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1 Introduction

It is common believed that the usual parton distri-
butions (PDFs) can only give the longitudinal informa-
tion of a hadron target in the deep inelastic scattering
(DIS) processes, while the generalized parton distribu-
tions (GPDs) have the promising ability to shade light
on the transverse information, which gives rise to the idea
of “quark/gluon imaging” of hadrons [1]. Moreover, the
impact parameter distributions (IPDs), obtained by the
Fourier transform of GPDs with respect to the transverse
momentum transfer, may show some information about
the transverse impact space position of partons [2]. This
impact parameter representation is useful in processes
such as high-energy scattering and hard processes [3]. It
is also argued that, in position space, IPDs play a sim-
ilar role to the charge distributions, and are, thus, very
promising for understanding the hadron internal struc-
tures.

As we know, GC(Q
2) is the form factor of the con-

served local current, and is thus independent of the
renormalization scale µ. It can be obtained through the
sum rules from GPDs, which by definition are probed
in hard processes [3]. In the case of Fourier transforms
of GPDs, Burkardt pointed out that, when ξ = 0, the
Fourier transforms of GPDs have the interpretation of a
density of partons with longitudinal momentum fraction
x, localized at b⊥ relative to the transverse center in the
impact parameter space, which is allowed by the Heisen-
berg uncertainty principle [4, 5]. Due to the significance

of the form factors in the impact parameter space, many
theoretical works have been devoted to study the IPDs
of pions, kaons and nucleons [5–15].

It should be mentioned that our recent work [16]
gave a discussion of the ρ meson unpolarized GPDs in
momentum space with a Light-Cone Constituent Quark
Model (LCCQM). The form factors and some other low-
energy observables of the ρ meson were calculated and
our numerical results agreed with the previous publica-
tions and some experimental data [17]. In the litera-
ture, the constituent quark model is also used to describe
the form factors of pions, nucleons, deuterons, etc. [18–
20]. Moreover, the contributions from the valence and
non-valence regimes to the form factors and generalized
parton distributions were discussed and analyzed in de-
tail. In addition, the reduced matrix elements, which
are the moments of the DIS structure functions, were
also estimated and the obtained values were compatible
with the available lattice calculation at the same scale
ratio [21]. In general, our numerical results for the unpo-
larized GPDs [16] were reasonable and satisfying. There-
fore, in this work, we extend the phenomenological model
to study the IPDs of the ρ meson and to calculate the
impact parameter dependent PDFs of q(x,b⊥) and q(b⊥)
and the form factors of qC,M,Q(x,b⊥) and qC,M,Q(b⊥).

The paper is organized as follows. In Section 2, the
framework of the impact parameter dependent PDFs is
presented. In Section 3, we discuss the wave packets and
the cutoff for the numerical calculation. The definitions
of the impact parameter dependent FFs are given in Sec-
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tion 4. Our numerical results for the PDFs and FFs in
the impact parameter space are shown in Section 5, and
Section 6 gives a short summary and conclusion.

2 Impact parameter dependent PDFs

When considering the nucleon GPDs without helici-

ty flip, Burkardt [22] identifies the Fourier transform of
its GPD Hq(x,ξ=0,−∆2

⊥
) w.r.t. −∆2

⊥
as a distribution

of partons in the transverse plane, i.e., the probability
of finding a quark with longitudinal momentum fraction
x and at transverse impact space position b⊥. The im-
pact parameter dependent PDF for a nucleon (a spin-1/2
target), given by Ref. [22], reads

qN(x,b⊥) = |N |2
∫

d2p⊥

(2π)2

∫

d2p′

⊥

(2π)2
×〈p+,p′

⊥
,λ|

[
∫

dz−

4π
q̄(−

z−

2
,b⊥)γ

+q(
z−

2
,b⊥)e

−ıxp+z−
]

|p+,p⊥,λ〉

= |N |2
∫

d2p⊥

(2π)2

∫

d2p′

⊥

(2π)2
Hq(x,ξ=0,−(p⊥−p′

⊥
)
2
)eib⊥·(p⊥−p′

⊥
)

=

∫

d2∆⊥

(2π)2
Hq(x,0,−∆

2
⊥
)e−ib⊥·∆⊥

=

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)Hq(x,0,−∆

2
⊥
)

= qN(x,b), (1)

where the normalization factor N satisfies |N |2
∫

dp⊥
(2π)2

=

1, and ∆⊥ = |∆⊥|=
√

∆x+∆y and b= |b⊥|=
√

bx+by.
Cylindrical symmetry is applied in the last but one step
and J0 is the Bessel function of the first kind Jν(z) with
ν = 0. The parton distribution depends on transverse
impact space position b⊥ only through its norm b being
the consequence of the longitudinal polarization. In the
third step the integral turns to the total and transverse
momentum transfer, i.e., d2p⊥d

2p′

⊥
=d2∆⊥d

2P⊥, with
∆⊥=p′

⊥
−p⊥ and P⊥=(p′

⊥
+p⊥)/2, and using the fact

that GPD H is independent of total transverse momen-
tum P⊥. Ignoring the helicity flip, the spin projection λ
can be dropped. In the forward limit, namely ξ=0, we
have t=(p′−p)2=−∆2

⊥
.

Note that Hoodbhoy [23] has already pointed out the
DIS structure function F1, F2, g1, and g2 of spin-1 tar-
gets can be precisely measured in the same way as that
of spin-1/2 targets. Analogous to the fact that the struc-
ture function F1 connects to GPD Hq for spin-1/2 tar-
gets, we simply assume F1 connects to the GPD Hq

1 for
spin-1 targets as well. As shown by Eqs. (37∼39) in
Ref. [16], the isospin combination implies that

∫ 1

−1

dxHu
i (x,ξ,t)=

∫ 1

−1

dxHI=1
i (x,ξ,t). (2)

Hereafter we omit the label of quark flavor u and isospin
I=1 for simplicity. Due to the similar roles of Hq and
H1, we introduce the impact parameter dependent PDF
for spin-1 targets (for the u quark),

q(x,b) =

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)H1(x,0,−∆

2
⊥
) , (3)

One can further define the total parton distribution in

the impact parameter space as

q(b) =

∫ 1

0

dxq(x,b). (4)

Notice that
∫

d2b⊥ q(x,b)=H1(x,0,0), which is equal to
the usual PDF q(x) in the forward limit t = ∆2 → 0.
Therefore, q(x,b), the Fourier transform of the GPD
H1(x,ξ=0,−∆2

⊥
) w.r.t. −∆2

⊥
, can be identified, in anal-

ogy to the nucleon case, with the probability of finding a
quark with longitudinal momentum fraction x and trans-
verse impact space position b⊥ in the ρ meson.

It should be emphasized that in Ref. [2], the nu-
cleon impact parameter dependent PDF qN was proved
to satisfy the positive constraints for the so-called “good”
quark field. In our model calculation, the phenomenolog-
ical vertexes (see Eq. (24) in Ref. [16]) involve the loop
momentum (k), and the form of the vertexes is fixed ac-
cording to the constraints from isospin symmetry. Our
sophisticated model cannot simply reproduce the proce-
dure of Ref. [2] to fold the correlation function into a
norm of a quantity (see Eq. (23) of Ref. [2]). Therefore,
the positive constraint for q(x,b) with a realistic model
calculation needs to be proven further.

3 Wave packets

The Fourier transform of a plane wave is not well
defined, thus, one can start with the wave packets in-
stead of the plane wave. In the non-relativistic limit, the
Fourier transform of the charge form factor GC(Q

2) can
be interpreted as the charge distribution in the transverse
direction. In other words, as long as the wave packets
peak sharply at some point in position space, by taking
the non-relativistic limit, the Fourier transform of the
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charge distribution equals the form factor. By the way,
a Gaussian weighting factor was also adopted in a recent
lattice QCD calculation [24], in order to suppress the
unphysical oscillatory behaviour. The oscillation is due
to the finite lattice size and nucleon momentum. The
result in the small Bjorken x(< 0.3) region is changed
by weighting. In Ref. [25], the Gaussian ansatz is also
applied to shape the hadron when calculating general-
ized distribution amplitudes of the pion pair production
process.

Moreover, as pointed out by Burkardt [2, 4], the in-
terpretation of the Fourier transform of the form factor
as the charge distribution may receive relativistic correc-
tions in the rest frame. However, such a problem may
disappear in either Breit frame or infinite momentum
frame (IMF). In the relativistic case, the transform re-
ceives relativistic corrections when the wave packet is
localized with a size smaller than the Compton wave-
length of the system. In the IMF, the relativistic cor-
rection can be managed to be very small, and there-
fore, the wave packet does not change the interpreta-
tion, as long as the wave packets are set slowly varying
w.r.t. ∆⊥. To be specific, the width of the wave pack-
ets must be much larger than a typical QCD scale ΛQCD
(∼0.23 GeV). For a Gaussian form wave packet, one gets
σ¿1/ΛQCD∼3/M , with M being the ρ meson mass.

On the other hand, as Diehl [5] has discussed, a real
hadron is an extended object and is smeared out by an
amount σ. From the experimental viewpoint, there is a
largest measured value |t|max and thus there is the accu-
racy of the measurement σ∼ (|t|max)

−1/2. According to
the observations and to the limit of the effect from un-
measured values of t, a Gaussian form wave packet can
also be reasonably introduced. Thus we have

∫

d2p⊥dp
+

(2π)2p+
p+δ(p+−p+0 )G

(

p⊥,
1

σ2

)

|p,λ〉

∼

∫

d2p⊥

(2π)2
exp

(

−
p2

⊥
σ2

2

)

|p+,p⊥,λ〉 , (5)

where G(p⊥,1/σ
2)=exp(−p2

⊥
σ2/2) and the mixed state

is modified to be

|p+,b⊥,λ〉σ = Nσ

∫

d2p⊥

(2π)2
e−ib⊥·pG(p⊥,

1

σ2
)|p+,p⊥,λ〉

σ→0
= |p+,b⊥,λ〉, (6)

where the normalization factorNσ satisfies |Nσ|
2
∫

dp⊥
(2π)2

=
1 and limσ→0Nσ =N . Note that our normalization of
states is different from that in Ref. [5]. This action will
add two Gaussian functions in the expression, G(p⊥,

1
σ2 )

and G(p′

⊥
, 1
σ2 ), into the definition of q(x,b) (see Eq. (2)).

We can still change variables to remove the dependence
of P⊥, which leaves only one G(∆⊥,

1
σ2 ). Consequently,

the definition of the impact parameter dependent PDF

is modified to be

qσ(x,b) =

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)G(∆⊥,

2

σ2
)H1(x,0,−∆

2
⊥
)

=

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)e

−∆2
⊥
σ2/4H1(x,0,−∆

2
⊥
),

(7)

and

qσ(b) =

∫ 1

0

dxqσ(x,b). (8)

Reference [5] also argued that in order to give a well-
defined (positive, or without sign flip) longitudinal mo-
mentum p3, |p⊥|¿p+ is required. However, as one can
see in Eq. (5), p⊥ and p+ are separated in the wave packet
and thus this requirement actually does not affect the re-
sult of the integrals. This can also be seen from the prop-
erty of GPDs. In the forward limit, H(x,0,−∆2

⊥
) is not

affected by this requirement either. Moreover, Ref. [26]
emphasized that since the longitudinal momentum is p+

in the front form, one needs not to go to infinite momen-
tum along the moving direction, and not to impose the
constraint on the p3 component either.

According to the above discussions, the relation σ∼
(|t|max)

−1/2 inspires us to introduce a cutoff (∆0) of the
momentum transfer in the integral as well

q(x,b,∆0) =

∫ ∆0

0

∆⊥d∆⊥

2π
J0(b∆⊥)H1(x,0,−∆

2
⊥
), (9)

and

q(b,∆0) =

∫ 1

0

dxq(x,b,∆0). (10)

This assumption is supported by a comparison between
the results of the integrals with a wave packet, qσ(b)
(width σ ∼ 1/∆0) and the one with a cutoff q(b,∆0).
This will be shown in Section 5.

4 Impact parameter dependent FFs

We emphasize that the unpolarized impact parame-
ter dependent PDFs are proposed to describe the trans-
verse distribution of unpolarized partons in an unpolar-
ized target. As shown in previous sections, the IPDs can
be obtained through Fourier transform of the unpolar-
ized GPD H1. We notice that the conventional charge,
magnetic dipole and quadrupole FFs are the integrals of
the linear combination of Hi. This motivates us to ex-
plore the possibility of obtain the IPDs with respect to
the three FFs. The sum rules relating to the GPDs and
the FFs Gi are [27]

∫ 1

−1

dxHi(x,ξ,t) = Gi(t) (i=1,2,3) ,

∫ 1

−1

dxHi(x,ξ,t) = 0 (i=4,5), (11)
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where Gq
i are the FFs in the decomposition of the local

current. The FFs GC,M,Q can be expressed in terms of
G1,2,3 as [28]

GC(t) = G1(t)+
2

3
ηGQ(t),

GM(t) = G2(t) ,

GQ(t) = G1(t)−G2(t)+(1+η)G3(t), (12)

where η=−t/4M 2. Together with Eq. (11), one can ob-
tain GC,M,Q directly from GPDs H1,2,3. This allows us
to bypass the well-known ambiguity of the angular con-
dition [29]. With the above two equations, one can get
the relations

GC(t) =

∫ 1

−1

dx

[

H1(x,ξ,t)+
2

3
η
[

H1(x,ξ,t)

−H2(x,ξ,t)+(1+η)H3(x,ξ,t)
]

]

,

GM(t) =

∫ 1

−1

dxH2(x,ξ,t) ,

GQ(t) =

∫ 1

−1

dx
[

H1(x,ξ,t)−H2(x,ξ,t)+(1+η)H3(x,ξ,t)
]

.

(13)

Notice that by taking ξ = 0 and η = −t/4M 2 =
∆2

⊥
/4M 2, one can get quantities similar to the integrands

in Eq. (1). We have the impact parameter dependent FFs

qCσ (x,b) =

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)e

−∆2
⊥
σ2/4

×

[

H1(x,0,−∆
2
⊥
)+

2

3

∆2
⊥

4M 2
[H1(x,0,−∆

2
⊥
)

−H2(x,0,−∆
2
⊥
)+

(

1+
∆2

⊥

4M 2

)

H3(x,0,−∆
2
⊥
)

]

]

,

(14)

qMσ (x,b) =
1

GM(0)

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)

×e−∆2
⊥
σ2/4H2(x,0,−∆

2
⊥
), (15)

qQσ (x,b) =
1

GQ(0)

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)e

−∆2
⊥
σ2/4

×[H1(x,0,−∆
2
⊥
)−H2(x,0,−∆

2
⊥
)

+(1+
∆2

⊥

4M 2
)H3(x,0,−∆

2
⊥
)

]

, (16)

and

qC,M,Q
σ (b)=

∫ 1

0

dxqC,M,Q
σ (x,b). (17)

Comparing the impact parameter dependent FFs,
Eq. (14), with the impact parameter dependent PDFs,

Eq. (7), we introduce the “difference” quantities

qQCσ (x,b) =

∫

∞

0

∆⊥d∆⊥

2π
J0(b∆⊥)e

−∆2
⊥
σ2/4

×

(

2

3

∆2
⊥

4M 2

)[

H1(x,0,−∆
2
⊥
)−H2(x,0,−∆

2
⊥
)

+(1+
∆2

⊥

4M 2
)H3(x,0,−∆

2
⊥
)

]

, (18)

qQCσ (b) =

∫ 1

0

dxqQCσ (x,b), (19)

which receive the contribution from the quadrupole mo-
ment. The “difference” quantities satisfy

qQCσ (x,b) = qCσ (x,b)−qσ(x,b),

qQCσ (b) = qCσ (b)−qσ(b). (20)

It is clear that the impact parameter dependent PDFs
relate to the impact parameter dependent FFs and

∫ 1

0

dx

∫

∞

−∞

d2bqC,M,Q
σ (x,b)=1. (21)

Thus, it is possible to interpret qCσ , q
M
σ and qQσ as the

percentage of the contributions to the charge (normal-
ized to 1), magnetic dipole µρ and quadrupole moment
Qρ respectively, from the parton with the longitudinal
momentum fraction x and transverse impact space posi-
tion b⊥.

5 Results

In our previous work [16] with a light-cone con-
stituent quark model, we took the two model parameters
of the constituent mass m = 0.403 GeV and regulator
mass mR = 1.61 GeV, and we calculated the GPDs of
the ρ meson. In our LCCQM, we introduced an effective
Lagrangian for the ρ−qq̄ interaction with a phenomeno-
logical vertex Γ u and a Bethe-Salpeter amplitude. By in-
tegrating the minus component of the quark momentum
k− analytically and rest of the components numerically,
we obtained the GPDs and FFs of the ρ meson.

In this work, we simply extend the calculation to the
impact parameter dependent PDFs q(b) and impact pa-
rameter dependent FFs qC,M,Q

σ (b). Figure 1 gives the
q(b) with a wave packet, qσ(b), and with a cutoff on the
momentum transfer, q(b,∆0), respectively. The compar-
ison shows that the cutoff (∆0) has a similar effect as
the wave packet with width σ∼1/∆0. Of course, we ex-
pect that the prediction of the constituent quark model is
reasonable only in the region of |t|1/262 GeV and when
the momentum transfer becomes larger the constituent
quark model fails. The width of the wave packet is also
constrained by the uncertainty principle: to have a valid
probability interpretation of the initial and finial states,
the position dispersion (∼σ) cannot be smaller than the
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Fig. 1. (color online) The impact parameter dependent PDF q(b) with (a) a wave packet and (b) a cutoff on the
momentum transfer.
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Fig. 2. (color online) Contour plots of the impact parameter dependent PDF q(b) with a wave packet.

Compton wavelength. In the later content, our numeri-
cal results in Fig. 3(a) agree with this point of view.

Figure 2 gives the contour plots of the impact pa-
rameter dependent PDF qσ(b) with σ = 1 GeV−1 and
2 GeV−1. Since we choose the polarization in the z di-
rection, the parton distribution is invariant under rota-
tion around the z direction. We see that as σ becomes
smaller, the wave functions of the initial and final states
get closer to a plane wave, and the parton distribution
also becomes more transversely localized in the position
space, as shown in Fig. 1 and Fig. 2.

Figures 3 and 4 give the impact parameter
dependent FFs qC,M,Q

σ (b) and qQCσ (b) with σ =
1/2 GeV−1, 1 GeV−1, 2 GeV−1 respectively. Figure 4
shows that, as the wave packet becomes more sharply
localized (σ decreases), the contributions are concen-
trated more in the small b⊥ region for both the mag-
netic dipole µρ and quadrupole moment Qρ. For the
impact parameter charge density, Fig. 3(a), the distribu-
tions with σ less than about 1 GeV−1 become obscure
due to the oscillation. As we argued before, the ρ me-
son is an extended object and its Compton wavelength

is 1/mρ=1.3GeV−1. The position dispersion 〈∆x〉= σ
in the case of the Gaussian wave packet. The uncer-
tainty principle (〈∆x〉〈∆p〉>1/2 in natural units) gives
the constraint that, to maintain the probability interpre-
tation of the states, the position dispersion 〈∆x〉 should
not be smaller than the Compton wavelength. Other-
wise, localizing a wave packet to less than its Compton
wavelength in size will in general induce various rela-
tivistic corrections [4]. With the help of Figs. 1 and
3(b), and Eq. (20), the oscillation in qCσ (b) can be ex-
plained as the behaviour of qQCσ (b) which is related to
the quadrupole moment. From the experimental aspect,
since the ρ meson quadrupole moment is small, this phe-
nomenon is hard to determine.

Figures 5 and 6 show the numerical result of qσ(x,b)
and qC,M,Q,QC

σ (x,b) with σ = 1 GeV−1 and x =
1/10,3/10and1/2 respectively. When x 6 1/10, qCσ (x,b)
has negative values as b<0.4 fm (see Fig. 5(b)), due to
the oscillation of qQCσ (x,b) (see Fig. 5(c)). In the small
x region (like x < 1/10 in our case), it is believed that
the contribution of the gluon GPDs becomes more im-
portant, which is beyond the scope of the present model.
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The symmetry around x ∼ 1/2 of the parton distribu-
tions, implied by the isospin symmetry, is not satisfied
well due to this reason. In addition, we found, from
Fig. 6, that the distributions approximately remain the
same in qQσ (x,b) when 1/10 6 x 6 3/10.

6 Summary and conclusions

In this work, analogous to the definition of the pion
and nucleon impact parameter dependent PDFs, we in-
troduce the ρ meson impact parameter dependent PDFs
(q(x,b) and q(b)) and impact parameter dependent FFs
(qC,M,Q(x,b) and qC,M,Q(b)). By employing the LC-
CQM, as we have done previously, we carried out the
numerical calculation of those quantities for the first
time. We believe that qC,M,Q(x,b) may be interpreted
as the percentages of the contributions to the charge
(normalized to 1), magnetic dipole µρ, and quadrupole
moment Qρ, respectively, from a parton with a longitudi-

nal momentum fraction x and a transverse impact space
position b⊥. Considering the facts that the ρ meson is
an extended object and there exists a largest measured
value of momentum transfer in realistic measurements,
a Gaussian form wave packet is employed in our numer-
ical calculation. Our numerical results show that the
wave packet approach plays a similar effect to the cutoff
in the integral, which is due to the validity of the con-
stituent quark model. Our numerical results for impact
parameter charge distributions also show that the width
of the Gaussian wave packet should be larger than the
Compton wavelength. We expect that this approach is
needed in a phenomenological model calculation in or-
der to remove the possible negative values of the impact
parameter charge distributions qCσ (x,b), which cannot be
understood by the density interpretation.
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