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HTL resummation in the light cone gauge *
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Abstract: The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-

ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD

calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this

method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n·K)−1,

we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are

no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light

cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone

gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard

quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge

independent. The final physical results are identical to those computed in covariant gauge, as they should be.
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1 Introduction

Bare perturbative QCD theory breaks down at high
temperature, and there are some serious problems in
gauge theories at finite temperature, such as infrared
(IR) singularities and gauge dependent results, when the
bare propagators (vertices) are used. The HTL (Hard
Thermal Loop) resummed propagators have been devel-
oped by Braaten and Pisarski [1]. Some gauge inde-
pendent physical quantities are given with the HTL re-
summed propagators in the calculation, other than the
bare propagators at finite temperature. If the momen-
tum of the propagators is soft at finite temperature, we
should use the HTL resummed propagators. High or-
der loop HTL diagrams can give low order contributions
in the coupling constant at finite temperature, which
should be resummed. Because of the HTL resumma-
tion, medium effects are taken into account, such as the
Debye screening caused by the color charges of the QGP.
The HTL resummation technique is a great step forward
compared to the bare perturbation theory at finite tem-
perature. However, this technique was developed in con-
ventional covariant gauges with Minkowski variables.
In the 1980s, some positive features emerged from

studies of perturbative QCD in the light cone gauge [2–
5]. The light cone gauge is a non-covariant and physical
gauge [6, 7], and is also ghost-free. When multiple gluon
emission is calculated in the light cone gauge, because the
interference terms among different tree diagrams do not
contribute to the leading order in the process of calculat-
ing the diagram amplitude, the differential cross section
with n-gluon emission in the leading pole approximation
has a simple ladder structure at zero temperature [8].
For instance, in deep inelastic processes, only planar di-
agrams are needed to evaluate the dominant contribution
in the leading logarithmic approximation [9]. These nice
properties simplify the calculation. Based on the factor-
ization theorem [10], in the light cone gauge a system-
atic mechanism has been developed to deal with collision
processes with perturbative QCD [11–17]. However, the
light cone gauge has its disadvantages, such as the spu-
rious singularity of (n·K)−1, the renormalization and so
on.
In heavy ion collision experiments, high transverse

momentum partons suffer radiation energy loss and col-
lision energy loss through the hot and dense medium,
and then in vacuum fragment into hadrons, which are
observed in the mid-rapidity region. These partons lose

Received 4 December 2017, Published online 7 March 2018

∗ Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

1) E-mail: qichen@mails.ccnu.edu.cn

2)E-mail: houdf@mail.ccnu.edu.cn

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded
by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy
of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

043102-1



Chinese Physics C Vol. 42, No. 4 (2018) 043102

energy and lead to the suppression of the high pT hadron
spectrum, which is called jet quenching. For high trans-
verse momentum jets, the shower partons in the jet cone
have large momentum along the axis of the jet, but low
momentum perpendicular to the axis, and it is more suit-
able to calculate some physical quantities in the light

cone gauge with light cone variables Kµ = (k+,k−,
−→
k⊥),

than to use the Coulomb gauge in Minkowski space

Kµ=(k0,
−→
k ). Many good theoretical studies have been

done in the light cone gauge which are consistent with
the experimental data [18–25].
To date, we can only calculate the evolution equa-

tions of parton distribution functions (PDFs) [26, 27] and
parton fragmentation functions (FFs) [28–30], which are
both non-perturbative physical quantities, by pertuba-
tive QCD. The evolution equations govern the running
of PDFs and FFs with a scale Q. Correspondingly, we
can extract PDFs and FFs, which are taken to have some
fixed value for the relevant hard scale Q, from the exper-
imental data.
For some physical quantities such as the FFs [31], we

can extend the case of high energy in vacuum to the case
at high temperature. For hard processes, we can use the
bare propagators in the light cone gauge at finite tem-
perature. With the HTL resummed gluon propagator
in the light cone gauge, we can consider multiple soft
gluon scattering among hard partons and hot medium
in heavy ion collisions1), which contains soft processes as
well as hard processes. Soft processes can give a signif-
icant correction to the hard processes. The purpose of
this paper is to extend the conventional HTL resumma-
tion to the light-cone gauge. We shall work out the HTL
resummed gluon and quark propagators by calculating
the transverse and longitudinal parts of the gluon HTL
self energy and quark self energy in the light cone gauge.
As application examples, we will compute the damping
rates of hard quarks and gluons at high temperature with
the HTL resummed propagators and demonstrate their
gauge invariance. Thus, this study can serve as a basis
for future research with high temperature QCD in the
light-cone gauge.
The remainder of the paper is organized as follows.

In Section 2 we review the HTL resummed gluon prop-
agator in the Coulomb gauge. In Section 3 the HTL
resummed gluon propagator in the light cone gauge is
worked out, and then we calculate and analyze the trans-
verse and longitudinal parts of the gluon HTL self en-
ergy in the light cone gauge. Via the HTL resummed
gluon propagator, we show the transverse and longitudi-
nal spectral functions and the equations of the dispersion
relation. In Section 4 we calculate the quark self en-
ergy in the HTL approximation, and show that the HTL
resummed quark propagator is gauge independent. In

Section 5 we analytically calculate the damping rates of
hard quarks and gluons with this HTL resummed gluon
propagator in the light cone gauge in a particular limit,
and demonstrate that in the general case we can have
the same result in the light cone gauge and the Coulomb
gauge. Our conclusion is given in Section 6. We de-
fine the notation P µ=(p0,−→p ), etc. In the Appendix, we
demonstrate that the light cone term in the gluon HTL
self energy has no divergence.

2 HTL resummed gluon propagator in

the Coulomb gauge

At zero temperature, covariant gauges have a def-
inite advantage over non-covariant gauges such as the
Coulomb gauge or axial gauges. Calculations are sim-
plified considerably due to Lorentz invariance, and the
renormalization program can be implemented in practice
only in covariant gauge. At finite temperature, Lorentz
invariance is broken because the heat bath defines a priv-
ileged frame, and renormalization is of secondary impor-
tance, so that non-covariant gauges may present useful
alternatives to covariant gauge [32].
The HTL resummed gluon propagator has been de-

rived in the Coulomb gauge [33, 34]. The HTL gluon
self energy Πµν(P ) is expressed as the transverse part
and the longitudinal part. The gluon self energy is given
by

Πµν(P )=−ΠT(P )T
µν
P −

1

n2
P

ΠL(P )L
µν
P , (1)

where the transverse projection tensor T µν
P , the longitu-

dinal projection tensor Lµν
P , and the four-vector n

µ
P are

defined as

T µν
P = gµν−P µP ν

P 2
−nµPn

ν
P

n2
P

,

Lµν
P =

nµPn
ν
P

n2
P

,

nµP = nµ−n·P
P 2

P µ . (2)

The axial vector is

nµc=(n
0,n1,n2,n3)=(1,0,0,0), (3)

which specifies the thermal rest frame.
The inverse propagator for general ξ in the Coulomb

gauge is

∆−1
ξ (P )

µν=∆−1(P )µν−1
ξ
(P µ−P ·nnµ)(P ν−P ·nnν), (4)

where ξ is an arbitrary gauge parameter.
The inverse propagator reduces in the limit ξ→∞ to

∆−1
∞ (P )

µν=−P 2gµν+P µP ν−Πµν(P ). (5)

1) Qi Chen, Defu Hou, Xin-nian Wang et al, in preparation
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∆−1
∞ (P )

µν can also be written as

∆−1
∞ (P )

µν=− 1

∆T(P )
T µν
P +

1

n2
P∆L(P )

Lµν
P , (6)

where ∆T(P ) and∆L(P ) are the transverse and longitu-
dinal propagators:

∆T(P ) =
1

P 2−ΠT(P )
,

∆L(P ) =
1

−n2
PP

2+ΠL(P )
. (7)

The HTL resummed gluon propagator in the
Coulomb gauge [34] is

∆µν
ξ (P )=−∆T(P )T

µν
P +∆L(P )n

µnν−ξ P µP ν

(n2
PP

2)2
. (8)

By calculating, we can find

T 00
P =0,T

0i
P =T

i0
P =0. (9)

So the HTL resummed gluon propagator in the Coulomb
gauge can be simplified to

G00
Ret(P ) =

1

p2+ΠL(P )
,

Gij
Ret(P ) =

δij−p̂ip̂j
P 2−ΠT(P )

, (10)

where −̂→p is a unit vector in the direction of −→p , −̂→p = −→p
|−→p |

and −̂→p =(p̂1,p̂2,p̂3).
The longitudinal and transverse gluon HTL self en-

ergy [35] are

ΠL(P ) = m2
D

[

1− p0

2p
ln|p0+p

p0−p
|+iπ p0

2p
θ(p2−p2

0)

]

,

ΠT(P ) =
m2

D

2

p2
0

p2

[

1−(1−p2

p2
0

)
p0

2p

[

ln|p0+p

p0−p
|−iπθ(p2−p2

0)

]]

,

(11)

where the gluon screening mass m2
D=

1
3
(CA+

1
2
Nf)g

2T 2

and θ(p2−p2
0) is the step function.

The imaginary parts in the above equations corre-
spond to the Landau damping, which means that one
particle is emitted from the thermal medium and ab-
sorbed by the medium.
In the static limit, p0→0, the longitudinal HTL self

energy

ΠL
R(p0→0,p)=m2

D , (12)

which means the Debye screening of the gluon in the
plasma.
However, in the static limit, the transverse HTL self

energy

ΠT
R(p0→0,p)=0, (13)

which shows no static magnetic screening.

The self energy tensor Πµν is symmetric in µ and ν
and satisfies

PµΠ
µν(P )=0,

gµνΠ
µν(P )=−2ΠT(P )−

1

n2
P

ΠL(P )=−m2
D . (14)

3 HTL resummed gluon propagator in

the light cone gauge

In this section, we derive the HTL resummed gluon
propagator in the light cone gauge, and compute the
transverse and longitudinal parts of gluon HTL self en-
ergy in the real time formalism. In the static limit, we
discuss Π00(P ) in the light cone gauge and the Coulomb
gauge. We obtain the pole terms and the cut terms of
the transverse and longitudinal spectral functions.
The light cone gauge is an axial and non-covariant

gauge [6, 7],

n2
l =0, nl·A=0. (15)

The axial vector in the light cone gauge is

nµl =(n
0,n1,n2,n3)=(

√
2

2
,0,0,−

√
2

2
). (16)

The bare gluon propagator in the light cone gauge is

i

(

−gµν+nµKν+nνKµ

n·K

)

K2+iε
. (17)

Here we use the Mandelstam-Leibbrandt (ML) pre-
scription of (n·K)−1 instead of the usual principal-value
prescription,

1

n·K =
n∗·K

n·Kn∗·K+iε=
1

n·K+isgn(n∗·K)ε

=
n0k0+

−→n ·−→k
(n0k0)2−(−→n ·

−→
k )2+iε

. (18)

where n∗µl =(n
0,n1,n2,n3)=(

√
2

2
,0,0,

√
2

2
).

The usual principal-value prescription of (n ·K)−1

leads to some serious problems, such as violating power
counting and other basic criteria, when we calculate the
integral of the loop diagram [6].
In the real time mechanism, the time of the field goes

from t=0 to t=−iβ. The contour can be deformed in
order to include the real time axis by going first from
t= 0 to t=∞ above the real time axis and then back
to t=−iβ below the real time axis. So we have double
degrees of freedom, one above the real time axis and the
other below the real time axis. We get the propagator in
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the real time formalism [32, 36], which is a 2×2 matrix,

∆(K) =

(

∆11 ∆12

∆21 ∆22

)

=







1

K2−m2+iε
0

0
−1

K2−m2−iε







−2πiδ(K2−m2)

×
(

nB(k0) θ(−k0)+nB(k0)

θ(−k0)+nB(k0) nB(k0)

)

. (19)

The Bose-Einstein distribution function nB(k0) is

nB(k0)=
1

e|
k0
T
|−1

. (20)

For fermions, we have

F (K) = (½½K+m)∆̃(K)=(½½K+m)

(

∆̃11 ∆̃12

∆̃21 ∆̃22

)

= (½½K+m)

[







1

K2−m2+iε
0

0
−1

K2−m2−iε







−2πiδ(K2−m2)

×
(

−f(k0) θ(−k0)−f(k0)

θ(−k0)−f(k0) −f(k0)

)]

, (21)

The Fermi-Dirac distribution function f(k0) is

f(k0)=
1

e|
k0
T
|+1

. (22)

We use the Keldysh representation in the real time
formalism [36, 37]. The retarded propagator, advanced
propagator and symmetric propagator for bosons are

∆R(K)=∆11−∆12=
1

K2−m2+isgn(k0)ε
,

∆A(K)=∆11−∆21=
1

K2−m2−isgn(k0)ε
,

∆S(K)=∆11+∆22=−2πiδ(K2−m2)[1+2nB(k0)].

(23)

The inverse relation for bosons is

∆11=
1

2
[∆S(K)+∆A(K)+∆R(K)],

∆12=
1

2
[∆S(K)+∆A(K)−∆R(K)],

∆21=
1

2
[∆S(K)−∆A(K)+∆R(K)],

∆22=
1

2
[∆S(K)−∆A(K)−∆R(K)]. (24)

For fermions, in the Keldysh representation, we only
replace the Bose-Einstein distribution function nB(k0) by
the Fermion-Dirac distribution function −f(k0) in the
symmetric propagator, and the retarded propagator and

advanced propagator are the same as that of bosons,

∆̃S(K)=∆̃11+∆̃22=−2πiδ(K2−m2)[1−2f(k0)]. (25)

The inverse relation in Eq. (24) is also applicable for
fermions.

3.1 Gluon HTL self energy in the light cone

gauge

Explicit computation in different gauges (covariant,
Coulomb, temporal) whose axial vectors are all the same,
nµc=(1,0,0,0), has been used to check that the gluon HTL
self energy does not depend on the choice of gauge. How-
ever, the axial vector in the light cone gauge is different,
which brings about some changes.
A massive boson gives rise to the longitudinal polar-

ization state, so that the boson self energy is separated
into the longitudinal and transverse parts [8]. The mas-
sive gluon self energy in the light cone gauge is made up
of the transverse and longitudinal parts,

Πµν(P )=−
[

T̃ µν
P ΠT(P )+

L̃µν
P

n2
P

ΠL(P )
]

. (26)

The transverse projection tensor is

T̃ µν
P =g

µν−nµP ν+nνP µ

n·P +
nµnνP 2

(n·P )2 . (27)

The longitudinal projection tensor is

L̃µν
P =−

[

nµnνP 2

(n·P )2 −
nµP ν+nνP µ

n·P +
P µP ν

P 2

]

. (28)

The four-vector nµP is

nµP=
(

gµν−P µP ν

P 2

)

nν=n
µ−n·P

P 2
P µ . (29)

L̃µν
p and T̃ µν

p satisfy the following relations,

L̃µν
P L̃ρ

Pν = L̃µρ
P ,

T̃ µν
P T̃ ρ

Pν = T̃ µρ
P ,

T̃ µρ
P L̃Pµσ = 0. (30)

These equations are also suitable for Lµν
P and T µν

P in
Eq. (2) in the Coulomb gauge.
The axial vector nµ in the light cone gauge is defined

in Eq. (16),

nµT̃
µν
P =0, nµL̃

µν
P 6=0. (31)

L̃µν
P and T̃ µν

P are the longitudinal and transverse projec-
tion tensors with respect to the axial vector nµ in the
light cone gauge in Eq. (16). Because the axial vector in
the light cone gauge in Eq. (16) is different from the axial
vector in the Coulomb gauge in Eq. (3), the longitudinal
and transverse projection tensors L̃µν

P and T̃ µν
P are dif-

ferent from those in the Coulomb gauge. Finally, these
differences change the expression of the HTL resummed
gluon propagator in the light cone gauge.
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The inverse propagator in the light cone gauge in the
limit ξ→∞ is

∆−1
∞ (P )

µν = −P 2gµν+P µP ν−Πµν(P ), (32)

=
[

−P 2+ΠT(P )
]

T̃ µν
P +

[

−P 2+
1

n2
P

ΠL(P )
]

L̃µν
P .

(33)

Applying Eqs. (30), (31), we can get the HTL re-
summed gluon propagator in the light cone gauge

∆µν(P )=
T̃ µν
P

−P 2+ΠT(P )
+

−nµnνP 2

(n·P )2

−P 2+
1

n2
P

ΠL(P )
, (34)

where we do not consider the terms containing the gauge
parameter ξ.
When ΠT(P )=0 and ΠL(P )=0, the HTL resummed

gluon propagator returns back to the bare gluon propa-
gator in Eq. (17).
Due to the relations in Eqs. (26), (27), (28), (30), the

transverse and longitudinal gluon HTL self-energies are
given by

ΠT(P ) = −
1

2
T̃PµνΠ

µν(P )

= −1
2

[

gµν−
nµPν+nνPµ

n·P +
nµnνP

2

(n·P )2
]

Πµν(P ),

(35)

1

n2
P

ΠL(P ) = −L̃PµνΠ
µν(P )

=

[

PµPν
P 2

−nµPν+nνPµ
n·P +

nµnνP
2

(n·P )2
]

Πµν(P ).

(36)

Πµν(P ) is the sum of the quark loop, the gluon loop and
the gluon tadpole in the light cone gauge. Multiplying
Πµν(P ) by the projection tensors − 1

2
T̃Pµν and −L̃Pµν ,

we can calculate ΠT(P ) and
1
n2

P

ΠL(P ) in the HTL ap-

proximation.

3.2 Quark loop of gluon HTL self energy in the

light cone gauge

The quark loop in Fig. 1 can be expressed as

Πµα
ab (P ) = −i

1

2
Nfg

2δab

∫

d4K

(2π)4
Tr[γµF (K)γαF (K−P )],

(37)

where Nf is the number of active quark flavors and F (K)
is the bare quark propagator.

P

K

K − P

P

Fig. 1. The quark loop in the light cone gauge.

The retarded self energy in the real time formalism
[37, 38] is expressed as

Πµα
R (P ) = Π

µα
11 (P )+Π

µα
12 (P )

= − i

2
g2Nf

∫

d4K

(2π)4
Tr[γµ½½Kγα(½½K−¡P )]

×[∆̃11(K)∆̃11(K−P )−∆̃12(K)∆̃21(K−P )],
(38)

where the RTF Green function ∆̃ij(K) refers to the com-
ponent of the propagator in the real time formalism in
Eq. (21).
Multiplying Πµα(P ) by the transverse projection ten-

sor − 1
2
T̃Pµα, we can get the transverse self energy ΠT(P ),

ΠT(P ) =
i

4
Nfg

2

∫

d4K

(2π)4
8

[

K·P−2n·K
n·P K·P+(n·K)

2

(n·P )2 P
2

]

×
[

∆̃11(K)∆̃11(K−P )−∆̃12(K)∆̃21(K−P )
]

.

(39)

Using the relation in Eq. (24), we can obtain

∆̃11(K)∆̃11(K−P )−∆̃12(K)∆̃21(K−P )

=
1

2

[

∆̃S(K−P )∆̃R(K)+∆̃A(K−P )∆̃S(K)

+∆̃A(K−P )∆̃A(K)+∆̃R(K−P )∆̃R(K)
]

=
1

2

[

∆̃S(K−P )∆̃R(K)+∆̃A(K−P )∆̃S(K)
]

, (40)

where the minus sign in front of the term ∆̃12(K)∆̃21(K−
P ) comes from the vertex of the type 2 fields [39]. The
k0 integrals of ∆̃A(K−P )∆̃A(K) and ∆̃R(K−P )∆̃R(K)
reduce to zero.
Replacing K by P−K in the first term and using

∆̃R(P−K)=∆̃A(K−P ), this expression can be simplified
further,

ΠT(P ) =
i

4
Nfg

2

∫

d4K

(2π)4
8

[

K·P−2n·K
n·P K·P+(n·K)

2

(n·P )2 P
2

]

×∆̃S(K)∆̃A(K−P )

=
i

4
Nfg

2

∫

d4K

(2π)4
8

[

K·P−2n·K
n·P K·P+(n·K)

2

(n·P )2 P
2

]

×(−2πi)δ(K2)[1−2f(k0)]

× 1

(K−P )2−isgn(k0−p0)ε
. (41)
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In the calculation, we use the HTL approximation,
i.e. the high temperature limit. The internal momentum
K is hard, and the external momentum P is soft. The
transverse part of the quark loop in the light cone gauge
in the HTL approximation from Eq. (35) is obtained by

ΠT(P ) =
i

4
Nfg

2

∫

d4K

(2π)4
8

[

K·P−2n·K
n·P K·P+(n·K)

2

(n·P )2 P
2

]

×∆̃S(K)∆̃A(K−P )

=
1

12
Nfg

2T 2

[

(p0)
2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

]

. (42)

Similarly, the longitudinal part of the quark loop in
the light cone gauge in the HTL approximation is

1

n2
P

ΠL(P ) =
i

2
g2Nf

∫

d4K

(2π)4

[

8
(n·K)2
(n·P )2 P

2−16n·K
n·P K·P

+8
(K·P )2
P 2

−4K·P+4K2

]

∆̃S(K)∆̃A(K−P )

= −1
6
Nfg

2T 2

[

P 2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

]

. (43)

3.3 Gluon loop and gluon tadpole of gluon HTL

self energy in the light cone gauge

The gluon loop and the gluon tadpole in Fig. 2 are
expressed as

Πµα
ab (P ) =

i

2

∫

d4K

(2π)4
V µνρ(P,−K,K−P )idνβ(K)V βγα

×(K,P−K,−P )idργ(K−P )G(K)G(K−P )

+
i

2

∫

d4K

(2π)4
idρσ(K)G(K)δ

cdV µαρσ
abcd . (44)

where dνβ(K)G(K), d
ργ(K−P )G(K−P ) and dρσ(K)G(K)

are all the bare gluon propagators.

Fig. 2. The gluon loop and the gluon tadpole in
the light cone gauge.

The tensor of the bare gluon propagator in the light
cone gauge is

dνβ(K)=−gνβ+
nνKβ+nβKν

n·K . (45)

The three-gluon vertexes are

V µνρ(P,−K,K−P )
= gfacd

[

gµν(P+K)ρ+gνρ(−2K+P )µ+gµρ(K−2P )ν
]

,

V βγα(K,P−K,−P )
= gf cdb

[

gβγ(2K−P )α+gγα(2P−K)β+gβα(−P−K)γ
]

.

(46)

The four-gluon vertex is

V µαρσ
abcd = −ig2[fabef cde(gµρgασ−gµσgαρ)

+facef bde(gµαgρσ−gµσgαρ)
+fadef bce(gµαgρσ−gµρgασ)]. (47)

The transverse part of the gluon self energy in the
HTL approximation from Eq. (35) is

ΠT(P ) =
i

4
CAg

2

∫

d4K

(2π)4

[

−8K·P−12P 2+16
n·K
n·P K·P

−8(n·K)
2

(n·P )2 P
2+8

n·P
n·(K−P ) (K

2−P 2)

−8 n·P
n·K (K

2−2K·P )
]

G(K)G(K−P )

=
1

6
CAg

2T 2

[

(p0)
2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p−iε

]

+
i

4
CAg

2

∫

d4K

(2π)4

[

8
n·P

n·(K−P ) (K
2−P 2)

−8 n·P
n·K (K

2−2K·P )
]

G(K)G(K−P ). (48)

The last two light cone terms in the fourth line come from
the tensors of the gluon propagators (nνKβ+nβKν)/(n·K)
and [nρ(K−P )γ+nγ(K−P )ρ]/((n·(K−P )). Replacing K
by P−K in the first light cone term, the sum of the two
light cone terms is

− i

4
CAg

2

∫

d4K

(2π)4
16

n·P
n·K

(K2−2K·P )
K2(K−P )2 . (49)

At zero temperature, the divergence of the integral calcu-
lation of the one-loop diagram in Fig. 2 has been renor-
malized successfully. Here we only consider the contribu-
tion at finite temperature. We use the ML prescription
of 1/(n·K) in Eq. (18). By calculating with the contour
integral, we find there is no divergence in the HTL ap-
proximation, and the power of that part is of order g3T 2,
which can be ignored in the result. The proof is in the
Appendix.
Similarly, the longitudinal part of the gluon self en-

ergy in the HTL approximation is obtained by

1

n2
P

ΠL(P ) =
i

2
CAg

2

∫

d4K

(2π)4

[

4K2−4K·P+2P 2+8
(K·P )2
P 2

−16n·K
n·P K·P+8(n·K)

2

(n·P )2 P
2+

n·P
n·(K−P )

2K2(K−P )2
P 2

− n·P
n·K

2K2(K−P )2
P 2

]

G(K)G(K−P )=−1
3
CAg

2T 2

[

P 2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

]
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+
i

2
CAg

2

∫

d4K

(2π)4
1

P 2

[

2
n·P

n·(K−P )−2
n·P
n·K

]

. (50)

There are two light cone terms in the third line. By
calculating, the integral with the light cone terms is zero

i

2
CAg

2

∫

d4K

(2π)4
1

P 2

[

2
n·P

n·(K−P )−2
n·P
n·K

]

=0. (51)

During the calculation, we set the momentum −→p is
on the positive direction of the z axis. −→n in Eq. (16) is in
the negative direction of the z axis. The angle between−→
k and −→p is θ. Here we use the Keldysh representa-
tion in the real time formalism and consider the T > 0
contribution. In the HTL approximation, the internal
momentum K is soft, and the external momentum P is
hard.

3.4 Transverse and longitudinal parts of the

gluon HTL self energy

Adding up the results from the longitudinal and
transverse parts of the quark loop in Fig. 1, and the
gluon loop and the gluon tadpole in Fig. 2 in the HTL
approximation, we obtain the following expression

ΠT(P )=
1

6
(CA+

1

2
Nf)g

2T 2

[

(p0)
2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

]

,

1

n2
P

ΠL(P )=−
1

3
(CA+

1

2
Nf)g

2T 2

[

P 2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

]

.

(52)

The factor 1
2
in the coefficient (CA+

1
2
Nf) stems from

that these integrals
∫∞
0

kn(k)dk and
∫∞
0

kf(k)dk, which
have different distribution functions. We get the same
result for the transverse and longitudinal HTL gluon self
energy in the light cone gauge and the Coulomb gauge,
although these two gauges have different projection ten-
sors.
In the static limit p0→0, the longitudinal and trans-

verse parts of gluon HTL self energy in the light cone
gauge reduce to

lim
p0→0

1

n2
P

ΠL(P ) =
1

3
g2T 2(CA+

1

2
Nf)=m

2
D ,

lim
p0→0

ΠL(P ) =
1

6
g2T 2(CA+

1

2
Nf)=

1

2
m2

D ,

lim
p0→0

ΠT(P ) = 0. (53)

In the static limit p0→0, the longitudinal and trans-
verse parts of the gluon HTL self energy in the Coulomb
gauge reduce to

lim
p0→0

ΠL(P ) =
1

3
(CA+

1

2
Nf)g

2T 2=m2
D ,

lim
p0→0

ΠT(P ) = 0. (54)

We think the axial vector nµl =(
√

2
2
,0,0,−

√
2

2
) in the

light cone gauge is rotated with respect to the axial vec-
tor nµc=(1,0,0,0) in the Coulomb gauge, so that it gives
rise to some changes.
In the static limit, nµnνΠ

µν(P ) of the gluon HTL self
energy in the Coulomb gauge in Eq. (1) is

lim
p0→0

nµnνΠ
µν(P ) = lim

p0→0
Π00(P )

= − lim
p0→0

L00
P

n2
P

ΠL(P )=−m2
D , (55)

where the axial vector nµc=(1,0,0,0) in Eq. (3).
Because the axial vector nµl in the light cone gauge

is different from nµc in the Coulomb gauge, we com-
pare Π00(P ) in the light cone gauge with Π00(P ) in the
Coulomb gauge.
In the static limit, Π00(P ) of the gluon HTL self en-

ergy in the light cone gauge in Eq. (26) is

lim
p0→0

Π00(P ) = lim
p0→0

−L̃00
P

1

n2
P

ΠL(P )

= −g2T 2

3
(CA+

1

2
Nf)=−m2

D , (56)

where the axial vector nµl = (
√

2
2
,0,0,−

√
2

2
) in Eq. (16).

The external momentum P µ=(p0,0,0,p3), and
−→p is on

the z axis. The result is the same as that in the Coulomb
gauge.

3.5 HTL resummed gluon propagator in the

light cone gauge and its spectral function

The HTL resummed gluon propagator in the light
cone gauge is

∆µν(P ) =
T̃ µν
P

−P 2+ΠT(P )
+

−nµnνP 2

(n·P )2

−P 2+
1

n2
P

ΠL(P )

=
−T̃ µν

P

P 2−1
2
m2

D

[

(p0)
2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

]

+

nµnνP 2

(n·P )2

P 2+m2
D

[

P 2

p2
−p0P

2

2p3
ln
p0+p+iε

p0−p+iε

] . (57)

The transverse and longitudinal spectral functions
are expressed as

ρT(P ) = 2πZTsgn(p0)
[

δ(p0−wT)+δ(p0+wT)
]

+βT(P ),

ρL(P ) = 2πZLsgn(p0)
[

δ(p0−wL)+δ(p0+wL)
]

+βL(P ).

(58)

The spectral function ρT/L(P ) is made up of the pole
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term and the cut term βT/L(P ).
For P 2 space-like, i.e p2

0<p2, the function ln p0+p+iε

p0−p+iε
generates the imaginary part,

ln
p0+p±iε
p0−p±iε

=ln

∣

∣

∣

∣

p0+p

p0−p

∣

∣

∣

∣

∓iπθ(p2−p2
0). (59)

So the cut terms of the transverse and longitudinal
part of the HTL resummed gluon propagator in the light
cone gauge are obtained by

βT(P )=

1

2
πm2

D

p0P
2

p3
θ(p2−p2

0)

[

P 2−1
2
m2

D

[ (p0)
2

p2
−p0P

2

2p3
ln|p0+p

p0−p
|
]

]2

+
1

16
m4

Dπ
2
(p0)

2P 2P 2

p6

,

βL(P )=

−πm2
D

p0

p
θ(p2−p2

0)

[

p2+m2
D

[

1− p0

2p
ln|p0+p

p0−p
|
]

]2

+
1

4
m4

Dπ
2
(p0)

2

p2

, (60)

where θ(p2−p2
0) is the step function, and the Debye screen-

ing mass m2
D=

1
3
(CA+

1
2
Nf)g

2T 2.
Via the expression of the HTL resummed gluon prop-

agator in the light cone gauge, the transverse dispersion
relation is given by

ω2
T−p2−m2

D

[ω2
T

p2
−ωT(ω

2
T−p2)

2p3
ln
ωT+p

ωT−p
]

=0, (61)

where ωT is the solution of the above transverse disper-
sion relation.
The longitudinal dispersion relation is given by

p2+m2
D

[

1−ωL

2p
ln
ωL+p

ωL−p
]

=0, (62)

where ωL is the solution of the above longitudinal
dispersion relation.
Obviously the transverse and longitudinal parts have

the same dispersion relation as that of the HTL re-
summed gluon propagator in the Coulomb gauge. How-
ever, these two kinds of gauge have different expres-
sions for the transverse and longitudinal projection ten-
sors, and then have different expressions for the HTL
resummed gluon propagator. As they have the same
dispersion relation, for more analyses you can refer to
Ref. [32].
The residue for the transverse part is

ZT = −
([

∂(P 2−ΠT)

∂p0

]

p0=ωT(p)

)−1

=
ωT(ω

2
T−p2)

m2
Dω

2
T−(ω2

T−p2)2
. (63)

The residue for the longitudinal part is

ZL = −
([∂ p2

P2 (P
2− 1

n2
p
ΠL)

∂p0

]

p0=ωL(p)

)−1

=
ωL(ω

2
L−p2)

p2(p2−m2
D−ω2

L)
. (64)

More discussion of the transverse and longitudinal
residues can also be found in Ref. [32] too.
Below is the proof of the reason why we can get the

same dispersion relation. From the famous Ward iden-
tity,

P µΠµν(P )=p0Π0ν−p3Π3ν
=0, (65)

we can get the below relation,

Π
3ν
=
p0

p3

Π0ν , (66)

where the external momentum P µ=(p0,0,0,p3), p3 > 0,
and −→p is in the positive direction of the z axis.
Using the above relation, the longitudinal part of the

gluon HTL self energy can become:

L̃µν
P Πµν(P ) = −

nµnνP 2

(n·P )2 Πµν(P )

=− nνP 2

(n·P )2

√
2

2
(Π0ν+Π3ν)

=− P 2

(n·P )2

√
2(p0+p3)

2p3

nνΠ0ν

=− P 2

(n·P )2
(p0+p3)

2

2(p3)2
Π00(P )

=− P 2

(p3)2
Π00(P ), (67)

where L̃µν
P is the longitudinal projection tensor in the

light cone gauge in Eq. (28), Π00(P ) is the longitudinal
part of the gluon HTL self energy in the Coulomb gauge
in Eq. (11), and the axial vector in the light cone gauge

nµl =(
√

2
2
,0,0,−

√
2

2
). The result tells us that the longitu-

dinal part of the gluon HTL self energy in the light cone
gauge is the same as that in the Coulomb gauge.
Similarly, the transverse part of the gluon HTL self
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energy can become

1

2
T̃ µν
P Πµν(P ) =

1

2

[

gµν+
nµnνP 2

(n·P )2
]

Πµν(P )

= −1
2
m2

D+
1

2

P 2

(p3)2
Π00(P ), (68)

where T̃ µν
P is the transverse projection tensor in the light

cone gauge in Eq. (27). So the transverse part of the
gluon HTL self energy in the light cone gauge is the same
as that in the Coulomb gauge.
In the proof, we use the famous Ward identity. −→p is

in the positive direction of the z axis, and −→n is in the
negative direction of the z axis. We can get the same
transverse and longitudinal parts of the gluon HTL self
energy in the two gauges, and finally get the same dis-
persion relation of the transverse and longitudinal parts.

4 HTL resummed quark propagator in

the light cone gauge

K

P −KP P

Fig. 3. The quark self energy in the light cone gauge.

The quark self energy in Fig. 3 can be expressed as

Σ(P )=iCFg
2

∫

d4K

(2π)4
γµF (P−K)γνdµν(K)G(K), (69)

where CF =
4
3
is the color factor, F (P−K) is the bare

quark propagator, and dµν(K)G(K) is the bare gluon
propagator.
The retarded quark self energy in the real time for-

malism is expressed as

ΣR(P ) = Σ11(P )+Σ12(P )

= iCFg
2

∫

d4K

(2π)4
γµ(¡P−½½K)γνdµν(K)

×[∆̃11(P−K)∆11(K)−∆̃12(P−K)∆12(K)].

(70)

Using the relation in Eq. (24), we get

∆̃11(P−K)∆11(K)−∆̃12(P−K)∆12(K)

=
1

2
[∆̃R∆S+∆̃R∆A+∆̃S∆R+∆̃A∆R]

=
1

2
[∆̃R∆S+∆̃S∆R], (71)

where ∆̃ and ∆ respectively represent the Green func-
tions of quark and gluon. The terms ∆̃R∆A and ∆̃A∆R

are both zero temperature parts, and we neglect them
here.
The quark self energy is decomposed into two parts,

ΣR(P )=−a(p0,p)¡P−b(p0,p)γ
0 ,

a(p0,p)=
1

4p2

[

Tr(¡PΣR)−p0Tr[γ0ΣR]
]

,

b(p0,p)=
1

4p2

[

P 2Tr[γ0ΣR]−γ0Tr(¡PΣR)
]

. (72)

With the above relation, we can do the following cal-
culation,

Tr[¡PΣR(P )]=iCFg
2

∫

d4K

(2π)4
[

−8K·P+ n·P
n·K (−8K

2+16K·P )
]1

2

[

∆̃R(P−K)∆S(K)+∆̃S(P−K)∆R(K)
]

. (73)

Replacing K by P−K in this term ∆̃S(P−K)∆R(K), this expression becomes:

Tr[¡PΣR(P )] = iCFg
2

∫

d4K

(2π)4

[

[

8(K·P−P 2)+
8n·P

n·(K−P ) (K
2−P 2)

]1

2
∆̃S(K)∆R(P−K)

+
[

−8K·P+ n·P
n·K (−8K

2+16K·P )
]1

2
∆̃R(P−K)∆S(K)

]

= iCFg
2

∫

d4K

(2π)4

[

[

4(K·P−P 2)∆̃S(K)∆R(P−K)−4K·P∆̃R(P−K)∆S(K)
]

+
[ 4n·P
n·(K−P ) (K

2−P 2)∆̃S(K)∆R(P−K)+
n·P
n·K (−4K

2+8K·P )∆̃R(P−K)∆S(K)
]

]

=4m2
F , (74)

In the HTL approximation, we can prove there is
no spurious divergence from the light cone terms in the
fourth line, and these finite terms are more power sup-

pressed than the covariant terms, so we ignore these light
cone terms.
In the same way, we can get
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Tr[γ0ΣR(P )] = CFg
2

∫

d4K

(2π)4
8[−k0+k0

n·P
n·K−

n0

n·K (K
2−K·P )]1

2

[

∆̃R(P−K)∆S(K)+∆̃S(P−K)∆R(K)
]

= CFg
2

∫

d4K

(2π)4

[

4(k0−p0)∆̃S(K)∆R(P−K)−4k0∆̃R(P−K)∆S(K)

+4
[

(k0−p0)
n·P

n·(K−P )+
n0

n·(K−P ) (K
2−K·P )

]

∆̃S(K)∆R(P−K)

+4
[

k0

n·P
n·K−

n0

n·K (K
2−K·P )

]

∆̃R(P−K)∆S(K)

]

= 2m2
F

1

p
ln
p0+p+iε

p0−p+iε
. (75)

In the HTL approximation, it can be proved that
there is no spurious divergence from the light cone terms
in the third and fourth lines, and these finite terms are
more power suppressed than the covariant terms, so we
ignore these light cone terms too.

So the result shows the quark HTL self energy is the
same as that of covariant gauge [40]. With the quark
HTL self energy, we can derive the same quark resummed
propagator.
The HTL resummed quark propagator is

S∗(P ) =
1

D+(P )

γ0−−̂→p ·−→γ
2

+
1

D−(P )

γ0+
−̂→p ·−→γ
2

,

D±(P ) = −p0±p+
m2

F

p

[1

2
ln
p0+p+iε

p0−p+iε
∓( p0

2p
ln
p0+p+iε

p0−p−iε
−1)

]

, (76)

where the effective quark massmF=g
2T 2/6 in QCD, and

−̂→p = −→p
|−→p | .

5 Damping rates of hard quarks and glu-

ons in the light cone gauge

The damping rates of the heavy fermions have been
calculate in Refs. [35, 41]. In a similar way, we use the
HTL resummed gluon propagator in the light cone gauge
to calculate the damping rates of the hard quarks and
gluons. From the above analyses, we know the HTL re-
summed gluon propagator in the Coulomb gauge and the
light cone gauge have the same denominator and differ-
ent projection tensors in the numerator. We can prove
that in the general case, using the HTL resummed gluon
propagator in the two gauges gives the same result for
the damping rates of hard quarks and gluons.

Q

P

Q− P Q

Fig. 4. The contribution to the damping rate of
the hard quark in the light cone gauge.

The quark self energy in Fig. 4 is expressed as

Σ(Q)=ig2CF

∫

d4P

(2π)4
[γµF (Q−P )γνGµν(Q)], (77)

where Gµν(Q) is the HTL resummed gluon propagator
in the light cone gauge, and F (Q−P ) is the bare quark
propagator.
In the real time formalism, the retarded quark self

energy is expressed as

ΣR(Q) = Σ11(Q)+Σ12(Q)

= ig2CF

∫

d4P

(2π)4
[γµ(¶¶Q−¡P )γν ]

×[∆̃11(Q−P )∆µν
11 (P )−∆̃12(Q−P )∆µν

12 (P )].

(78)

Using the relation of the Keldysh representation in
Eq. (24), we have

∆̃11(Q−P )∆µν
11 (P )−∆̃12(Q−P )∆µν

12 (P )

=
1

2
[∆̃R∆

µν
S +∆̃R∆

µν
A +∆̃S∆

µν
R +∆̃A∆

µν
R ]. (79)

By power counting, the leading contribution at finite
temperature comes from the first term in the bracket
∆̃R∆

µν
S , which is O(1/g

3). ∆̃R∆
µν
A and ∆̃A∆

µν
R are both

O(1/g2), so we ignore them here. From the below equa-
tions, ∆̃S∆

µν
R with the Fermi-Dirac distribution function

is O(g) more power suppressed than ∆̃R∆
µν
S with the

Bose-Einstein distribution function.
The internal momentum P is soft, p0∼gT . The Bose-

Einstein distribution function nB(p0) in the term ∆̃R∆
µν
S

is O(1/g),

1

e
|p0|
T −1

∼ T

|p0|
∝ 1
g
. (80)
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However, the Fermi-Dirac distribution function f(p0−
q0) in the term ∆̃S∆

µν
R is O(1). The external momentum

Q is hard, q0∼T ,
1

e
|q0−p0|

T +1
∼O(1). (81)

The symmetric propagator of the soft gluon in the
light cone gauge is

∆µν
S (P )=−2πi

[

−T̃ µν
P ρT(P )+

nµnνP 2

(n·P )2
p2

P 2
ρL(P )

]

[1+2nB(p0)],

(82)
where we only consider the contribution at finite tem-
perature.
Using the below equation, we can calculate the imag-

inary part of the quark self energy

Im∆̃(Q−P ) = Im
[

1

(Q−P )2+isgn(q0−p0)ε

]

= −πsgn(q0−p0)δ[(Q−P )2]. (83)

In the integral, we use the δ function to integrate out
cosθ,

δ[(Q−P )2]= 1

2pq
δ

[

cosθ−p0

p
+

P 2

2pq

]

≈ 1

2pq
δ

[

cosθ−p0

p

]

,

(84)

where the term P2

2pq
∼g, which we can ignore.

The transverse projection tensor in the light cone
gauge is

T̃ µν
P =g

µν−nµP ν+nνP µ

n·P +
nµnνP 2

(n·P )2 , (85)

where the internal soft momentum P µ=(p0,0,0,p3).
By calculating we can find the relation T̃ 0ν

P =0,T̃
3ν
P =

0, so we have

T̃ ij
P =−δij , (i,j=1,2). (86)

The longitudinal and transverse spectral functions in
the limit p0→0 are

ρL(P )≈
p0m

2
D

2p

1

(p2+m2
D)

2
,

ρT(P )≈
p0pm

2
D

4

1

p6+
1

16
π

2m4
D(p0)2

, (87)

where we find no static magnetic screening.
With the above equations, we can calculate the imag-

inary part of Tr[¶¶QΣR(Q)],

Im
[

Tr[¶¶QΣR(Q)]
]

= −4π2CFg
2

∫

d4P

(2π)4

[

4q2
⊥ρT(P )+4

(n·Q)2p2

(n·P )2 ρL(P )

]

×nB(p0)sgn(q0−p0)δ[(Q−P )2]

= − 1
2π

CFg
2Tq

[

1+2ln
1

g

]

. (88)

The damping rate for the hard quark is

Γq(Q) = −
1

2q
Im
[

Tr[¶¶QΣR(Q)]
]

=
1

4π
CFg

2T [1+2ln
1

g
]. (89)

The first term in the bracket comes from the longitudi-
nal contribution of the HTL resummed gluon propagator,
and the second term comes from the transverse contribu-
tion. In the transverse part there is an IR cutoff, which
results from the magnetic mass of the order mmagn∼g2T .

Q

P

P −Q

Q

Fig. 5. The gluon loop diagram gives the leading
order contribution to the damping rate of hard
gluons in the light cone gauge, and the quark loop
diagram is suppressed due to the Fermi-Dirac dis-
tribution function.

We can express the gluon loop in Fig. 5 as

Πab
µα(Q) =

i

2

∫

d4P

(2π)4
Vµνρ(Q,−P,P−Q)iGνβ(P )Vβγα

×(P,Q−P,−Q)idργ(P−Q)G(P−Q), (90)

where Gνβ(P ) is the HTL resummed gluon propagator
in the light cone gauge in Eq. (57), dργ(P−Q)G(P−Q)
is the bare gluon propagator in the light cone gauge,
and the three gluon vertexes Vµνρ(Q,−P,P −Q) and
Vβγα(P,Q−P,−Q) are given in Eq. (46).
Using the relation of the Keldysh representation in

Eq. (24), we have

∆νβ
11 (P )∆11(Q−P )−∆νβ

12 (P )∆21(Q−P )

=
1

2
[∆νβ

R ∆S+∆
νβ
S ∆A+∆

νβ
A ∆A+∆

νβ
R ∆R]. (91)

Similarly, by power counting, the second term∆νβ
S ∆A

gives the leading order contribution O(1/g3) at finite
temperature. ∆νβ

A ∆A and ∆νβ
R ∆R are both O(1/g2).

The internal momentum P is soft, p0∼ gT . The Bose-
Einstein distribution function nB(p0) in the term ∆νβ

S ∆A

is O(1/g),
1

e
|p0|
T −1

∼ T

|p0|
∝ 1
g
. (92)

However, the Bose-Einstein distribution function
nB(p0−q0) in the term ∆νβ

R ∆S is O(1). The external
momentum Q is hard, q0∼T ,

1

e
|p0−q0|

T −1
∼O(1). (93)
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The three-gluon vertexes are simplified to

Vµνρ(Q,−P,P−Q)≈gfacd[Qρgµν+Qµgνρ−2Qνgρµ],

Vβγα(P,Q−P,−Q)≈gf cdb[−Qαgβγ+2Qβgγα−Qγgαβ],

(94)

where the external momentum Q is hard, and the inter-
nal momentum P is soft, which is ignored in the above
expression.
The numerator of the bare propagator in the light

cone gauge dργ(P−Q) is

dργ(P−Q) = −gργ+nρ(P−Q)γ+nγ(P−Q)ρ
n·(P−Q)

≈ −gργ+nρQγ+nγQρ

n·Q . (95)

In the calculation, we have

Qρd
ργ(P−Q)= nγQ2

n·Q =0, (96)

where the external hard momentum Q is on shell, Q2=0.
We can therefore simplify the calculation.
Now we calculate the imaginary part of the transverse

part ΠT(Q),

ImΠT(Q)

=
1

2

(

δij−qiqj

q2

)

ImΠij(Q) (i,j=1,2,3)

= −CAg
2
π

2

∫

d4P

(2π)4

[

4q2
⊥ρT(P )+4

(n·Q)2p2

(n·P )2 ρL(P )

]

×nB(p0)sgn(q0−p0)δ[(Q−P )2]

= − 1
8π

CAg
2Tq

[

1+2ln
1

g

]

. (97)

The damping rate for hard gluons is

Γg(Q)=−
1

2q
Im[ΠT(Q)]=

1

16π
CAg

2T

[

1+2ln
1

g

]

. (98)

The first term in the bracket stems from the longitudi-
nal contribution of the HTL resummed gluon propagator,
and the second term stems from the transverse contribu-
tion. For the transverse part we take an IR cutoff too.
We work out the result for the damping rates of hard

quarks and gluons in the limit p0 → 0. Below, we can
prove the general case that the expressions for the trans-
verse and longitudinal projections in the above calcula-
tion of the damping rates are the same in the two gauges.
Via this function δ[(Q−P )2], we have the relation for

cosθ,

cosθ≈ p0

p
=

p0

|p3|
, (99)

where the internal soft momentum P µ=(p0,0,0,p3), and
the angle θ is arbitrary.

When p3>0, we have

cosθ=
q3

q
=
q3

q0

, (100)

where θ is the angle between −→p and −→q .
The expression for the longitudinal part in the calcu-

lation of the damping rate is

(n·Q)2
(n·P )2P

2 =
(q0+q3)

2

(p0+p3)2
P 2=

(q0)
2(1+cosθ)2

(p3)2(1+cosθ)2
P 2

=
(q0)

2

(p3)2
P 2=

(q0)
2

p2
P 2 . (101)

When p3<0, we have

cosθ=−q3

q
=−q3

q0

. (102)

The expression for the longitudinal part in the calcu-
lation is

(n·Q)2
(n·P )2P

2 =
(q0+q3)

2

(p0+p3)2
P 2=

(q0)
2(1−cosθ)2

(p3)2(1−cosθ)2
P 2

=
(q0)

2

(p3)2
P 2=

(q0)
2

p2
P 2 . (103)

We have the same expression for the longitudinal pro-
jection in the two gauges.
The transverse projection tensor of the HTL re-

summed gluon propagator in the Coulomb gauge is

δij−pipj

p2
. (104)

By calculating, we have

δ3j−p3pj

p2
=0, (105)

where the internal soft momentum P µ=(p0,0,0,p3). So
we can get the same transverse projection tensor in the
two gauges.
We have a simple expression for the transverse pro-

jection tensor,
δij , (i,j=1,2). (106)

Here we have shown that the transverse and longitu-
dinal projection tensors in the above calculation of the
damping rates are the same in the two gauges when the
transverse momentum of the internal momentum P is
zero. So we can get the same result for the damping
rates of hard quarks and gluons in the two gauges.

6 Conclusion

In this paper, we have derived the HTL resummed
gluon propagator in the light cone gauge. We obtained
the transverse and longitudinal components of the gluon
self energy in the light cone gauge with the HTL approx-
imation. We showed that the quark HTL energy is inde-
pendent of the light-cone gauge, and obtained the same
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HTL resummed quark propagator as that in covariant
gauges.
Although the derivation processes of the longitudinal

and transverse components of HTL gluon self energy in-
volve light cone terms like 1/(n·K), we can prove these
light cone terms are finite, more power suppressed than
the covariant terms, and ignore them in the finite tem-
perature parts. In the zero temperature parts, these light
cone terms are spurious poles, and can be renormalized,
which we do not consider. By calculating, we obtain the
same transverse and longitudinal gluon dispersion rela-
tions in the light cone gauge and the Coulomb gauge,
although in the two gauges we have different transverse
and longitudinal projection tensors. The axial vector
nµl = (

√
2

2
,0,0,−

√
2

2
) has a longitudinal part and is ro-

tated with respect to the axial vector nµc = (1,0,0,0) in
the Coulomb gauge, which brings about changes. Cor-
respondingly, in the static limit, we compare the com-
ponent Π00(P ) of the gluon HTL self energy in the light
cone gauge with Π00(P ) in the Coulomb gauge, and find
the result in the light cone gauge is the same as that in
the Coulomb gauge.
We have shown the transverse and longitudinal spec-

tral functions of the HTL resummed gluon propagator in

the light cone gauge and the transverse and longitudinal
dispersion relation. However, in the light cone gauge, the
transverse and longitudinal projection tensors are both
based on the the axial vector nµl , and they have different
expressions from the transverse and longitudinal projec-
tion tensors in the Coulomb gauge, so the expression for
the HTL resummed gluon propagator in the light cone
gauge is different from that in the Coulomb gauge.
With the HTL resummed gluon propagator in the

light cone gauge, we calculated the damping rates of
hard on-shell quarks and gluons in a particular limit.
We have demonstrated that in the general case, we can
obtain the same result for the damping rates in the two
gauges. Although the expression for the HTL resummed
gluon propagator in the light cone gauge is different from
that in the Coulomb gauge, we find the damping rates
are gauge independent.
Using those HTL resummed propagators in the light

cone gauge, we can further consider corrections from soft
processes for some physical quantities at high tempera-
ture in heavy ion collisions.

We are grateful to Xin-nian Wang for helpful discus-

sions.

Appendix

At zero temperature, the kind of integral in Eq. (49) has
a divergence, which has been renormalized successfully. How-
ever, in the below calculation we find that this integral has
no divergence in the HTL approximation.

We use the contour integral in Fig. A1 to substitute the
frequency sum of boson at finite temperature [42],

T

∞
∑

n=−∞
f(p0=2nπT i) =

1

2πi

∫ i∞

−i∞
dp0

1

2
[f(p0)+f(−p0)]

+
1

2πi

∫ i∞+ε

−i∞+ε

dp0[f(p0)+f(−p0)]

×
1

eβp0−1
. (A1)

This equation has a zero temperature part and a finite tem-
perature part, and we only consider the the finite temperature
part here.

Below we prove this integral at finite temperature does
not diverge in Eq. (49),

1

2πi

∫ i∞+ε

−i∞+ε

dk0

∫

d3−→k

(2π)3
K2−2K·P

n·KK2(K−P )2
. (A2)

where n·K=n0k0−
−→n
−→
k =n(k0+kcosθ), the angle θ is the angle

between
−→
k and −→p , and the axial vector n

µ
l =(

√
2

2
,0,0,−

√
2

2
).

εO

Fig. A1. The boson contour integral.

When cosθ>0, using the equation of the integral contour
in Eq. (A1), we have

1

2πi

∫ i∞+ε

−i∞+ε

dk0

∫

d3−→k

(2π)3

[

K2−2K·P

n(k0+kcosθ)K2(K−P )2

+
K2−2(−k0p0−kpcosθ)

n(−k0+kcosθ)K2[K2−2(−k0p0−2kpcosθ)+P 2]

]

×
1

eβk0−1
. (A3)
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The first term in the bracket has poles at k0 = k and

k0 = p0+ |
−→
k −−→p |, and the residues of the two poles do

not have the term of 1
cosθ−1

, so there is no divergence at
cosθ=1. The second term has poles at k0=k, k0=kcosθ and

k0=−p0+|
−→
k −−→p |. The residues with the two poles of k0=k

and k0=kcosθ contain the terms of 1
cosθ−1

, but the sum of
the two residues is finite when cosθ→1,

lim
cosθ→1

1

(−k+kcosθ)2k
−

1

k2(cos2θ−1)
=

1

2k2(cosθ+1)
. (A4)

When cosθ<0, we have

1

2πi

∫ i∞+ε

−i∞+ε

dk0

∫

d3−→k

(2π)3

[

K2−2K·P

n(k0+kcosθ)K2(K−P )2

+
K2−2(−k0p0−kpcosθ)

n(−k0+kcosθ)K2[K2−2(−k0p0−2kpcosθ)+P 2]

]

×
1

eβk0−1
. (A5)

The second term in the bracket has poles at k0 = k and

k0=−p0+|
−→
k−−→p |, and the residues of the two poles do not have

the term of 1
cosθ+1

, so there is no divergence at cosθ=−1. The

first term has poles at k0=k, k0=−kcosθ and k0=p0+|
−→
k−−→p |.

The residues with the two poles of k0 = k and k0 =−kcosθ
contain the terms of 1

cosθ+1
, but the sum of the two residues

is finite when cosθ→−1,

lim
cosθ→−1

1

k(1+cosθ)2k
+

1

k2(cos2θ−1)
= lim

cosθ→−1

1

2k2(cosθ−1)
.

(A6)
Combining the situation cosθ>0 and cosθ<0, the inte-

gral at finite temperature in Eq. (49) does not diverge. The
integral is O(g3T 2), which can be ignored.
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