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New-type internal target for structural ion stripping
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Abstract: The search is now on for new materials that can be used for ionic stripping. Materials that maximize

the stripping of the structural ion are important for conducting experiments with quark-gluon plasma. Although this

paper is a theoretical study, it offers practical applications, in heavy-ion accelerators, of the new effect of collision

multiplicity with high-energy ions interacting with polyatomic targets. It is shown that internal nanostructured

targets in which the collision multiplicity effect is manifested can more efficiently strip out structural ions compared

to standard internal targets for stripping. A target consisting of oriented nano-tubes with the C240 chirality (10,0)

is considered as an example. A comparison with the stripping process on a carbon target with the same number of

misaligned atoms in a unit of volume C is provided.
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1 Introduction

The current surge of interest in high-energy collisions
involving highly charged ions is associated with the de-
velopment and application of modern heavy-ion acceler-
ators. The effect of collision multiplicity - which con-
tributes significantly to the cross-sections of non-elastic
processes at relative collision velocities that greatly ex-
ceed the characteristic atomic velocity - may relate to
new and interesting effects that follow high-energy ion
collisions. The effect was first predicted in theoretical
studies in Refs. [1–3]; the most convincing arguments in
pure physics that are used to study the effect of collision
multiplicity are based upon a consideration of collisions
with nanotubes oriented along the ion velocity. It should
be stressed that there is still no experimental proof of the
effect; such proof would be technically difficult and would
require a heavy-ion accelerator. However, the effect of
these collisions is of interest not only because of the fun-
damental physics involved, but also because potentially
they have considerable practical application. Hence in
this paper we put forward a model of a nanoscale struc-
ture of internal targets in accelerators, that could not
only increase the degree of ion-beam stripping, but also
serve as direct experimental proof of an exceptionally in-
teresting effect of collision multiplicity. Moreover, from a
theoretical standpoint at least, we consider that our sim-
ple qualitative explanation provides a strong basis for the
existence of such an effect.

In general, solid targets are used in most experiments

associated with fast-ion beam stripping. The choice of
such targets is fully justified because the stripping pro-
cess is more efficient in them than in gas targets [4–6].
To improve stripping, the gas density of gas targets must
be increased. In contrast, when working with solid tar-
gets, one is able to simply choose the target with the
best properties for stripping. There is a current require-
ment for the maximum stripping of a structured heavy
ion for experiments with quark-gluon plasma and for
other heavy-ion accelerators, for example, for the NICA
Project (Dubna, Russia) [7], RHIC (USA), GSI (Darm-
stadt, Germany) and LHC (Switzerland, France). Struc-
tured heavy-ion stripping is more significant at v>> 1,
where v is the ion velocity in atomic units (used from
here on)). Even at the ultra-relativistic velocities of
a heavy ion its stripping cannot be complete. Various
semi-empirical expressions are often used for the assess-
ment of structured ion stripping down to some average
(equilibrium) charge Z=

∑

i
iFi, where Fi is the relative

amount of ions with the charge i in the equilibrium distri-
bution. For example, the formula obtained by Northclife
[8] is often used:

Z=Z0

(

1−e−v/Z
2/3

0

)

, (1)

where Z0 is the charge of a completely stripped ion. Ex-
pression (1) is often modified by the introduction of var-
ious parameters determined on the basis of best agree-
ment between theoretical and experimental approaches.
We should mention that modifying expression (1) does
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not change it much, but it does improve its accuracy,
expressed by several percent of the experimental value.
Apart from expression (1) and its modifications other ex-
pressions are used, also obtained semi-empirically [9, 10].

This paper shows that the charge composition of an
ion beam can be significantly changed if targets show-
ing the effect of collision multiplicity are used, since this
effect increases [2, 3] the ionization cross-sections due
to multiple collisions. In fact, the equilibrium charge
composition in the ion beam is determined by the ion-
ization and recharge cross-sections [11, 12]. If we select
a material that can significantly increase the ionization
cross-section at the unchanged recharge cross-section,
this will result in significantly better stripping. How col-
lision multiplicity can help to significantly improve the
ion-beam stripping can be qualitatively explained [1–3].
The easiest way to illustrate the contribution of collision
multiplicity is to consider the example of the collision of
highly charged structured ions with a two-atom molecule
(consisting of two identical atoms). An ion moving at rel-
ativistic velocity travels the distance between the atoms
of the molecule in a time expressed as τc, which is of
the order of 10−19 seconds or less. It is evident that this
time is much shorter than the mean excited-state life-
time τr of the ion (projectile) relative to radiational and
Auger decays; therefore, these processes at the sequen-
tial collision of the structured ion with the atoms of the
molecules cannot be taken into account. Let us assume
that τc is so small that we can neglect the evolution of
the electron states of the ion (i.e. τc << τe, where τe

is the characteristic time for the ion electrons) during
the intervals between two sequential collisions. Let the
projectile electrons, at the collision with two centers of
the molecule, acquire momentum q1 from the first center
and momentum q2 from the second center; the total mo-
mentum then acquired by the ion electrons is q=q1+q2.
When the molecule axis is horizontal relative to the ion
velocity, the projectile collides with the two atoms of the
molecule, q1 =q2, and therefore q2 =q2

|| =(2q1)
2. When

the molecule axis is perpendicular, the ion moving along
a straight trajectory collides either with one atom of the
molecule, or with the other atom, and then either q1 6=0
and q2 = 0, or q1 = 0 and q2 6= 0. Thus, at the parallel
orientation, the momentum acquired by the ion electrons
is twice as large as that for a perpendicular orientation.
The probability of the ion ionization is proportional to
the squared aggregate momentum q2=(q1+q2)

2, acquired
at the collision, so that the probability of the ion electron
shells for the parallel orientation of the molecule is four
times as large as the ionization probability for the per-
pendicular orientation. It is clear that similar arguments
apply to the collisions of sufficiently fast structured ions
with molecules consisting of more than two atoms, or
with more complicated targets (e.g. with nanotubes).

Strictly speaking, during the calculations of the ioniza-
tion processes the total (not only as q2) dependence of
nonelastic form factors of the ion electrons on the ac-
quired momentum should be taken into account and in-
tegrated over the impact parameters. Evidently, this al-
ters the presented qualitative estimations, but the effect
of target orientation on the ion ionization cross-section
remains significant and can result [1, 3] in an increase of
several times in the projectile ionization cross-section. In
this paper we will consider the equilibrium distribution
of the charge content of the ion beam after the latter has
passed through the target.

2 Main part

For the calculation of the cross-section of the rela-
tivistic ion ionization by the field of a neutral multi-
electron atom, let us use the eikonal formula (13) from
Ref. [13] (also see Ref. [14]). The amplitude of the prob-
ability of ion electron transition from state |φ0 > with
energy ε0 to state |φn> with energy εn is [13]

an0 =
〈

φn |(1−αz)e
i(εn−ε0)z/c

×exp

(

−i
2Za

c

3
∑

i=1

AiK0(κi|b−r⊥|)
)

|φ0

〉

, (2)

where Kν(z) is the Macdonald function, b is the impact
parameter, r⊥ is the ion electron coordinate projection
on the plane of the impact parameter, the ion velocity is
along the z axis, and αz is the z - component of the Dirac
matrix α= (αx,αy,αz). In Eq. (2) the eikonal phase is
calculated in the Dirac-Hartree-Fock-Slater model [15],
according to which the potential created by a stationary
neutral atom at the origin of the coordinates is

ϕ′(r)=
Za

|r|

3
∑

i=1

Aiexp(−κi|r|), (3)

where Za is the atom nuclear charge, Ai and κi are the
constants tabulated in Ref. [15] for all atom elements
with Za=1,2,...,92, and r are the coordinates of the ob-
servation point. Note, that the small Za/c corresponds
to the applicability of the perturbation theory, and it is
easy to see that in this case Eq. (2) coincides with the
ultrarelativistic limit of the known formula for the am-
plitude in the first order of the perturbation theory over
the atom field given in Ref. [14]. However, if we consider
a fast ion collision with a polyatomic system, than the
contribution to the eikonal phase in Eq. (2) can be not
small even at small Za/c, and the use of the perturbation
theory will be incorrect. In Eq. (2) the field of appli-
cation r⊥ is limited by the transverse size of the highly
charged ion, that is significantly smaller than one, while
the transverse size of the neutral atom is of the order
of one. Therefore, the mean atom field can be considered
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to be homogeneous on the ion sizes, which corresponds
to the decomposition into small r⊥/b using the formula

K0(κ|b−r⊥|)≈K0(κb)+K1(κb)
κbr⊥

b
. (4)

The term K0(κb), as the one that does not cause electron
transitions, can be omitted, and in the result Eq. (2) at
the orthogonal |0> and |n> will have the form

an0=〈φn |(1−αz)e
i(εn−ε0)z/ce−iqr |φ0〉, (5)

where the vector q has the sense of the momentum ac-
quired by the ion electron at its collision with the atoms
and is

q=
2Za

v

3
∑

i=1

κiAiK1(κib)
b

b
. (6)

In the case of a collision with a polyatomic target, the
potential ϕ is the sum of the potentials from individual
atoms included in the target:

ϕ=

N
∑

m=1

ϕm, (7)

where ϕm is the potential created by the m-th atom of
the target; m=1,2,...,N , whereN is the number of atoms
in the target. In the rest frame of the ion (7) the potential
turns out to be dependent on the time and impacts the
ion electrons during some period

√

1−v2/c2L/c (where
L is the characteristic size of the target). Let us assume
that this time is significantly shorter than the character-
istic periods of time for the ion electrons. Than the ion
electrons perceive the collisions with the target atoms as
instantaneous and simultaneous. Accordingly, in Eq. (5)
the vector q is the sum of the momenta transmitted by
the ion electrons at the collision with the atoms of the
target with N atoms, and is

q=

N
∑

m=1

qm=
2Za

v

N
∑

m=1

3
∑

i=1

κiAiK1(κibm)
bm

bm

, (8)

where bm is the impact parameter relative to the m-
th atom. It is evident that if the target geometry is
fixed, all bm are unambiguously connected with an im-
pact parameter b calculated from some atom of the tar-
get. Thus, at the ion collision with the N -atom target,
the ion electron excitation amplitude should be calcu-
lated over Eq. (5), where q is expressed by Eq. (8). At
N=1 in Eq. (8), Eq. (5) describes a collision with a one-
atom target. In all cases the corresponding cross-section
is calculated over the formula

σn0=

∫

|an0|2d2b. (9)

For the calculation of the recharge cross-sections we
will take into account the dominating channel only in the
case of high-charge ions moving at a relativistic velocity,
and use the Stobbe formula (see, e.g., Ref. [17]) for the

radiation recharge that describes these cross-sections for
the relativistic ions quite well [17]:

σ=3.273×10−4Zt

(

ξ3

1+ξ2

)2
e−4ξ×arctan(ξ−1)

1−e−2πξ
, (10)

where ξ=1/
√
η, η=Ekin/EK , with Ekin the kinetic en-

ergy of the target electron in the ion rest system; EK is
the energy of the electron bond on the ion K-shell, and
Zt is the number of target ions.

Let us choose a target where this effect shows itself
to the maximum. This can be a chain of atoms located
along the ion velocity vector - an oriented target. A
real system where such chains can be found, can be,
e.g., a nanotube. For the sake of argument, let us con-
sider a nanotube C240 with chirality (10,0), containing
20 such chains parallel to the nanotube main axis, with
each chain containing N = 12 carbon atoms. Then let
us consider the structured ion ionization cross-section at
the same nano-tube, with the assumption that the main
axis of the nanotube is parallel to the ion velocity vec-
tor. Let us consider high-charge structured ions with the
visible charge ZP significantly more than 1 (e.g., for the
gold ion Au76+, charge ZP = 76). Then, in the model
of the neutral atoms that comprise the target, the am-
plitude and the cross-section of the projectile electron
transition from state |0> to some other state |n> can
be found using Eqs. (5) and (9). As we assume that
the nanotube is strictly built-in along the ion velocity,
and since the size of the ion electron coat is much less
than the characteristic atomic size, we can assume that
the ion interacts with one chain of atoms only. There
are 20 such chains, so the calculation for ZP � 1 shall
be performed as follows. First, the cross-section for the
collision with one chain shall be found, then this result
shall be multiplied by 20 - the number of chains in the
nanotubes. Within one chain the momenta acquired at
the collision with each atom are the same and are, e.g.,

q1, so that in Eq. (8), q =
N
∑

m=1

qm =Nq1. It is easy to

see that this is the momentum q =Nq1 with which the
amplitude (5) of non-elastic ion electron transitions at
the collision with a chain of atoms shall be calculated.
In the calculation using Eq. (9) we shall assume that in
Eq. (8) all impact parameters bm are equal to each other
and in Eq. (9) b=b1. As for the recharge cross-section on
such a nanotube, its value is obtained by multiplication
of the recharge cross-section on one atom by the number
of atoms in the nanotube.

For the calculations of the equilibrium charge compo-
sition distribution in the ion beam Fi we use the known
equations and approaches [11, 12]:

∑

j6i,k>i

Fjσj,k=
∑

j>i,k6i

Fjσj,k ;
∑

i

Fi=1, (11)
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where σj,k is the process cross-section at which the ion
with the charge j turns into the ion with the charge k,
and i= 0,1,2,...,Z0. In the cases when we can neglect
the loss and the capture of two and more electrons (as
the cross-sections of these processes are much smaller
that the one-electron cross-sections), the first formula of
the expressions (11) gains the form Fiσi,i+1=Fi+1σi+1,i.
By solving the system of equations (11), accounting for
the one-electron losses and the captures, we find Fi. In
these equations we need to know only the ionization and
recharge cross-sections. It is difficult to determine, in
the case considered, which energy states the ion beam
ionization processes are initiated from, and which states
the capture processes go to. Therefore, we assume that
the radiation capture processes go to the K-shell of the
ion, and the ionization processes go not from the ex-
cited states of the ion, but from the main ones. We have
checked that such a supposition for standard targets (Cu
- copper, Al - aluminium, Au - gold), agrees well with
other papers [16] and with experiment [17]. The calcula-
tion can be simplified if we calculate only those Fi that
significantly differ from zero, with all the rest considered
zero (in our calculation Fi< 10−5). It is rather easy to
evaluate in such a case, e.g., for Au, Pb, U, that for
the number of ion electrons that participate in the sta-
tionary regime in the ionization and recharge processes,
the number with relativistic ion velocities will be not
more than three. E.g., for Au we find that F79,F78,F77

have not small values, but F76 < 10−5, so all the rest,
F75,F74,...,F1, can be disregarded.

3 Calculation of charge states of an ion

beam

Let us show the calculations of the equilibrium charge
states of an ion beam for two targets: 1) a target con-

sisting of nanotubes parallel to the projectile velocity
C240 with chirality (10.0) and the length of the chains
along the main axis L= 47 at. units; and 2) a target
consisting of chaotically located isolated atoms of car-
bon. In both cases the average densities of the carbon
atoms in the targets are the same, so that there are 240
atoms in the nanotube volume, for the first and the sec-
ond targets. We choose the following projectiles for these
targets: Au - gold, Pb - lead, and U - uranium. The en-
ergies of the projectiles are chosen so that the condition
√

1−v2/c2L/v � τe is fulfilled on one nanotube, and,
moreover, on an isolated atom. Therefore we choose
a kinetic energy suitable for all considered projectiles,
E= 1 TeV/n. The ion velocity is considered to be un-
changed. The calculation results that not zero (to more
exact, Fi>10−5) Fi are given in Tables 1–3 for the pro-
jectiles Au, Pb, U, respectively, and for the two targets
- nanotube C240 in the middle row, and carbon in the
bottom row. To compare and evaluate the effect stud-
ied, the tables show single-ionization cross sections (in
atomic units) for the hydrogen-like ion σH, the helium-
like ion σHe, and the lithium-like ion σLi. It can be seen
from the tables that the effect studied significantly in-
creases the ionization cross sections, which leads to an
increase in the stripping of the ion beam.

Now let us estimate the angle of the nanotube ori-
entation within which the effect of collision multiplicity
takes place. The calculation results Fi shown in the mid-
dle rows of the Tables will be designated as Fmax

i , and
those in the lower lines - as Fmin

i . The neutral atom field
disappears beyond the atom size, so, to collide with the
atom, the ion needs to get to a spot of size of the order of
the transversal size of the atom and radius of the order of
unity. We take into account that the size of the electron
coat of a high-charge projectile is much less than the size
of the neutral atom as the target component. Assuming

Table 1. The values of the function of charged states Fi and ionization cross sections for gold ion beams Au.

Au F76 F77 F78 F79 σLi 10−4a.u. σHe 10−4a.u. σH 10−4a.u.

C240 0 0.0004 0.0274 0.9722 1066 479 316

240C 0.0012 0.0230 0.1800 0.7959 157 69 40

Table 2. The values of the function of charged states Fi and ionization cross sections for lead ion beams Pb.

Pb F79 F80 F81 F82 σLi 10−4a.u. σHe 10−4a.u. σH 10−4a.u.

C240 0 0.0006 0.0330 0.9663 1000 449 296

240C 0.0021 0.0326 0.2086 0.7567 146 62 37

Table 3. The values of the function of charged states Fi and ionization cross sections for uranium ion beams U.

U F89 F90 F91 F92 σLi 10−4a.u. σHe 10−4a.u. σH 10−4a.u.

C240 0.00003 0.0019 0.0579 0.9402 818 367 241

240C 0.0103 0.0869 0.3025 0.6003 118 50 30
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that the nanotube length along the main axis is L, then
the projectile that collides with the first atom at the end
of the tube collides the last one (the twentieth atom along
the main axis), if its velocity direction is to the angular
interval 0<θ<θ0∼1/L. It is evident that the stripping
process depends on the density of the atom electrons,
which changes exponentially with the distance from the
atom nuclei. Thus, it is reasonable that the quantities Fi

change exponentially from Fmax
i to Fmin

i with the change
of the nanotube axis orientation angle 0<θ<θ0:

Fi(θ)=F
min
i +(Fmax

i −Fmin
i )e−θ/θ0 . (12)

The effect of the collision multiplicity reaches its max-
imum at θ= 0 and disappears at θ > θ0. Therefore, no
strict direction of the nanotubes along the ion beam ve-
locity vector is required for the effect of the collision mul-
tiplicity, which means that it is not necessary to direct
the ion beam strictly along the nanotube axis. This prop-
erty of the effect of collision multiplicity enables exper-
iments on real ion beams with angular dispersion much
less than the angle of orientation.

4 Discussion and conclusion

We show below that new targets (not yet realized)
could be created for stripping structured heavy ions, and
oriented nanotubes along the ion velocity vector could
serve as such targets. Structurally, such targets could be
realized in the form of nanotubes parallel to each other,
i.e. a “nanotube forest” consisting of nanotubes stacked
as “logs of firewood”, and more complex forms com-
prising several parallel “logs” of nanotubes stacked like
slices of bread. We should add that it is not necessary
to adjust the ends of the nanotubes so that they line up
with each other: in principle, it is sufficient to arbitrarily
“stack up” the target of nanotubes with the axis orien-
tation within the above-described angle θ0 ∼ 1/L. The
charge composition of the ion beam is determined not by
the ion beam interacting with one nanotube, but by it
interacting with a macroscopic system comprising such
nanotubes. The size of such a system would be deter-
mined by the fact that the charge composition of the ion
beam of such a macroscopic system would be that deter-
mined at equilibrium. Such an “equilibrium”, in which
the thickness of the target is measured in micrometers,
has already been achieved. Therefore, such targets can
be used in the same manner as standard targets, that is,
having a target thickness of tens to hundreds of microm-
eters, with the diameter limited to the target station
diameter. As mentioned above, the effect of the collision
multiplicity is revealed for high-energy collisions only,
while it is utterly unrealistic to accelerate low-charge
ions up to high velocities. Therefore, for example, at the
Large Hadron Collider, the process of complete lead-ion

stripping takes place in the region of the second target
station where the preliminarily stripped lead Pb(54+) ion
beams reach an energy of E = 5,9 GeV/n [18]. This
is the area where the target with the proposed design
could be located, although such targets have not been
developed yet. We would also like to mention that in our
calculation we have chosen the ion energy E=1 TeV/n
to meet the condition

√

1−v2/c2L/v�τe for all electron
ion shells (including internal shells) with high charge nu-
clei. For example, for internal electrons of the uranium
ion, τe ∼ 10−3a.u., but for E = 1 TeV/n, the collision
time with the nanotube τ ∼

√

1−v2/c2L/v ∼ 10−4a.u..
Such energies, and the targets that we have chosen in
the form of nanotubes, allow us to determine the effect
of collision multiplicity in the ‘pure form’, although the
effect of collision multiplicity would reveal itself at lower
energies, as well for the higher-energy shells where the
number of electrons for heavy ions is much greater than
for the internal shells. Therefore, it is absolutely clear at
a qualitative level that the effect of collision multiplicity
would be significant for stripping Pb(54+) with the energy
E = 5,9 GeV/n. We have also carried out calculations
for the energy E=5,9 GeV/n. At this energy, the charge
composition of the ion beam did not differ much from the
charge composition at an energy E=1 TeV/n, although
at E=5,9 GeV/n the evolution of the wave function for
the inner electron shells of the ion makes a small contri-
bution, which in combination with the collision multi-
plicity effect is extremely difficult to calculate. For this
reason we have presented a calculation for E=1 TeV/n,
in which only the collision multiplicity effect is present,
where the processes associated with the evolution of the
wave function of electrons in the ion, when colliding
with an entire nanosystem, can be neglected. However,
at the quantitative level, a more detailed description of
the stripping process which accounts for the effect of
multiplicity is needed, which is extremely difficult due
to the complexity of the processes considered. Strictly
speaking, we must determine the cross-sections of loss
and ion-electron capture for each excited ion state, but
the issue of the determination of these excited states re-
mains open. Therefore, for such an ion energy, where it
is impossible to neglect the evolution of the electron wave
function, it is necessary to develop a theory. Obviously,
such a theory must be nonperturbative. At present,
such processes can only be calculated numerically for a
limited number of target atoms. It is evident that, apart
from the nanotubes, there could be other targets where
the effect of collision multiplicity reveals itself. For ex-
ample, conventional monocrystals (e.g. Cu) can serve as
such targets, but the axes of the lattice in such targets
should be oriented over the ion-beam velocity vector.
The calculation of stripping, taking account of the effect
of collision multiplicity for monocrystals, is a difficult

017001-5



Chinese Physics C Vol. 42, No. 1 (2018) 017001

issue. These difficulties are associated with the fact that
in a monocrystal too many atoms can be built along one
line (as long as L), which will result in the violation of
the condition

√

1−v2/c2L/v�τe at large L, even within
one chain, and require the electron evolution in the ion
to be taken into account (which is extremely difficult).
However, in this case, the effect of collision multiplic-
ity would undoubtedly be apparent, and the stripping in
monocrystals could dominate even over the stripping in
nanotubes, but the calculations would become consider-
ably more complex. It should be added that we consider
the effect of stripping an ion beam is determined by the
effect of the multiplicity of the collision, which mani-
fests itself through the dimensions of the target where
θ0 ∼ 1/L. Therefore, if we choose a single crystal with
θ0<<1/L, then the ion will move along the channel (so-
called channeling), and the effect will change and require
additional study. In order for the effect to be effective
in monocrystals, the ion beam must be oriented so that

θ0>>ψ (ψ is the channeling angle), but not more than
θ0∼1/L. The channeling angle is usually very small for
heavy ions, so the effect considered by us could also be
used in single crystals, but for θ0 >> ψ. It should be
added that there have been many studies on the passage
of ions in channels, but the effect examined by us has
not been observed experimentally, although technically
it should be observable.

Notwithstanding the approximations in the calcu-
lations, and even at the qualitative level, the effect of
significant intensification of stripping on new targets is
evident. The considered effect for ion stripping is new
and has not yet been studied experimentally. In addi-
tion, targets for ionic stripping need not be restricted to
nanotubes - they could also be single crystals.

We thank the Corresponding Member of the Russian

Academy of Sciences Meshkov I. N. for discussion and

valuable comments.
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