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Massive self-duality solution associated with invariant one-forms
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Abstract: A massive self-duality solution associated with invariant 1-forms is presented. At the zero mass limit the

massive self-dual theory of the SO(3) gauge group on 4 dimensions cannot be reduced to that of massless self-duality.

In such a case the self-dual connection turns to the flat connection and one cannot obtain a massless theory in such

an approach.
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1 Introduction

Massive [1] and massless [2] Euclidean Yang-Mills
fields [3] have been handled by some authors in the sense
of Feynman diagrams [4] in the quantum field theories.
In their results, a massless gauge theory cannot be ob-
tained as a limit case of a finite massive theory [5]. How-
ever, the self-duality of massive Yang-Mills gauge fields is
not extensively discussed today. General opinion about
self-dual Yang-Mills fields [6], [7] is that they are non-
trivial solutions to the vacuum Yang-Mills equation. In
such a case, the masses of the gauge fields mostly seem
unimportant.

However, together with the investigation of the sym-
metry breaking mechanism [8], [9], [10], in which the
gauge bosons gain mass, the gauge group SU(2) of the
weak nuclear force becomes important for massive gauge
fields. We know that this group has covering groups
such as SO(4)=SU(2)×SU(2) and has an isomorphism
SU(2)∼= SO(3). Therefore, since there exist two iden-
tical quotients SO(4)

SU(2)
= SO(4)

SO(3)
, we can handle a self-dual

connection A∈Λ1(so(3),R4) together with its curvature
F ∈Λ2(so(3),R4). Thus, in this paper we purpose a self-
duality solution to a massive gauge theory of the gauge
group SO(3) on 4 dimensions.

2 Self-duality

Let P be a principal G bundle of a Lie group G with
Lie algebra g on a 4-dimensional Euclidean manifold M
with local coordinates {xµ} ∈ R

4. We show by Λr(g)
the bundle of g-valued r-forms. Let ∇ : Λ0(P )→Λ1(P )
be a connection on this bundle together with covariant
derivative ∇=d+A, where A=(AA

B)µdxµ=AA
B∈Λ1(g) is

a connection 1-form. The curvature of this connection is

F A
B =dAA

B+AA
C∧AC

B =(F A
B )µνdxµ∧dxν∈Λ2(g). (1)

In the sense of Hodge duality we write the self-duality
equations for the curvature of a SO(3)-connection on 4
dimensions as follows:

(F 1
2 )12=(F 1

2 )34=q1, (2)

(F 2
3 )13=−(F 2

3 )24=q2, (3)

(F 1
3 )14=(F A

B )23=q3, (4)

where q1,q2,q3∈C∞(M). The components of the curva-
ture matrix become

F 1
2 = q1Iµνdxµ∧dxν =q1(dx1∧dx2+dx3∧dx4), (5)

F 2
3 = q2Jµνdxµ∧dxν =q2(dx1∧dx3−dx2∧dx4), (6)

F 1
3 = q3Kµνdxµ∧dxν =q3(dx1∧dx4+dx2∧dx3). (7)

where

I=











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











,J=











0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0











,

K=











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











. (8)

It is easily seen that

L2
i =−I4×4, LiLj =−LjLi, i,j=1,2,3, (9)

where Li = I,J,K. This means that the triplet (I,J,K)
presents a quaternionic structure on R

4. We know al-
ready that some solutions to the SU(2) Yang-Mills the-

Received 31 August 2017, Revised 7 November 2017, Published online 6 December 2017

1) E-mail: sener ibrahim@hotmail.com
©2018 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

013107-1



Chinese Physics C Vol. 42, No. 1 (2018) 013107

ory have quaternionic structures [11] and that the in-
stanton equation on 4 dimensions presents a quaternion
valued connection in the sense of division algebras [12].

The most classical self-dual potential (or connection
in the geometrical sense) concepts in the Yang-Mills the-
ories are the BPST [6] and ’t Hooft [7] solutions on 4
dimensions of the Euclidean case. We choose an so(N)-
valued connection 1-form as follows

AA
B =h(r)

xα

r
(εA

B)µαdxµ=h(r)(ωA
B)µdxµ, (10)

where h ∈ C∞(M) is a smooth scalar, ωA
B = (g−1dg)A

B

is the Maurer-Cartan 1-form for g ∈ SO(N), and we
choose an auxiliary constant tensor (εA

B)µα which is skew-
symmetric with respect to each of the indices A and B
of the group and µ and ν of coordinates. The tensorial
properties of the coordinates with respect to the metric
tensor ηµν on the base manifold are

r2=ηµνx
µxν , xµ=ηµνx

ν , ηµσησν =δµ
ν . (11)

Therefore, the curvature of this connection is written as

(F A
B )µν = −2

r
(h−h2)(εA

B)µν+
1

r2
(h�+2r(h−h2))

×
[

(εA
B)ναxµ−(εA

B)µαxν

]

xα, (12)

where h� = ∂h/∂r. In order to preserve the tensorial
structure of the curvature it must be

h�+2r(h−h2)=0. (13)

This indicates that the connection is self-dual like the
BPST instanton [6]. The solution to this equation is as
follows:

h(r)=
r2

r2+r2
0

, 06r06r. (14)

Then the self-dual connection is obtained such that

(ωA
B)µ=

1

2

(r2+r2
0)

2

r2
0r2

(F A
B )µνxν , (15)

(AA
B)µ=h(r)(ωA

B)µ=
1

2

(r2+r2
0)

r2
0

(F A
B )µνxν . (16)

Hence, considering the components of the curvature in
Eqs. (5), (6) and (7), the components of our self dual
connection are obtained as

A1
2 =

q1

2

(r2+r2
0)

r2
0

xνIµνdxµ

=
q1

2

(r2+r2
0)

r2
0

(x2dx1−x1dx2+x4dx3−x3dx4), (17)

A2
3 =

q2

2

(r2+r2
0)

r2
0

xνJµνdxµ

=
q2

2

(r2+r2
0)

r2
0

(x3dx1−x4dx2−x1dx3+x2dx4), (18)

A1
3 =

q3

2

(r2+r2
0)

r2
0

xνKµνdxµ

=
q3

2

(r2+r2
0)

r2
0

(x4dx1+x3dx2−x2dx3−x1dx4), (19)

Therefore, from Eq. (15) we have the following gauge
invariant quadratic terms

tr‖F A
B ‖2 = −2(q2

1+q2
2+q2

3)dVol (20)

tr‖ωA
B‖2 =

1

4r4
0h2

tr‖F A
B ‖2. (21)

3 Massive theory

It is well known that to add a mass term into a gauge
invariant Lagrangian is not easy, because the mass term
tries to break the gauge invariance. However, the first at-
tempt was the Proca action [13], which can be considered
as a massive Abelian action. For a massive non-Abelian
gauge theory, the mass term µ of the gauge potential, or
connection 1-form A is added into the Lagrangian by an
invariant term such that µ2A∧∗A, similar to the Higgs
mechanism [8]. Due to this mass term the gauge fields are
acquired by a (spontaneous) symmetry breaking mecha-
nism [14].

The Euclidean massive Yang-Mills theory is non-
renormalizable, so it cannot be interpreted as a correct
quantum field model to describe physical interactions,
but the spontaneous symmetry breaking mechanism pro-
vides an adequate way to reach a renormalizable massive
Yang-Mills theory. In contrast to this method, we intend
to find a non-Abelian self-duality solution to this theory
without symmetry breaking by adding a mass term to
the Yang-Mills action after modifying the connection.

Any connection on a fiber bundle transforms as in-
homogeneous under a local gauge transformation g∈G,
so that A′=g−1Ag+g−1dg, where the term violating the
homogeneity is the Maurer-Cartan form

ω=g−1dg∈Λ1(g) (22)

and it satisfies the Maurer-Cartan equation

dω+ω∧ω=0. (23)

In contrast to the connection, its curvature transforms
as homogenous, that is F → g−1Fg, and it presents a
gauge invariance quadratic term, i.e. F∧∗F . The differ-
ence of two connections on a bundle is a tensor. There-
fore, if we choose two connections on the same principal
G-bundle, for example if A is any connection and the
Maurer-Cartan 1-form ω of the group G is another, then
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we write
$=A−ω, (24)

and so this 1-form has a homogeneous transformation
rule under the local group transformation

$→g−1$g, g∈G. (25)

Consequently the quadratic term tr‖$‖2 becomes a
gauge invariance. Therefore the action integral for a
massive Yang-Mills theory without symmetry breaking
can be written as follows

|Sµ6=0|=
∫

M

{

gtr‖F A
B ‖2+µ2tr‖$A

B‖2
}

, (26)

where µ is the mass of the gauge field, g is the coupling
constant, tr is the trace operator and ‖F A

B ‖2=F A
C ∧∗F C

B .
Also, | | means that the metric signature of the base man-
ifold is not considered and the action integral is positively
defined in every case. This action gives the following field
equation

∇∗F A
B =µ2$A

B . (27)

When the connection is self-dual, i.e ∗F = F , then we
have ∇∗F A

B =0 because of the Bianchi identity ∇F A
B =0.

This case tells us that the gauge field is massless, µ=0, or
a pure gauge (flat connection) A=ω=g−1dg. However,
we consider a gauge field which is massive and self-dual.
On the other hand one can write

tr‖$A
B‖2=(h−1)2tr‖ωA

B‖2=
1

4h2
tr‖F A

B ‖2. (28)

Thus the action integral (26) for the massive self dual
gauge field becomes

|Sµ6=0|=
∫

M

{(

g+
µ2

4h2

)

tr‖F A
B ‖2

}

. (29)

This action integral presents the field equation
∇(h∗F A

B )=dh∧F A
B =0 with respect to the self-dual con-

nection. Of course this equation cannot be interpreted
as a field equation of a massive gauge field.

4 Conclusion

In order to get a field equation for the massive self
dual gauge field, the action integral (29) is rewritten as

|Sµ6=0|=2

∫

M

(q2
1+q2

2+q2
3)

(

g+
µ2

4h2

)

dV ol. (30)

From the Bianchi identity dF +A∧F −F ∧A = 0 for
the connection A ∈ Λ1(so(3)R4) and its curvature F ∈
Λ2(so(3),R4), one gets the following equations:

q2q3

q�

1

=
q1q3

q�

2

=
q1q2

q�

3

=λ, (31)

q2
1+q2

2+q2
3=

1

2
(Q2−2λQ�), (32)

where λ∈C∞(M) and

Q=q1+q2+q3. (33)

Therefore, the dynamical variables for the gauge invari-
ant action integral (30) of the massive self-dual gauge
field become (Q,Q�).

In order to compare the massive self-dual gauge field
with the massless one, we present an action integral for
the massless self-dual gauge field as follows

|Sµ=0|=
∫

M

gtr‖F A
B ‖2=2g

∫

M

(q2
1+q2

2+q2
3)dV ol. (34)

Therefore the integrals of massive and massless gauge
fields are rewritten with respect to the new dynamical
variables (Q,Q�) such that

|S(Q,Q�)µ6=0| =

∫

M

(Q2−2λQ�)

(

g+
µ2

4h2

)

fdr, (35)

|S(Q,Q�)µ=0| =

∫

M

(Q2−2λQ�)fdr, (36)

where f ∈ C∞(M) and dV ol = f(r)dr. The field equa-
tions for the massive and massless self-dual gauge fields,
respectively, are

Qf+
µ2

4g

{

(Q+gλ�)
f

h2
+λ

(

f

h2

)

�

}

= 0, (37)

Qf+(λf)� = 0. (38)

Then the term Q for the massive case is

Qmassive=−µ2

4

(gλ+ln(f/h2))̇

g+
µ2

4h2

(39)

From Eq. (31), q1,q2,q3 are found as follows

q2=
√

a−bq1, q3=
√

bq1, Q=αq1, (40)

where a and b are constants and

α=1+
√

b+
√

a−b. (41)

On the other hand, from Eq. (32) one gets

q�

1=
3β

2λ
, (42)

where

β=(1+a−b)−2
(√

b+
√

a−b+
√

b(a−b
)

. (43)

Considering Eq. (39) together with Eq. (14), one finds
the following solution

q1=−3β

2g

{

4

[(

g

µ2
+1

)

r−r2
0

r
+C

]

+ln

(

(r2+r2
0)f

r2

)}

,

(44)
where C is a constant. Hence, the components of the
connection given as the self-duality solution in Eqs. (17,
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18, 19) are re-obtained as the massive self-duality solu-
tion with respect to Eq. (44) such that

A1
2 =

q1

2

(r2+r2
0)

r2
0

xνIµνdxµ, (45)

A2
3 =

√
b
q1

2

(r2+r2
0)

r2
0

xνJµνdxµ, (46)

A1
3 =

√
a−b

q1

2

(r2+r2
0)

r2
0

xνKµνdxµ. (47)

It is easily seen that at the limit µ→0 the field equa-
tion (37) of the massive self-duality case is not reduced to

the field equation (38) of the massless self-duality case.
Thus, if µ→0, then Q→0, that is the curvature tends
to vanish. This means that at the limit µ→0 a massive
self-dual SO(3)-connection on 4 dimensions turns into
the flat connection. However, the opposite of this case
is not necessarily true. In addition, the zero limit of the
mass term in Eq. (44) does not give a massless case.
Therefore, we cannot obtain a massless theory of self-
dual gauge fields at such a limit. Our solution is a non-
trivial self-duality solution to massive Euclidean Yang-
Mills theory without spontaneous symmetry breaking.
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