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α decay properties of 296Og within the two-potential approach *
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Abstract: The present work is a continuation of our previous paper [J.-G. Deng, et al., Chin. Phys. C, 41:

124109 (2017)]. In the present work, the α decay half-life of the unknown nucleus 296Og is predicted within the

two-potential approach and the hindrance factors of all 20 even-even nuclei in the same region as 296Og, i.e. proton

number 82<Z<126 and neutron number 152<N<184, from 250Cm to 294Og, are extracted. The prediction is 1.09

ms within a factor of 5.12. In addition, based on the latest experimental data, a new set of parameters of α decay

hindrance factors for the even-even nuclei in this region, considering the shell effect and proton-neutron interaction,

are obtained.
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1 Introduction

The synthesis and identification of superheavy nuclei
has been a hot topic in nuclear physics since the predic-
tion of the existence of a superheavy island in the 1960s
[1–5]. During more than ten years, the superheavy nu-
clei, from Z = 113 to Z = 118, have been synthesized by
hot-fusion reactions between 48Ca beams and radioactive
actinide targets [6–11]. Presently, the synthesis of 296Og
is excepted to be via the reaction 251Cf(48Ca, 3n)296Og
at the Flerov Laboratory of Nuclear Reactions (FLNR)
in Dubna, Russia [12, 13]. If the experiment succeeds,
296Og will be the nucleus with the largest number of pro-
tons and neutrons of any observed nucleus, and be closest
to the predicted N=184 shell closure [3, 4]. Spontaneous
fission and α decay are the two main decay modes of su-
perheavy nuclei. For superheavy nuclei around Rf, α
decay is a weaker candidate than spontaneous fission [5].
For the most of the recently synthesized proton-rich nu-
clei, α decay is the dominant decay mode [5]. Recently,
Bao et al. [14] also predicted that α decay is the main
decay mode for 296Og.

An accurate prediction of α decay half-life will be
used as a reference for experiments synthesizing 296Og.
Recently, Sobiczewski [13] predicted the α decay half-
life T1/2 of 296Og by adopting a 3-parameter phenomeno-
logical formula for T1/2 [15], while the α decay energy
Qα was obtained from nine different mass models as fol-
lows: Möller et al. (FRDM) [16], Duflo and Zuker (DZ)
[17], Nayak and Satpathy (INM) [18], Wang and Liu
(WS3+) [19], Wang et al. (WS4+) [20, 21], Muntian et
al. (HN) [22, 23], Kuzmina et al. (TCSM) [24], Goriely
et al. (HFB31) [25], and Liran et al. (SE) [26]. To
obtain a more accurate T1/2 of 296Og, the method of se-
lecting a more precise Qα is at the heart of the mat-
ter. Sobiczewski [13] found that the deviation between
measured α decay half-life and calculation, adopting Qα

from WS3+ [19], was minimal, by analyzing calcula-
tions of nine different mass models. However, the pa-
rameters of the phenomenological formula [15] adopted
by Sobiczewski were extracted from NUBASE2003 [27]
and AME2003 [28, 29] for nuclei with Z=84–110, and
N=128–160. Very recently, Mohr [30] adopted the sys-
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tematic behavior of strength parameter for the double-
folding potential of α-core to predict the Qα and T1/2

of 296Og. The predicted results are Qα=11.655 ± 0.095
MeV and T1/2 = 0.825 ms with an uncertainty factor of
4.

In our previous works [31–34], we used the two-
potential approach (TPA) [35, 36] to systematically
study the α decay hindrance factors and/or preforma-
tion probabilities for even-even, odd-A and doubly-odd
nuclei, and we found that the behaviors of the α decay
hindrance factors and/or preformation probabilities of
the same kinds of nuclei (even-even nuclei, odd-A nuclei
and doubly-odd nuclei) in the same region are similar,
while the regions are divided by the magic numbers of
proton and neutron. In the present work, in order to re-
duce the uncertainty factor of the prediction of 296Og, we
systematically study all 20 even-even nuclei of 82 <Z<
126 and 152 <N< 184 in the same region as 296Og, from
250Cm to 294Og. The α decay energies and half-lives are
taken from the latest evaluated nuclear properties ta-
ble NUBASE2016 [37] and evaluated atomic mass table
AME2016 [38, 39], except for the Qα of 296Og, which is
from WS3+ [19].

This article is organized as follows. In the next sec-
tion, the theoretical framework for calculating α decay
half-life is briefly described. The detailed calculations
and discussion are presented in Section 3. Finally, a
summary is given in Section 4.

2 Theoretical framework

The TPA [35, 36] was put initially forward to inves-
tigate quasi-stationary problems. Recently, it has been
widely used to deal with α decay [40–45]. In the frame-
work of the TPA, the α decay half-life T1/2 is calculated
by

T1/2=
~ln2

Γ
=
ln2

λ
, (1)

where ~, Γ and λ denote the Planck constant, decay
width and decay constant, respectively. λ depends on
the α particle preformation factor P0, the penetration
probability P , and the normalized factor F . It can be
expressed by

λ=
~P0FP

4µh
, (2)

where µ= mdmα
md+mα

is the reduced mass between daugh-
ter nucleus and preformed α particle, with the mass of
the daughter nucleus md and α particle m

α
. P0 is the

α preformation factor. On account of the complicated
structure of quantum many-body systems, there are a
few works [46–50] studying P0 from the viewpoint of mi-
croscopic theory. In accordance with the calculations by
adopting the density-dependent cluster model (DDCM)
[51], P0 is 0.43 for even-even nuclei.

h is the hindrance factor, denoting the deviation be-
tween calculation and experimental data of the α decay
half-life, and can be expressed as

h=
T exp

1/2

T cal
1/2

, (3)

where T exp
1/2 and T cal

1/2 are the α decay half-lives for experi-
mental data and calculated value with P0=0.43 [51]. Re-
cently, a simple formula, considering the nuclear shell ef-
fect and proton-neutron interaction to estimate the vari-
ation in the α decay hindrance factors, was put forward
[31, 52, 53] and written as

log10h = a+b(Z−Z1)(Z2−Z)+c(N−N1)(N2−N)

+dA+e(Z−Z1)(N−N1), (4)

where Z and N are the proton and neutron number of
the parent nucleus. Z1 (N1) and Z2 (N2) denote the
proton (neutron) magic numbers with Z1 <Z <Z2 and
N1<N<N2. a, b, c, d and e are adjustable parameters.

The barrier penetration probability P is obtained by
the semi-classical Wentzel-Kramers-Brillouin (WKB) ap-
proximation and written as

P=exp

(

−2

∫ r3

r2

k(r)dr

)

, (5)

where k(r)=
√

2µ

~2 |Qα
−V (r)| represents the wave number

of the α particle. r is the mass center distance between
the α particle and the daughter nucleus. V (r) denotes
the entire α-core potential.

The normalized factor F , indicating the assault fre-
quency of the α particle, can be approximatively ob-
tained by

F

∫ r2

r1

1

2k(r)
dr=1, (6)

where r1, r2 and r3 (Eq. 5) are the classical turning
points, which satisfy the conditions V (r1) = V (r2) =
V (r3)=Qα.

The entire α-core potential V (r), which is composed
of the nuclear potential VN(r), the Coulomb potential
VC(r), and the centrifugal potential Vl(r), is expressed
as

V (r)=VN(r)+VC(r)+Vl(r). (7)

In this work, we choose a type of cosh parametrized form
for VN(r), obtained by analyzing experimental data of α
decay [54], which is written as

VN(r)=−V0

1+cosh(R/a0)

cosh(r/a0)+cosh(R/a0)
, (8)

where V0 and a0 denote the depth and diffuseness of the
nuclear potential. In our past work [31], we have ob-
tained a set of parameters considering the isospin effect,
which is a0 = 0.5958 fm and V0 = 192.42+31.059Nd−Zd

Ad

MeV. Here Nd, Zd and Ad denote the neutron, proton
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and mass number of the daughter nucleus, respectively.
The nuclear potential sharp radius R is calculated by the
nuclear droplet model and proximity energy [55] with the
mass number of parent nucleus A, and written as

R=1.28A1/3−0.76+0.8A−1/3. (9)

The Coulomb potential VC(r) is taken as the potential of
a uniformly charged sphere with sharp radius R, which
is expressed as follows

VC(r)=















ZdZαe
2

2R

[

3−
( r

R

)2
]

, r<R,

ZdZαe
2

r
, r>R,

(10)

where Z
α
=2 denotes the proton number of the α parti-

cle.
For the centrifugal barrier Vl(r), we adopt the Langer

modified form, because l(l+1)→(l+1/2)2 is a necessary
correction for one-dimensional problems [56]. It can be
expressed as

Vl(r)=
~

2(l+1/2)2

2µr2
, (11)

where l denotes the orbital angular momentum taken
away by the α particle. l=0 for the favored α decays,
while l 6=0 for the unfavored decays. In the case of even-
even nuclei α decay, l=0.

3 Results and discussion

Recently, Yao et al. [57] used fourteen different ver-
sions of proximity potentials to calculate α decay half-
life. Their research shows that the results of the general-
ized proximity potential 1977 (gp77) [58] are strongly in
agreement with the experimental data and that gp77 is
the most suitable for calculating the α decay half-life. To
obtain a precise prediction of α decay half-life for 296Og,
we systematically study all 20 even-even nuclei in the
same region as 296Og, from 250Cm to 294Og, by adopting
the TPA. In addition, for comparison, we also calculate
the α decay half-lives of these nuclei by adopting gp77
[57, 58]. The calculations include two α decay chains:
the known chain 294Og → 290Lv → 286Fl → 282Cn, and
the chain 296Og → 292Lv → 288Fl → 284Cn, where decay
modes of the latter three nuclei are known. 282Cn and
284Cn decay only by spontaneous fission and end chains.

Firstly, we calculate α decay half-lives taking P0 =
0.43 [51] within the TPA for all 20 even-even nuclei in
the same region as 296Og, and obtain the corresponding
hindrance factors h by Eq. (3). Further, based on the ob-
tained h and Eq. (4), we fit and extract the correspond-
ing parameters a, b, c, d and e, and list them in Table
1, where in this region, 82<Z≤126 and 152<N≤184,
Z1 = 82, Z2 = 126, N1 = 152, N2 = 184. In our previ-
ous work [31], we obtained a set of parameters for this
region. In this work, based on the latest experimental

data of NUBASE2016 [37] and AME2016 [38, 39], we
extracted a new set of parameters for this region. The

standard deviation σpre =
√

∑

(log10T
pre
1/2−log10T

exp
1/2 )

2/n

denotes deviations of α decay half-life between predic-
tions considering the hindrance factor correction and ex-
perimental data for these 20 even-even nuclei. The value
of σpre drops from 0.32 when the parameters of Ref. [31]
are used to 0.26 when the new parameters are used. This
indicates that the predictions using the new parameters
improve by 0.32−0.26

0.32
=18.75%, where T pre

1/2=h∗∗T cal
1/2 with

h∗ obtained by Eq. (4) and T cal
1/2 taking P0=0.43 [51].

Table 1. The parameters of α decay hindrance fac-
tor for even-even nuclei from 82 < Z ≤ 126 and
152<N≤184.

a b c d e

−24.4069 0.0017 −0.0010 0.0935 −0.0036

α decay energy is an important input for calculating
α decay half-life. Sobiczewski [13] found that the calcu-
lation taking α decay energy from WS3+ [19] can best
reproduce experimental α decay half-life. In the present
work, we select α decay energy from WS3+ [19] to calcu-
late the half-life of 296Og. In order to verify the accuracy
of the WS3+ [19] and obtain the errors caused by uncer-
tainty in the α decay energy, we use the α decay energy
from WS3+ [19] to calculate the α decay half-life within
the TPA for the 20 even-even nuclei in the same region
as 296Og. The detailed calculations are given in Table
2. In this table, the first three columns show α decay,
experimental data of α decay energy and half-life. The
fourth and fifth columns are α decay energy from WS3+
[19], denoted as QWS3+

α
, and calculated half-life taking

P0 = 0.43 [51] and QWS3+
α

within the TPA, denoted as
TWS3+

1/2 . The sixth and seventh columns are the α decay
half-life calculated by adopting the TPA, taking P0=0.43
[51] and experimental decay energy denoted as T cal

1/2, and
extracted hindrance factor by Eq. (3), denoted as h.
The eighth column denotes the hindrance factor h∗, con-
sidering the shell effect and proton-neutron interaction,
calculated with Eq. (4) with the parameters listed in Ta-
ble 1. The ninth column is the theoretical prediction of
experimental half-life by T pre

1/2=h
∗∗T cal

1/2. The last column
is the calculation by adopting the gp77 [57, 58], denoted
as T gp77

1/2 .
From Table 2, we can clearly see that the QWS3+

α

and TWS3+
1/2 respectively can reproduce Q

α
and T exp

1/2 well.
This confirms our confidence to calculate the α decay
energy of 296Og using WS3+ . In addition, we can
see that the T pre

1/2 and T cal
1/2 are better at reproducing

the experimental data T exp
1/2 than T gp77

1/2 , especially for
250Cm, 252Cf, 254Cf, 256Cf and 256Fm. T pre

1/2 is the most
accurate. Furthermore, we calculate the standard devi-

ations σWS3+ =
√

∑

(log10T
WS3+
1/2 −log10T

exp
1/2 )

2/n = 0.68,
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Table 2. The calculated results of T1/2, Qα, h and h
∗ with the Qα and T exp

1/2 from NUBASE2016 [37] and AME2016

[38, 39] as well as QWS3+
α

from WS3+ [19], for 20 even-even nuclei in the same region as 296Og. All α decay energies
and half-lives are in units of MeV and s, respectively.

α decay Qα T
exp
1/2

QWS3+
α TWS3+

1/2
T cal
1/2

h h∗ T
pre
1/2

T
gp77
1/2

250Cm→
246Pu 5.17 1.45×1012 5.10 1.30×1013 6.25×1012 0.23 0.33 2.07×1012 5.10×1013

252Cf→248Cm 6.22 8.61×107 6.17 1.69×108 1.04×108 0.83 0.55 5.73×107 6.77×108

254Cf→250Cm 5.93 1.68×109 5.95 2.35×109 3.25×109 0.52 0.58 1.88×109 2.37×1010

256Cf→252Cm 5.56 1.19×1011 5.59 2.50×1011 4.13×1011 0.29 0.62 2.54×1011 3.42×1012

254Fm→
250Cf 7.31 1.17×104 7.32 7.94×103 8.93×103 1.31 0.89 7.92×103 4.75×104

256Fm→
252Cf 7.03 1.16×105 7.05 9.58×104 1.20×105 0.97 0.90 1.08×105 7.03×105

256No→252Fm 8.58 2.91×100 8.61 1.13×100 1.41×100 2.07 1.38 1.95×100 5.88×100

258No→254Fm 8.15 1.20×102 8.11 4.87×101 3.52×101 3.41 1.36 4.77×101 1.66×102

258Rf→254No 9.19 1.05×10−1 9.24 7.20×10−2 1.03×10−1 1.02 2.09 2.15×10−1 3.87×10−1

260Rf→256No 8.90 1.05×100 8.92 6.23×10−1 6.84×10−1 1.53 1.98 1.36×100 2.87×100

260Sg→256Rf 9.90 1.23×10−2 9.94 4.04×10−3 5.12×10−3 2.40 3.06 1.57×10−2 1.78×10−2

264Hs→260Sg 10.59 1.08×10−3 10.63 2.99×10−4 3.67×10−4 2.94 3.86 1.42×10−3 1.19×10−3

268Hs→264Sg 9.63 1.42×100 9.85 2.60×10−2 1.09×10−1 13.03 3.21 3.49×10−1 4.54×10−1

270Hs→266Sg 9.07 9.00×100 9.18 2.02×100 4.73×100 1.90 3.00 1.42×101 2.29×101

270Ds→266Hs 11.12 2.05×10−4 10.88 2.63×10−4 7.39×10−5 2.77 3.99 2.95×10−4 2.32×10−4

294Og →
290Lv →

286Fl →282Cn
294Og→290Lv 11.84 1.15×10−3 11.97 1.09×10−4 2.24×10−4 5.14 1.86 4.16×10−4 8.68×10−4

290Lv→286Fl 11.01 8.00×10−3 10.88 1.15×10−2 5.52×10−3 1.45 2.36 1.30×10−2 2.40×10−2

286Fl→282Cn 10.37 3.50×10−1 9.94 9.13×10−1 6.14×10−2 5.70 2.77 1.70×10−1 2.88×10−1

296Og →
292Lv →

288Fl →284Cn
296Og→292Lv 11.62 6.39×10−4 6.39×10−4 1.71 1.09×10−3 2.64×10−3

292Lv→288Fl 10.78 2.40×10−2 10.92 8.36×10−3 1.93×10−2 1.25 2.21 4.25×10−2 9.04×10−2

288Fl→284Cn 10.07 7.50×10−1 9.47 2.14×101 3.77×10−1 1.99 2.63 9.90×10−1 1.94×100

Fig. 1. (color online) Logarithmic half-lives of ex-
perimental and predicted data. The blue circles
and red stars denote the experimental half-lives
T

exp
1/2 , and predicted results T pre

1/2 , respectively.

Fig. 2. The logarithmic differences between T pre
1/2 and T exp

1/2 .

σcal =
√

∑

(log10T
cal
1/2−log10T

exp
1/2 )

2/n = 0.46, σgp77 =
√

∑

(log10T
gp77
1/2 −log10T

exp
1/2 )

2/n = 0.69 between TWS3+
1/2 ,

T cal
1/2, T

gp77
1/2 and T exp

1/2 , respectively. The values of σcal

and σgp77 are larger than σpre. Therefore T pre
1/2 improve

0.46−0.26
0.46

= 43.48%, 0.69−0.26
0.69

= 62.32% compared to T cal
1/2

and T gp77
1/2 , respectively.

The experimental data and predicted results are plot-
ted logarithmically in Fig. 1. In this figure, the blue
circles and red stars denote the experimental half-lives

T exp
1/2 , and predicted results T pre

1/2 , respectively. From Fig.
1, we can see that the predicted half-lives are almost
equal to the corresponding experimental data. In or-
der to intuitively survey their deviations, we plot the
logarithmic differences between predictions and experi-
mental data in Fig. 2. From this figure, we can clearly
see that the values of log10T

pre
1/2−log10T

exp
1/2 are around 0,

indicating our predictions can reproduce the experimen-
tal data well. Therefore, extending our study to predict
the α decay half-life and hindrance factor of 296Og is

044102-4



Chinese Physics C Vol. 42, No. 4 (2018) 044102

believable. The standard deviations caused by QWS3+
α

and h∗ are σWS3+ = 0.68 and σpre=0.26. We assume
that the impact of above errors are equal; thus, the pre-
dicted half-life of 296Og is 1.09 ms within a factor of
√

(100.68)2+(100.26)2=5.12.

4 Summary

In summary, we predict the α decay half-life of 296Og

and systematically calculate the α decay half-lives of all

20 even-even nuclei in the same region as 296Og, from
250Cm to 294Og, by adopting the TPA. We also extract
the corresponding α decay hindrance factors as well as
a new set of parameters of hindrance factors considering
the shell effect. Our calculations, i.e. T pre

1/2 considering
the hindrance factor correction, reproduce the experi-
mental data well. The predicted T1/2 of 296Og is 1.09
ms within a factor of 5.12. This work will be used as a
reference for synthesizing 296Og.
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