM design is the three
types of event data correlation mechanisms based on the
SmartRef. The correlation of prompt-delayed coincident
signals is implemented for the special needs of neutrino
experiments. However, the event navigation and asso-
ciation between paired header and event objects can be
applied in both neutrino and other high energy physics
experiments. The LHAASO and BESIII experiments

have both applied our EDM design. For BESIII, we re-
designed the EDM of reconstructed data based on the
SmartRef, and the performance of the physics analysis
has been greatly improved as a result [9]. This shows
that such a design pattern for the EDM has great ap-
plication prospects in high energy physics experiments,
especially in future non-accelerator experiments, such as
reactor neutrino, dark matter and double beta decay ex-
periments.

References

1 Z. Djurcic et al, (JUNO Collaboration), arXiv: 1508. 07166
2 F. P. An et al, (JUNO Collaboration), J. Phys. G: Nucl. Part.

Phys., 43: 030401 (2016)
3 J. H. Zou et al, J. Phys. Conf. Ser., 664(7): 072053 (2015)
4 R. Brun, F. Rademakers, Nucl. Inst. Meth. in Phys. Res. A,

389: 81–86 (1997)

5 S. Agostinelli et al, (GEANT4 Collaboration), Nucl. Instrum.
Methods A, 506: 250–303 (2003)

6 T. Li, X. T. Huang§J. Phys. Conf. Ser., 762(1): 012001 (2016)
7 https://root.cern.ch/doc/master/classTRef.html retrieved

26th July 2016
8 https://root.cern.ch/doc/master/classTUUID.html retrieved

12th December 2016
9 X. Xia, T. Li, X. T. Huang et al, Chin. Phys. C, to be published

066201-6


