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Self duality solution with a Higgs field

İbrahim Şener1)
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Abstract: The self-duality concept for the Higgs field is handled in the presence of contact geometry in 5 dimensions.

A non-trivial SO(3) Higgs field lives only on the fifth dimension of the contact manifold because of the contact

structure, while the SD Yang-Mills field lives in the 4-dimensional hyperplane of the contact manifold. The Higgs

and SD Yang-Mills fields do not interact with one another.
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1 Introduction

The self-duality (SD) solutions to the Yang-Mills
equations in four dimensions and higher are related to
the behavior of the Lie algebra-valued 1- and 2-forms
under the Hodge duality, interpreted as the gauge po-
tential and gauge field strength, respectively. These so-
lutions are well defined for even-dimensional manifolds,
and very well-known pioneering examples are given in
Refs. [1–3]. However, defining the SD concept in odd
dimensions is not a simple task.

A nice example in this context can be found in the
Baraglia and Hekmati’s paper on the moduli space for
instantons on 5-dimensional contact manifolds [4]. Be-
cause the geometry of a contact manifold runs in odd
dimensions in both real and complex cases, the contact
structure in 5 dimensions yields a 4-dimensional hyper-
plane of the tangent bundle on the contact manifold, and
the SD notion for 2-forms is defined on this hyperplane.

The SD concept in Yang-Mills theories is also consid-
ered as a vacuum solution, and the gauge potential solv-
ing the vacuum Yang-Mills equation includes the Higgs
or monopole field embedded inside one of its components.
Therefore, the SD notion in a 5-dimensional contact set-
ting is unrelated to such solutions. However, the SD
notion in this paper is evaluated together with the Higgs
field, so that a non-trivial SO(3) Higgs field lives only
on the fifth dimension, owing to the contact structure
of the manifold, while the SD Yang-Mills field lives on
the 4-dimensional hyperplane. An interesting case of our
ansatz is that in which the Higgs field and SD Yang-Mills
potential do not interact.

Let A be a gauge potential of a gauge group G on a
smooth 5-dimensional manifold M=R

5 with local coor-

dinates {xµ}∈R5. This gauge potential is considered as a
Lie algebra-valued 1-form, A=Aµdx

µ∈Λ1(g), where g is
the Lie algebra of the gauge groupG andAµ :C

∞(M)→g.
The covariant derivative is ∇=d+[A,·], so that the gauge
field strength is given such that F=∇A=dA+A∧A∈Λ2(g)
as a Lie algebra-valued 2-form F=Fµνdx

µ∧dxν . Further-
more, the Bianchi identity of the gauge field strength is
∇F=dF+A∧F−F∧A=0. Therefore, the extremum of the
Yang-Mills action integral

∫

M
tr‖F‖2 gives the following

vacuum Yang-Mills equation:

∇∗F=0. (1)

If the solution to eq. (1) in 4 dimensions is (anti-) self-
dual ((A)SD), i.e.,

∗F=±F, (2)

then this solution is known as an (anti-) instanton [5–7].
Because the SD/ASD concept is also considered in

dimensions higher than four [1–3, 8, 9], a generalized
SD/ASD concept for 2-forms in 5 dimensions is given by

∗F=λΣ∧F, Σ∈Λ1(M), (3)

where λ=+1 for SD and λ=−1 for ASD, and Σ is an
auxiliary form. Using the Bianchi identity, the Yang-
Mills equation becomes

∇∗F=λdΣ∧F=0. (4)

Here, there are two points worth noting:
1) If Σ is in a closed form, then this equation re-

duces automatically to the vacuum Yang-Mills equation
∇∗F=0.

2) If Σ is in a non-closed form, then the behavior of
the Yang-Mills equation is controlled by the eigenvalues
λ.
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Therefore, for the ASD with λ=−1, Eq. (4) is satis-
fied in higher dimensions, as in Refs. [4], [10], [11], [12].
In addition, see the equation below (22). Conversely, for
the SD case with λ=+1, Eq. (4) is not satisfied if Σ is
non-closed. However, an SD solution in 6 dimensions for
closed Σ is presented in [13].

However, the aim of this study is to find an answer
to that question of how to obtain an SD concept if Σ
is in a non-closed form. We will attempt to answer this
question in the frame of a 5-dimensional contact mani-
fold. Because Eq. (4) will give ∇∗F =λdΣ∧F 6= for an
SD gauge potential (again see Eq. (22)), we will add the
Higgs field to the action integral to solve an SD equation
in a 5-dimensional contact setting.

We consider the Higgs field as a Lie algebra-valued
0-form: φ : C∞(M) → g. Therefore, we define the fol-
lowing gauge invariant action integral, also called the
Yang-Mills-Higgs (YMH) action integral:

S[φ,A]=

∫

M

tr{χ‖F‖2+‖∇φ‖2−V(φ)}, (5)

where ‖α‖2 = α∧∗α for α ∈ Λr(R5), tr is the trace op-
erator, χ is the coupling constant, and V(φ)∈Λ5(M) is
the potential form for Higgs field φ. The term ‖∇φ‖2

is interpreted as the kinetic energy of the Higgs field φ.
Therefore, the action integral (5) gives the following field
equations with respect to the variables A and φ, respec-
tively:

χ∇(∗F )+[φ,∗∇φ] = 0, (6)

∇(∗∇φ)−
1

2

δV(φ)

δφ
= 0, (7)

where [, ] is the Lie bracket.
We have mentioned above that Eq. (6) for the ASD,

∗F = −Σ∧F , automatically reduces to vacuum Yang-
Mills equation, and so the anti-Yang-Mills instanton is
obtained. Therefore, we take the SD concept λ=+1 to-
gether with a non-trivial Higgs field φ. Thus, we have
the following identity:

∇∗F=dΣ∧F. (8)

Comparing this identity with the field equation (6), we
obtain

χdΣ∧F+[φ,∗∇φ]=0. (9)

We will see that the non-trivial SO(3) Higgs field on
a contact 5-manifold satisfies this equation if χ=0. This
means that an SD gauge potential and Higgs field on a
contact 5-manifold do not interact.

2 SD/ASD concept on contact 5-
manifolds

We provide the contact manifold definition from
Blair’s famous book [14]. Let M be a 5-dimensional Rie-

mannian manifold. Take a 1-form η ∈ Λ1(M) on this
manifold and a vector field ξ ∈ Γ (M). These will be
called the contact 1-form and its characteristic vector
field (also known as the Reeb vector field), respectively.
A manifold (M=R

5,η,ξ) is called a contact manifold if
it satisfies the following conditions:

η∧dη∧dη 6=0, η(ξ)=1, (10)

In particular, η∧dη∧dη is a volume element of the
manifold M , and therefore contact manifolds are ori-
entable.

Let H=Ker(η)⊂TM be a hyperplane defined as a
subbundle of a tangent bundle TM on the contact man-
ifold (M,η,ξ), where Ker(η) denotes the kernel of the
1-form η. Therefore, the decomposition of this tangent
bundle is written as

TM=H⊕Rξ, (11)

where H is also called the horizontal part of the tangent
bundle, and Rξ is the complement. Because dim(TM)=
5, it follows that dim(H)=4.

Now, we can choose the following contact 1-form η
and its characteristic vector field ξ with respect to the
standard Cartesian coordinates (x1,...,x5):

η=
1

2
(dx5−x2dx1−x4dx3), ξ=2∂5, (12)

η∧dη∧dη=
1

4
dx12345. (13)

Therefore, the metric that is compatible with the contact
structure is given by

Gµν=
1
4

















1+(x2)2 0 x2x4 0 −x2

0 1 0 0 0

x2x4 0 1+(x4)2 0 −x4

0 0 0 1 0

−x2 0 −x4 0 1

















,

det(Gµν)=1.

(14)

Considering the decomposition in Eq. (11) given by
TM=H⊕Rξ, the characteristic vector field ξ of the con-
tact structure η defines a 1-dimensional foliation on the
manifold. Thus, one can consider the transverse geom-
etry relating to this foliation. For details, see Ref. [4].
This foliation has codimension 4 on a contact 5-manifold,
and the SD/ASD concept is constructed with respect to
this transverse geometry.

First, we define a transverse Hodge duality notion on
a contact manifold M . From the decomposition in Eq.
(11), the bundle of k-forms spanned by the coframes on
the hyperplane H is given by

Λk
H(M)=

{

α∈Λk(M)|ıξ(α)=0
}

, (15)

where ıξ(α) denotes the inner derivative of the form α
with respect to the vector field ξ. Therefore, α∈Λk

H(M)

103104-2



Chinese Physics C Vol. 42, No. 10 (2018) 103104

is called the transverse form with respect to the charac-
teristic vector field ξ. If we consider the SD/ASD notion
in Eq. (3), the transverse duality notion for α∈Λk

H(M)
with respect to the auxiliary formΣ∈Λ1(M) is presented
by

∗(Σ∧α)=(−1)kıξ(∗α). (16)

Here, we must explain the meaning of ıξ(∗α). If
we want to investigate the SD/ASD concept on contact
manifolds, then we need a transverse direction with re-
spect to the contact 1-form η. For example, if we take
any 2-form α∈Λ2(M) on the contact 5-manifold M with
η and ξ, as in (12), then some components of ∗α are
spanned by dxij5, where i < j = 1,...,4. Thus, because
ξ=∂5, the transverse duality ıξ(∗α) maps the 2-form α
to Λ2

H(M), and so when ±α= ıξ(∗α) we can say that α
is an SD/ASD 2-form.

Of course, we can choose the auxiliary form Σ as the
contact 1-form of a contact 5-manifold:

Σ=η. (17)

Therefore, the SD concept in Eq. (3) for the 2-form F is
rewritten on the contact 5-manifold Ref. [9] as follows:

∗F=λη∧F=λ∗ıξ(∗F ). (18)

Eventually, the SD/ASD concept under a linear map
∗H :Λ2

H(M)→Λ2
H(M) can be given as

∗Hω=∗(η∧ω)=ıξ(∗ω), (19)

Therefore, if

ω=λ∗(η∧ω)=λıξ(∗ω), (20)

then we say that ω is an ASD 2-form for λ=−1 and an
SD 2-form for λ=+1. Then, an SD(ASD) 2-form on a
contact 5-manifold is written with respect to the decom-
position in Eq. (11) and the SD(ASD) concept given in
Eq. (20) as follows:

ω=w34(λdx
12+dx34)+w24(−λdx13+dx24)

+w23(λdx
14+dx23). (21)

The exterior product of this SD/ASD form with the ex-
terior derivative dη of the contact 1-form η gives the
following expression:

dη∧ω=(λ+1)w34dx
1234. (22)

Therefore, if λ = −1, then the 2-form ω is ASD. This
appears as an important key point in defining an anti-
instanton model for the vacuumYang-Mills equation on a
contact 5-dimensional manifold, because ∇∗F=dη∧F=0.
Of course, we do not deal with this equation in this pa-
per, because our aim is only the SD concept with the
Higgs field. Consequently, we have the following decom-
positions for the bundle of 2-forms:

Λ2(M)=Λ2
H(M)⊕(η∧Λ1

H(M)), (23)

where

Λ2
H(M)=Λ2

H(M)+⊕Λ2
H(M)−. (24)

Thus, the bundle Λ2(M) and its subbundles are spanned
by the following bases:

Λ1
H(M) = {dx1,dx2,dx3,dx4},

Λ2(M) = {dx12,dx13,dx14,dx15,dx23,

dx24,dx25,dx34,dx35,dx45},

Λ2
H(M) = {dx12,dx13,dx14,dx23,dx24,dx34},

Λ2
H(M)+ = {(dx12+dx34),(−dx13+dx24),(dx14+dx23)},

Λ2
H(M)− = {(−dx12+dx34),(dx13+dx24),(−dx14+dx23)},

η∧Λ1
H(M) = {dx15,dx25,dx35,dx45}.



























































(25)

3 Self-duality equations

Because Λ2(Rm)=so(m), the decompositions of some
Lie algebras with respect to Eq. (23) are given by

so(5)=so(4)⊕m, so(4)=so(3)⊕so(3)=su(2)⊕su(2). (26)

Thus, we have that

Λ2
H(M)±=so(3)∼=su(2), η∧Λ1

H(M)=m. (27)

Because of these, we can choose group SO(3) with the
Lie algebra g=so(3) as the gauge group. Thus, an so(5)-
valued 2-form on a contact 5-manifold decomposes such

that
F=F+

H+F−
H+Fη, (28)

where + and − label SD and ASD, respectively, F±
H ∈

Λ2
H(M)±(g), and Fη∈η∧Λ

1
H(M)(m).

We chose F−
H=0 and Fη=0 to obtain the SD concept

with a Higgs field. Let g∈G for a gauge group G. Then,
the Maurer-Cartan (MC) 1-form is given together with
the MC equation such that

ω=g−1dg, dω+ω∧ω=0. (29)

On the other hand, let f ∈C∞(M). Therefore, we write
the following gauge potentials and their vanishing gauge
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field strengths:

A−
H=ω, F−

H=dA−
H+A−

H∧A
−
H=0, (30)

Aη=ω+df, Fη=dAη+Aη∧Aη=0. (31)

Thus, an SD SO(5) gauge potential on a contact 5-
manifold becomes that of SO(3) on the hyperplane H
of this manifold. According to this case, the SD con-
figuration of the G = SO(3) gauge group on a contact
5-manifold M is (A+

H,F
+
H ,φ), so that the 2-forms on this

bundle are spanned by the bases

Λ2
H(M)+={(dx12+dx34),(−dx13+dx24),(dx14+dx23)}.

(32)
We can choose the following gauge potential together

with its covariant derivative and gauge field strength:

∇+=d+A+, A+=fω, (33)

F+=∇+A+=dA++A+∧A+. (34)

Hereafter, we will use the shorthand X± instead of X±
H.

Now, rewrite equation (9) and (7), respectively, as

χdη∧F++[φ,∗∇+φ] = 0, (35)

∇+(∗∇+φ)−
1

2

δV (φ)

δφ
= 0, (36)

where ∗:Λp(M)→Λ5−p(M). We have that

F+ = F+
34(dx

12+dx34)+F+
24(−dx13+dx24)

+F+
23(dx

14+dx23), (37)

dη∧F+ = 2F+
34dx

1234. (38)

Because the hyperbundle H is spanned by ∂a, where
a=1,...,4, we write ∇+φ=∇+

a φdx
a. By using Eq. (22),

for the SD gauge potential this must be F+
34 6=0. In this

case, the other components are F+
24 6=0 and F+

23 6=0. Thus,
the field Eq. (35) is expressed in the terms of the local
coordinates such that

2χF+
34+[φ,∇5φ]=0, (39)

where

∇µφ=∂µφ+[Aµ,φ], (40)

and for the other base dxijk5, (i<j<k=1,2,3,4),

∇+
i φ=0. (41)

The meaning of this is that the Higgs field φ is covariant
free on the hyperplane H or with respect to the direction
∂i. On the other hand, from Eq. (37) we have also the
following SD equations on the hyperbundle H:

F+
34−F+

12=0, F+
24+F+

13=0, F+
23−F+

14=0. (42)

This SD equations run on the 4-dimensional subspace of
our contact 5-manifold. Therefore, the coordinates are
(x1,...,x4). In order to solve these equations, we consider

the gauge potential Aa
i :R

4→g, which can be written as
follows:

Aa
i =f(s)εaij

xj

s2
=f(s)ωa

i , (43)

where ω=ωa
i τadx

i is the MC 1-form satisfying the MC
equation dω+ω∧ω = 0, εaij is a skew symmetric tensor
with constant components, and

s2=Gijx
ixj , (44)

with respect to the metric tensor Gij on the subspace of
the base manifold. The gauge field strength is such that

F a
ij=−

2(f−f 2)

s2
εaij+

xk

s3

(

f ′−
2(f−f 2)

s

)

(

biε
a
jk−bjε

a
ik

)

.

(45)
where

bi=xi−
1

2
(∂iGkl)x

kxl. (46)

In order to preserve the tensorial structure of the

gauge field strength, it must hold that f ′− 2(f−f2)

s
= 0.

The solution to this equation is

f(s)=
s2

r20+s2
, (47)

where r0 is a constant. Consequently, we have that

F a
ij=

2r20
(r20+s2)2

εaij . Aa
i =

(r20+s2)

2r20
F a

ijx
j . (48)

We can write the gauge potential as a Lie algebra-valued
1-form in 5 dimensions separable as 4+1, such that

Aa=Aa
i dx

i+Aa
5dx

5, (49)

where

s2=Gijx
ixj , r2=Gµνx

µxν , (50)

and we define Aa
5 as follows:

Aa
5=

(r20+r2)

2r20
F a

5jx
j . (51)

Consider an SO(3) gauge potential, its gauge field
strength, and the Higgs field, respectively, as skew-
symmetric matrices:

Aa
i =







0 A1
i A3

i

−A1
i 0 A2

i

−A3
i −A2

i 0






, F a

ij=







0 F 1
ij F 3

ij

−F 1
ij 0 F 2

ij

−F 3
ij −F 2

ij 0






,

φ=







0 φ1 φ3

−φ1 0 φ2

−φ3 −φ2 0






.

(52)
The self-duality equations of an SO(3) gauge potential
in 4 dimensions were given in Ref. [15], such that

F 1
12=F 1

34=q1, F 2
13=−F 2

24=q2, F 3
14=F 3

23=q3, (53)
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where q1,q2,q3∈C∞(R4) are independent from x5. The
matrix components of the gauge field strength become

F 1=q1L1
ijdx

ij=q1(dx12+dx34),

F 2=q2L2
ijdx

ij=q2(dx13−dx24),

F 3=q3L3
ijdx

ij=q3(dx14+dx23),

(54)

Where the La’s define a quaternionic structure on R
4:

L1=











0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0











, L2=











0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0











,

L3=











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











.

(55)

These satisfy

(La)2=−I4×4, L
aLb=−LbLa, a,b=1,2,3. (56)

Therefore, the components of the SD SO(3)-gauge po-
tential on R

4 are

Aa
j=

qa(r20+s2)

2r20
La

ijx
j . (57)

Furthermore, the component Aa
5 is given as follows:

Aa
5=

(r20+r2)

2r20
F a

5jx
j , (58)

where there is no summation for qaLa
ij over the index a.

On the other hand, we use the following Hodge gauge-
fixing condition, named after Uhlenbeck [16]

d∗A=
(

∂µA
µ+Γ λ

λµA
µ
)

dVol, (59)

where Γ λ
λµ=∂µ ln|

√

det(Gµν)|, A
µ=GµνAν , and we used

the expression given in [17]. For the metric tensor (14),
because det(Gµν)=1, we obtain the Hodge gauge-fixing
as

∂µA
µ=0. (60)

Using the metric tensor (14), the Hodge gauge-fixing con-
dition (59) reduces to the following equations:

∂5A
a
j+∂jA

a
5=0, ∂iA

a
j =0. (61)

The solution to the first equation is

F a
5j=

1

(r2+r20)
Da

j , Aa
5=

1

2r20
Da

j x
j , ∂5A

a
5=0, (62)

whereDa
j are constants. The solution to the second equa-

tion is

qa=
Ca

(s2+r20)
, (63)

where Ca are constants. Therefore, we obtain

Aa
i =

Ca

2r20
La

ijx
j , F a

ij=
Ca

(s2+r20)
La

ij , (64)

where there is no summation over the index a.
Solution to 2χF+

34+
[

φ,∇+
5 φ

]

=0:
From Eq. (54), we have that

F 1
34=q1, F 2

34=0, F 3
34=0. (65)

Then, the SD Eq. (39) is expanded as

A1
5

φ2

φ3
+A1

5

φ3

φ2
−A2

5

φ1

φ3
−A3

5

φ1

φ2
+∂5 ln

∣

∣

∣

∣

φ3

φ2

∣

∣

∣

∣

=−
2χ

φ2φ3
q1,

A1
5

φ3

φ2
+A2

5

φ3

φ1
−A3

5

φ1

φ2
−A3

5

φ2

φ1
+∂5 ln

∣

∣

∣

∣

φ2

φ1

∣

∣

∣

∣

=0,

A1
5

φ2

φ3
−A2

5

φ1

φ3
−A2

5

φ3

φ1
+A3

5

φ2

φ1
−∂5 ln

∣

∣

∣

∣

φ1

φ3

∣

∣

∣

∣

=0.

(66)
When we sum these equations, we obtain χq1 =0. Be-
cause it cannot hold that q1 6=0, the coupling constant
must be

χ=0. (67)

Thus, we see that the SD gauge potential that can be
defined on the hyperplane H does not interact with the
Higgs field φ. Then, the SD equation (39) becomes

[φ,∇5φ]=0. (68)

Therefore, when we consider Eq. (41), the Higgs field φ
satisfies the following covariance equation on the contact
5-manifold with respect to the SD gauge potential:

[

φ,∇+
µφ

]

=0. (69)

In order to solve this equation, we use the following
mechanism. The Higgs field φ∈so(3) satisfies

φ3+‖φ‖2φ=0, (70)

where

‖φ‖2=(φ1)2+(φ2)2+(φ3)2. (71)

If we define a new field on so(3) such that

f̂=
φ

‖φ‖
, (72)

then this field satisfies the following structure equation:

f̂ 3+f̂=0, (73)

also called the f -structure, defined by Yano [18]. Fur-

thermore f̂ satisfies

(f̂ 1)2+(f̂ 2)2+(f̂ 3)2=1. (74)

The covariant derivative of the Higgs field in the direc-
tion x5 is written with respect to f̂ as follows:

∇µφ=(∂µ‖φ‖)f̂++‖φ‖∂µf̂ . (75)

On the other hand, we obtain the following identity:

[φ,∇µφ]=‖φ‖2[f̂ ,∇µf̂ ]. (76)

103104-5



Chinese Physics C Vol. 42, No. 10 (2018) 103104

Therefore, Eq. (68) can also be written as

[f̂ ,∇µf̂ ]=0 (77)

and we find the following solution to this equation:

f̂=
1

√

1+2f 2
0







0 1 f0

−f0 0 f0

−f0 −f0 0






, (78)

where f0=Constant. Thus, f̂ becomes covariant free in
all directions

∇µf̂=0. (79)

When we use Eq. (72), we obtain

∇µφ=(∂µ ln‖φ‖)φ. (80)

Therefore, Eq. (68) becomes [φ,φ] = 0. On the other

hand, because ∇+
i φ=0, this is also equivalent to ∇if̂=0.

Therefore, we obtain

∇iφ=(∂i ln‖φ‖)φ=0. (81)

Then, we see that ‖φ‖ is independent of the coordinates
xi. Consequently,

∇µφ=∇5φ=(∂5 ln‖φ‖)φ. (82)

On the other hand, we obtain the following identity:

∇(∗∇φ)=
{

∂2
5 ln‖φ‖+(∂5 ln‖φ‖)

2
}

φdVol. (83)

Consider the following potential form for the massless
SO(3) Higgs field as a φ4 field theory:

V (φ)=λφ4dVol, (84)

where λ is real parameter. Using Eq. (70), we have that

δV

δφ
=4λφ4=−4λ‖φ‖2φdVol (85)

Then, Eq. (36) becomes

∂2
5 ln‖φ‖+(∂5 ln‖φ‖)

2
+2λ‖φ‖2=0. (86)

This implies that

x5=t, ‖φ‖=σ, ∂5σ=σ̇. (87)

After some arrangements, this equation is rewritten as
follows:

σ̈+2λσ2=0. (88)

We make two fundamental ansatzes for solutions
to this equation. One of these is the monopole case:
V (φ)=0 when one chooses λ=0. The equation (68) is
a simple consequence of the SD equation with a Higgs
field in higher dimensions. Although the ASD concept
in higher dimensions is a exact vacuum Yang-Mills case,
the SD one becomes a Yang-Mills-Higgs system. On the
other hand, if the potential form is set as V (φ) = 0,
in the simplest interpretation this system represents a

monopole notion on a contact 5-manifold. Therefore, if
we try the solution model

σ=σ0exp(α(t)), (89)

then the monopole solution is given as follows:

‖φ‖λ=0=σ0exp

(

α0−
1

2
β0exp(−2t)

)

, (90)

where σ0, α0>0, and β0>0 are constants. This solution
has the following stability situations:

t→0 ‖φ‖λ=0→σ0exp

(

α0−
1

2
β0

)

, (91)

t→∞ ‖φ‖λ=0→σ0exp(α0) (92)

Because the Eq. (88) is a second-order nonlinear
ordinary differential equation, we adopt the following
method. Let p(t) and q(t) be two arbitrary scalars that
satisfy the following equation:

(p(t)σ̇)·+q(t)σ2=0. (93)

This equations can be expressed as

σ̈+
ṗ

p
σ̇+qσ2=0. (94)

When we set
ṗ

p
σ̇+qσ2=2λσ2, (95)

we obtain the following solution to this equation:

‖φ‖=
1

C+

∫

1

ṗ/p
(q(t)−2λ)dt

<∞. (96)

It is easily seen that this SO(3) solution cannot be re-
duced to the monopole solution (90) at the limit λ→∞
or for λ=0.

4 Conclusion

We dealt with the self-duality concept with a Higgs
field on a 5-dimensional contact manifold. A non-trivial
SO(3) Higgs field lives only on the fifth dimension of the
contact manifold, owing to the contact structure, while
the SD Yang-Mills field lives on the 4-dimensional hy-
perplane of the tangent bundle on the contact manifold.
In our solution, the gauge potential and its gauge field
strength do not include any singularities as long as r0 6=0.
On the other hand, the SO(3) Higgs field yields a struc-

ture on the Lie algebra so(3) such that f̂ 3+f̂ =0, and
it does not interact with the SD gauge potential, be-
cause the coupling constant vanishes owing to Eq. (67).
Namely, the Higgs and SD Yang-Mills fields do not in-
teract with one another. Thus, our (massless) solution
on a contact 5-manifold is summarized as follows.

103104-6



Chinese Physics C Vol. 42, No. 10 (2018) 103104

SD SO(3)-gauge potential and its gauge field
strength:

Aa
i =

Ca

2r20
La

ijx
j , Aa

5=
1

2r20
Da

j x
j ,

F a
ij =

Ca

(s2+r20)
La

ij , F a
5j=

1

(r2+r20)
Da

j .

Massless SO(3)-Higgs (λ 6=0) and monopole (λ=0)
fields:

f̂=
1

√

1+2f 2
0







0 1 f0

−f0 0 f0

−f0 −f0 0






,

f̂ 3+f̂=0,

φ=‖φ‖f̂ ,

‖φ‖λ 6=0=
1

C+

∫

1

ṗ/p
(q(t)−2λ)dt

, V (φ)=λφ4dVol,

‖φ‖λ=0=σ0exp

(

α0−
1

2
β0exp(−2t)

)

, V (φ)=0,

where Ca and Da
j are constants, and there is no summa-

tion over the index a. Furthermore, because the Higgs
field does not interact with the SD gauge potential, it
holds that

χ=0.
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