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Abstract:
diquark-antidiquark configuration. By numerically solving the Schrédinger equation with a Cornell-inspired potential,

We use a non-relativistic model to study the spectroscopy of a tetraquark composed of [cc][ée] in a

we separate the four-body problem into three two-body problems. Spin-dependent terms (spin-spin, spin-orbit and
tensor) are used to describe the splitting structure of the c¢ spectrum and are also extended to the interaction
between diquarks. Recent experimental data on charmonium states are used to fix the parameters of the model and
a satisfactory description of the spectrum is obtained. We find that the spin-dependent interaction is sizable in the
diquark-antidiquark system, despite the heavy diquark mass, and also that the diquark has a finite size if treated in
the same way as the c¢ systems. We find that the lowest S-wave Ty, tetraquarks might be below their thresholds
of spontaneous dissociation into low-lying charmonium pairs, while orbital and radial excitations would be mostly
above the corresponding charmonium pair thresholds. Finally, we repeat the calculations without the confining part
of the potential and obtain bound diquarks and bound tetraquarks. This might be relevant to the study of exotic
charmonium in the quark-gluon plasma. The T'4c states could be investigated in the forthcoming experiments at the

LHC and Belle II.
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1 Introduction

The existence of multiquark states with four or more
quarks was proposed decades ago [1, 2]. The early papers
on tetraquark configurations were based on the MIT bag
model with light quarks only. Later on, the tetraquark
picture was extended to heavy quarks [3, 4]. Interest in
this subject was renewed in the past decade due to the
experimental observation of states which are not com-
binations of three quarks (gqq) or of quark and anti-
quark (¢q). These new states present quantum numbers,
masses, decay channels and widths that cannot be ex-
plained with the conventional meson or baryon models
(they are therefore called exotics) [5-11]. Some of them
were even found to be charged, which establishes unam-
biguously their exotic nature [12, 13].

In the present work we focus on tetraquarks com-
posed of a single flavor, charm quarks only, using a
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diquark-antidiquark picture [cc][ce], which we will call
T,. or “the all-charm tetraquark”.

The first work on the all-charm tetraquark was pub-
lished in 1975 by Iwasaki [14]. In a subsequent paper
Chao studied the T} in the diquark-antidiquark picture
with orbital excitations, and its production in eTe™ anni-
hilation [15], including an interesting analysis of the pos-
sible decay channels. Later, in the eighties and nineties,
several works with different approaches addressed the
question of the existence of this céce state [16-20]. In
more recent years, after the discovery of the X (3872), a
new series of theoretical works on the subject appeared
[21-31].

On the experimental side, recent measurements of
J/v pair production are very promising and might be
the ideal starting point to search for the all-charm
tetraquark. They have been studied at the LHC, by the
LHCD [32, 33], CMS [34] and ATLAS [35] collaborations.
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Double c¢ production has also been observed by the Belle
collaboration [36]. In particular, in Refs. [32, 33] one can
see that there is an enhancement in the differential pro-
duction cross-section for J/1) pairs between 6 and 8 GeV.
Further investigation of the invariant mass distribution
in this energy range with high statistics would bring very
useful information about the possible existence of the
Tye.

Most of the predictions for the T}, mass lead to values
around 6 GeV, and therefore lie well above the experi-
mentally known range for charmonium (which is con-
centrated within 3 - 4.5 GeV). This energy gap makes
the all-charm tetraquark a special object in the sector of
exotic multiquarks. The most discussed tetraquark can-
didates (the X, Y, Z states) are in the same mass range
as conventional charmonium states and this can lead to
confusion.

The absence of light quarks in the T,. makes it un-
likely to be a meson-meson molecule, since it is not easy
to describe this binding in terms of pion exchange or light
vector meson exchange. If it exists, the T}, is bound by
QCD forces and studying its spectrum will lead to a more
complete understanding of QCD interactions. If it does
not exist we have to understand why.

We will describe the T,. as a two-body non-
relativistic system, made of a cc diquark and a ¢¢ an-
tidiquark, which interact through a Cornell-like poten-
tial. We choose the diquark and antidiquark to be in the
color antitriplet and triplet representations, respectively.

Why do we choose the Cornell model? We choose it
because it is able to capture the essential aspects of the
heavy quark-antiquark interactions. It has almost never
been too wrong and when it was, there was something re-
ally new happening. Moreover, the quark-antiquark po-
tential can be continuously improved [37] and its param-
eters can be adjusted so as to incorporate the most re-
cent experimental information on the charmonium spec-
trum. Finally, we will study systems with angular mo-
mentum and all kinds of spin interactions. With more
constituents, we may form systems with higher spin and
total angular momentum. With the Cornell model (un-
like in some other approaches) we can identify the indi-
vidual contribution of each one of these interactions.

We choose to work with diquarks, not only because
they simplify the calculations, but also because there
is some evidence of diquark clustering in baryons. In
the case of heavy diquarks the interaction has a stronger
short distance component, in which the perturbative one-
gluon exchange may be attractive. In particular, the cc
diquark became more interesting after the prediction of
the T, [38] and even more so after the very recent discov-
ery of the baryon =} [39], a ccu state where the charm
diquark may play a role.

In the literature we find some calculations which are

very simple and strongly based on the existing empirical
information, as in Ref. [30], and some which are very so-
phisticated, such as the lattice calculations of Ref. [25]
or the QCD sum rules calculations of [28]. Our model
is at an intermediate level, being more precise than the
estimates made in Ref. [30] and more transparent than
the results found in Refs. [25, 28], where it is very dif-
ficult to access the role of spin interactions. Ideally, all
these approaches should converge and the origin of the
remaining discrepancies should be well understood. At
the end of this work we will present a comparison with
the results obtained in other approaches.

Fig. 1. (color online) Pictorial representation of
the all-charm tetraquark in the diquark-antiquark
scheme.

2 A non-relativistic model

A pictorial representation of the all-charm tetraquark
in the diquark-antiquark scheme of our model can be seen
in Fig. 1. One of the most common functional forms of
the zeroth-order potential, V©(r), employed in heavy
quarkonium spectroscopy is the Coulomb plus linear po-
tential, where the Coulomb term arises from the one-
gluon exchange (OGE) associated with a Lorentz vector
structure and the linear part is responsible for confine-
ment, which is usually associated with a Lorentz scalar
structure. The potential is given by:

VO, =Vt Vs = V(O)(T):Kas%—i—br, (1)

where k,, sometimes called the “color factor”, is related
to the color configuration of the system (it can be nega-
tive or positive), «, is the QCD fine structure constant
and b, sometimes called “string tension”, is related to
the strength of the confinement. One could also add a
constant term, which would act as a zero-point energy.
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Usually, in heavy quark bound states the kinetic en-
ergy of the constituents is small compared to their rest
energy, hence a non-relativistic approach with static po-
tentials can be a reasonable approximation. In two-
body problems involving a central potential, it is conve-
nient to work in the center-of-mass frame (CM), where
one can use spherical coordinates to separate the ra-
dial and angular parts of the wavefunction, and the ki-
netic energy is written in terms of the reduced mass p=
(mymy)/(my+msy). We start with the time-independent
Schrédinger equation:

[ i <_ ;_:2 +e(€;l)> +V<o>(T>]y(T)_ Ey(r). ()

We first solve this radial equation to obtain the en-
ergy eigenstate and the wavefunction of each particu-
lar state. Next, spin-dependent terms are included as
perturbative corrections. They account for the splitting
between states with different quantum numbers. Based
on the Breit-Fermi Hamiltonian for one-gluon exchange
[40-43], we introduce three spin-dependent terms: Vgg
(spin-spin), Vi,s (spin-orbit) and Vi (tensor). For equal
masses m; =my=m, they are given by:

Ves = CSS(T)SI'S% (3)

Vis = CLS(T)L'S; (4)

(81°7)(S2-7) 1
r? 3

Ve = 020 (5:59). )

where the radial-dependent coefficients come from the
vector V4, and scalar Vg parts of the potential in Eq.

(1),

2 8K T

Css(r) = 32 VzVV(T):_ 32 53(7")7 (6)
1 1 dVV(’f') dVS(T)

Crs(r) = om2 r [ dr  dr
3Kk 1 b 1

— e 7

_ 12k,a, 1
T 4m2 ¥

- L]l

where m is the constituent mass of the two-body problem
(charm quark, or diquark). The second term in the spin-
orbit correction (proportional to the scalar contribution)
is a Thomas precession, which follows from the assump-
tion that the confining interaction comes from a Lorentz
scalar structure. Notice that if we introduce a constant
term V; in the potential, it will not affect these radial co-
efficients, since only derivatives appear in them. In fact,
adding a constant term only shifts the whole spectrum,
forcing a change in the parameters such as to reproduce
the charmonium spectrum, without actual improvement

in the quality of the fit.

These spin-dependent terms are proportional to
1/m?, which justifies their treatment as first-order per-
turbation corrections in heavy quark bound states. The
expectation value of their radial-dependent coefficients
can be calculated using the wavefunction obtained with
the solution of the Schrodinger equation.

This framework appears frequently in quarkonium
spectroscopy, but a better agreement between predicted
states and the experimental data for ¢¢ mesons can be
obtained by including the spin-spin interaction in the
zeroth-order potential used in the Schrédinger equation
(as done in Refs. [44-47]), with the artifact of replacing
the Dirac delta by a Gaussian function which introduces
a new parameter o. Then the spin-spin term becomes

8Tk 0, o \* 2,2
‘/é(g):_ 3m2 (\/_E) € 518, (9)

When the term S;-S5 acts on the wavefunction it will
generate a constant factor, so we still have a potential as
a function only of the r coordinate. The expectation
value of the operator of the spin-spin interaction can be
calculated in terms of the spin quantum numbers using
the following relation, (S:-S2)=(%(S*—S57—S3)), where
S and S, are the spins of particles 1 and 2 respectively,
and S is the total spin in consideration.

The expectation value of the operator of the spin-
orbit interaction can be calculated in terms of the quan-
tum numbers of total angular momentum J (defined
by the vector sum: J = L+S), total spin S, and or-
bital angular momentum ¢, using the following relation:
(L-S)=(1(J?*~L?-8?)). For S-wave states ({=0), the
spin-orbit term (L-S) is always zero.

The tensor interaction demands a bit of algebra. For
convenience, we redefine the tensor operator with an ex-
tra factor 12, which we remove from its radial coefficient
in Eq. (8):

S1,=12 (W_%(sl.&))
=4[3(S1-F)(Sz-F)—51-S2]. (10)

The results for the diagonal matrix elements of the ten-
sor operator between two spin 1/2 particles, like in the
c€ mesons, can be found in Refs. [41, 48] and also (with
more details) in Ref. [49]. The expectation value of the
tensor is non-zero only for

1) (40 and S=1
2) J=¢, or

(triplet),

(11)
J=(—1, or J=(+1.

After some manipulations of the spin operators, with the
aid of some relations of spherical harmonics and the Pauli
matrices with respective eigenvalues, we can obtain the
following general result, which satisfies the above condi-
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tions (it always vanishes if /=0 or S=0):

20

———if J={+1
(20+3)’ ' +h
<Slz>%®%as:1,z¢0: +2, it J={, (12)
2(0+1)

if J=(-1
(%_1),1 J=0-1,

for any of the allowed values of J and ¢. For instance,
2

for £ =1 we have (S;3) = — +2, -4, for J=2,1,0,
respectively. These results are valid for diagonal matrix
elements. The tensor actually has non-vanishing non-
diagonal matrix elements, but as a first-order perturba-
tion correction they can be neglected. They would be
important if the tensor operator were to be used as part
of the potential, which would cause the mixing of the
wavefunction itself, as in the deuteron [50, 51].

Notice that in order to obtain these three general
cases of non-vanishing diagonal matrix elements of the
tensor operator for two spin 1/2 particles in Eq. (12), it
is necessary to make use of a few relations that are valid
only for Pauli matrices [48, 49], like its eigenvalues and
the anticommutation relation. Therefore, we cannot use
this result in the diquark-antidiquark tensor interaction
(if we wish to treat it as a two-body problem), since the
diquarks can have spin 0 or 1. This issue will be discussed
later when we address the tetraquark interaction.

Regarding the wavefunction, we will consider only
pure states where ¢ (orbital), S (total spin), and J (total
angular momentum) are good quantum numbers. Then
the wavefunction will be composed of a radial part and
an angular part which comes from the coupling of spher-
ical harmonics and spin functions at a specific value of
J.

Solving the eigenvalue equation (2), one can obtain
the interaction energy E and the wavefunction y(r) of
the two-body system under consideration, where both
depend on the number of nodes of the wavefunction n
(or principal quantum number N = n+1), on the or-
bital angular momentum number ¢, and in the case of
the spin-spin correction included in V@, they will also
depend on the total spin S and on the constituent spins
S1 and S,. Since the Schrodinger equation has no ana-
lytical solution for the potentials that are relevant here,
we solve it numerically, using an improved version of the
code published in Ref. [52].

An interesting quantity that can be used to check the
validity of the non-relativistic approximation is the ve-
locity of the constituents in each of the systems in con-
sideration: the quark velocity inside the meson or the
diquark velocity inside the tetraquark. As discussed in
Ref. [53], the mean square velocity can be obtained from
the kinetic energy, which can be calculated directly from

the Hamiltonian, or using the virial theorem:

<v2>:i<E—<v<°><r>>>;

where V©(r) is the effective zeroth-order potential
placed in the Schrédinger equation and g is the reduced
mass: e .

u:ﬁ:;, for my=ms,. (14)
Both methods yield approximately the same result
within the numerical precision employed.

One interesting aspect of the non-relativistic ap-
proach is that, even though the charmonium system is
not completely non-relativistic, a surprisingly good re-
production of its mass spectrum can be obtained. As
discussed in Ref. [54], where a charmonium model is de-
veloped with completely relativistic energy and also with
non-relativistic kinetic energy, good agreement with the
experimental data can be obtained with both methods,
just by using a different set of parameters in the effective
potential employed.

The value of the square modulus of the wavefunc-
tion at the origin, |¥(0)|?, is an important quantity. If
the spin-spin interaction was treated as a first-order per-
turbation without the Gaussian smearing, it would be
proportional to |¥(0)|? because of the Dirac delta. De-
cay widths can also be calculated using the wavefunc-
tion or its derivative at the origin. Only S-wave states
(£=0) have non-zero value of the wavefunction at the ori-
gin. For states with orbital angular momentum (£+#£0),
the centrifugal term in the Schrodinger equation creates
a “centrifugal barrier”, which makes the wavefunction
at the origin vanish. Thus, for £ # 0 we will assume
| (0)]2=0 and for S-wave we have

s [Ruc(O)F

W O0)P=[¥2(6,6) Ry, o(0)P= 0L

for (=0.
(15)
In fact, the important quantity is the square modulus of
the radial wavefunction at the origin, |R, ,(0)?, which
can be obtained directly from the numerical calculations.
In the literature on quarkonium models, we find the fol-
lowing formula (see Ref. [41] for a deduction) that relates
the wavefunction at the origin |[¥(0)|* to the radial po-
tential V(O (r):
d d
POP=5- (V)= ROP=2u( V().
(16)
We have checked that the result obtained directly from
the numerical method is compatible with the one ob-
tained using the formula above.
In more sophisticated quarkonium models, such as
the relativized potential model of Ref. [44], the cou-
pling constant a, is considered as a “running” param-
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eter, that changes according to the energy scale of each
bound state. However, we have chosen to adopt the non-
relativistic model of Ref. [47], where «; is as a constant
in the potential, which is also a common approach in
many charmonium models.

The values of o, the charm quark mass m., the string
tension b, and the Gaussian parameter o, will be ob-
tained from a fit of the charmonium experimental data,
and once the best set is found, they are kept fixed to
generate the whole mass spectrum.

2.1 Charmonium

In order to get good estimates for diquarks and
tetraquarks, we first study the spectrum of charmonium.
In this case, the color factor x, in Eq. (1) should be
that of a color singlet state, since for ¢¢ mesons we have
|qq):3@3=1®8 [55, 56]. The result for the color singlet
is k,=—4/3 [49, 55].

After having solved the Schrédinger equation, the
mass of a particular state will be given by:

M (ce)=2me+E..+ (Vi) ) .. (17)

Spin
The parity and charge conjugation quantum numbers of
qq states are given by [55] P=(—1)*"* and C'=(—1)"**
repectively. Using the equation above we calculate the
masses M of the ¢ states with well defined P and C,
then we fit the experimentally measured masses M;*?
and determine the parameters minimizing the x?, de-
fined as:

XZZZ(M:aIC_Miexp)2'wi' (18)

Following Refs. [47, 54] we choose w; =1, which is equiva-
lent to giving the same statistical weight to all the states
used as input. This way we ensure the resulting set of pa-
rameters will simultaneously handle the spin-spin split-
ting in the S-wave, the spin-orbit and the tensor split-
ting, which are especially important in the P-wave, and
the radial excitations as well.

2.2 Diquarks

In the study of tetraquarks, we shall treat the full
four-body problem as three two-body problems. Repeat-
ing the steps described in the previous subsection, we
first compute the mass spectrum of the diquark, then we
do the same for the antidiquark and finally we solve the
Schrédinger equation once again for a two-body system
composed of the diquark and antidiquark. The inspira-
tion for this factorization is the color structure behind
it.

A diquark is a cluster of two quarks which can form
a bound state. This binding is caused by one-gluon
exchange between the quarks. In this interaction the
factor k, can be negative, then the short distance part
(x1/7) of the potential will be attractive. The SU(3)

color symmetry of QCD implies that, when we combine
two quarks in the fundamental (3) representation, we
obtain: |qq) :3 ® 3 = 3®6. Similarly, when we com-
bine two antiquarks in the 3 representation, they can
form an antidiquark in the 3 representation. Then the
diquark and antidiquark can be combined according to
llgq]—[7q]):3®3=148 and form a color singlet, for which
the one-gluon exchange potential is also attractive (see
Refs. [56-58] ). The antitriplet state is attractive and
yields a color factor k;=—2/3, while the sextet is repul-
sive and yields a color factor xk,=+1/3 [49, 55]. There-
fore we will consider only diquarks in the antitriplet color
state. Indeed, for the single-flavor tetraquarks only the
antitriplet diquarks can build pure states [27], while the
sextet diquarks would necessarily appear mixed and in
just a few cases. In Refs. [61, 62] the sextet contribu-
tion was found to be negligible in heavy tetraquarks with
different flavor structure, like udbb. Nevertheless, at the
end of the presentation of our results, we will present and
discuss results obtained with 6—6 configurations. We will
use a diquark [cc] in the ground state, with no orbital nor
radial excitations, such that we have the most compact
diquark. We choose the attractive antitriplet color state,
which is antisymmetric in the color wavefunction. Then,
in order to respect the Pauli principle (the two quarks of
the same flavor are identical fermions), the diquark total
spin S must be 1. In this way the total wavefunction of
the diquark will be antisymmetric.

Notice that going from the color factor —4/3 (for
quark-antiquark in the singlet color state) to the color
factor —2/3 (for quark-quark in the antitriplet color
state) is equivalent to introducing a factor 1/2, which
one would expect to be a global factor since it comes
from the color structure of the wavefunction. Because of
that, it is very common to extend this factor 1/2 to the
whole potential describing the quark-quark interaction.
This rule is motivated by the interactions inside baryons,
where two quarks can also be considered to form a color-
antitriplet diquark, which can then interact with the
third quark and form a color-singlet baryon. Since this
seems to give satisfactory results in baryon spectroscopy,
it has also been extended to diquarks inside tetraquarks.
The general rule would be simply V,,=V,;/2. Many au-
thors with different tetraquark models, for instance Refs.
[59, 60], also divide the confining part of the potential by
2 in order to adapt it to the diquark case. In our model,
besides the change in the color factor, the string tension
b, obtained from the fit of c¢¢ spectra, will be also divided
by 2.

The calculation of the total mass of the diquark is
completely analogous to the ¢¢ mesons, as in Eq. (17).
The spin-dependent corrections are also analogous since
we are still dealing with a two-body system composed of
two spin 1/2 particles.
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2.3 Tetraquarks

The all-charm tetraquark will be treated as a two-
body (cc - ¢¢) system with m..=mg. The color factor
should correspond to the color singlet, therefore we will
use k,=—4/3 and also the same parameters «,, b and
o obtained from the fit of the c¢ spectrum. The cal-
culation of its total mass will also be analogous to the
charmonium case:

M(Tye)=mectMe+Elcoea + (Vs(;i)n> [cc][ea] - (19)

In order to properly calculate the spin-dependent cor-
rections we need to remember that the diquarks have
spin 1. Then, for the coupling of a spin 1 diquark and
spin 1 antidiquark, we will have the total tetraquark spin
St=0,1,2. Besides that, we will also allow radial and/or
orbital excitations in the diquark-antidiquark system. In
our non-relativistic approach, we use ordinary quantum
mechanics to couple the total spin St to the orbital an-
gular momentum Lt into the total angular momentum
Jr.

For the spin-spin and spin-orbit corrections, we can
obtain the angular factors from the spin, orbital and total
angular momentum quantum numbers. However, for the
tensor correction we only have a general result (in terms
of eigenvalues) for the interaction between two spin 1/2
particles, shown in Eq. (12). Then, for a proper treat-
ment of the tensor interaction in the diquark-antidiquark
system we will explicitly apply the tensor operator on the
angular part of the tetraquark wavefunction, as we will
describe below.

Let us focus on the spatial and spin components of the
wavefunction. We factorize the radial wavefunction from
the angular one that combines orbital angular momen-
tum and spin, which are coupled using Clebsh-Gordan
coefficients. We will use the indices 1 and 2 for the two
quarks inside the diquark, and 3 and 4 for the two anti-
quarks inside the antidiquark (see Fig. 2).

[(Sa=1D)@(Si=1)—

=|2,2),

Fig. 2.

(color online) Pictorial representation of
the tensor interaction between diquark and antidi-
quark. The arrows represent the orbital angular
momentum.

To illustrate our procedure to treat tensor interac-
tions, we present one specific example with total spin
St=2, Lv=1and Jy=2. S; and Sz will denote the total
spin of the diquark and antidiquark, respectively. We
write the possible couplings in a generic form |S,Ms),
where S is the total spin and Mg is its z-component.
The arrows denote the spins of each constituent, in the
order 1, 2 for the diquark and 3, 4 for the antidiquark.
As usual the up arrow denotes spin up, |1,3), and the
down arrow denotes spin down, [$,—1). We show it in
terms of diquark and antidiquark spin basis, and also in
terms of the two quarks and two antiquarks spin basis
(each group of four arrows is always in the order “1234”).
These wavefunctions were inspired by the ones presented
in Refs. [45, 58, 61, 62], and we generalized them to in-
clude orbital angular momentum between diquark and
antidiquark. For the choices mentioned above the wave-
function reads:

(Sr=2)|®(Lr=1)—|Jr,M,,)

o= 22.2)5,00100~ 2 sl

\[ (11.1)1201.1)a0) Y 0.0) == (TS 11112 1.0 1.0} 2Bl Das )7 6.

\/;(lTT )120[11) 34>Y0(9,SD) \}—(\/—|TT>12®| NG

tdty Lt

V2 V2

>12®|TT>34) '(0,9)

2 1 /1
=\@ (1111)12 (0.0 %(5(TTNHNHMTHTW)W(e,so)- (20)
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For Lt =1 we have seven combinations to get Jr if we
are considering spin 1 diquark and antiquark: one for
Sr=0 (Jpr=1), three for Sy=1 (Jr=0,1,2) and three
for Sy=2 (Jr=1,2,3).

We now explicitly apply the tensor operator on the
above angular wavefunction and we note that within our
approximations, it is equivalent to apply this operator
directly on the diquark-antidiquark pair (in spin 1 basis)
or consider a sum of four tensor interactions between
each quark-antiquark pair (spin 1/2 basis) as illustrated
in Fig. 2, as would be expected from the angular mo-
mentum algebral). We have:

(Sa-r)(Sar)

Su-a=12( 55052

:Sl4+513+524+523~ (21)
Since the tetraquark is treated as a two-body system,
the expectation value of the radial wavefunction between
every ¢q pair is the same and can be factorized. In a
four-body problem (using Jacobi coordinates, for exam-
ple) where all the four constituents are allowed to move
and interact with each other at the same time, this would
not be true. This type of approach can be found in other
models of tetraquarks, for instance in Refs. [61, 62]. Usu-
ally in this kind of approach only the ground state is
considered, with no orbital excitations, and hence only
the spin-spin interaction is relevant, since the spin-orbit
and tensor vanish for £=0. Besides, in order to tackle
the four-body problem one needs to resort to a varia-
tional approximation with Gaussian trial wavefunctions
or similar methods, therefore there will always be a com-
promise between the precision of the numerical solution
and the reliability of the assumptions.

In order to deal with the generalization of the tensor
interaction to the tetraquark case, we will rewrite the
tensor in a form that allows us to recover the same re-
sults that we already know for the particular case of two
spin 1/2 particles and that can also be used as a gener-
alization to other cases, such as the interaction between
two spin 1 diquarks. The operator S;» in Eq. (10) is a
“rank-2” tensor which can be written in terms of spin op-
erators and spherical harmonics, as shown in textbooks
[63]. An extensive discussion of this approach can be
found in Ref. [49)].

The following functional form does not use any par-
ticular relation or eigenvalues for spin 1/2 particles, only
general properties of angular momentum elementary the-
ory. One can write the unity vector 7 in spherical coor-
dinates and the spin operators in Cartesian components.
Then they can be rearranged into raising, lowering and
z-component spin operators and spherical harmonics of

£=2, and we can write:

S1a=A[To+ Ty+ T+ T +To+T_s) (22)
where
4
TO:2 %}/20(97¢)S12S22,
1 47
Té:_ZZ ?}/20(9,¢)(S1+827+817S2+)5
3 /8w
Ti=2/ =Y ' (0:6) (51224 4511 52.),
2V 15 (23)
3 /8w,
Til__i EYQ (9,¢) (S12827+81—S22)5
27
To=3\/ 15 Y2 7 (0:0) 514 524,

T,2:3\/ ?—7;}/22(9,¢) 51752,.

With the expressions above we can take the expectation
value of the tensor operator in the angular wavefunc-
tions, as in Eq. (20), and use the selection rules of the
spherical harmonics to find the non-vanishing terms.

To close this subsection, we discuss the tetraquark
quantum numbers, as in Refs. [64, 65]. We can use the
diquark-antidiquark basis to label the possible quantum
numbers JEC of the tetraquark. We shall use the follow-
ing notation:

|T4Q>:|Sd7sd_7‘S’T7LT>( (24)

Jp?
where Sy is the total spin of the diquark, Sg is the to-
tal spin of the antidiquark, St is the total spin of the
tetraquark, assumed to come from the coupling S;®Sg,
Lt is the orbital angular momentum relative to the
diquark-antidiquark system (in the two-body approxi-
mation), and Jr is the total angular momentum of the
tetraquark, assumed to come from the coupling St® L.
The general formulae for charge-conjugation and parity

of the tetraquark are:
CT:(_l)LT+ST,
Pr=(—1)'r, (25)

Since we are interested in the T}, tetraquark, where the
diquarks are composed of two charm quarks with spin
1 in the antitriplet color configuration, for the S-wave
states we have the following possibilities:

|O++>T4c:|SCC:17555:175T:O,LT=0>JT=07
1%7) 4o =15ec=1,8e=1,5r=1,L+=0)
125%) 4o =18ec=1,8:=1,51=2,Lr=0)

(26)

Jp=1’

Jp=2"

Note that all the S-wave tetraquarks described above
have positive parity. The introduction of the first orbital

1) To see this, we could write Sq=81+S2, S3=53+S54 and open the tensor between diquark-antidiquark into four tensor operators

between quark-antiquark pairs.
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excitation will bring a factor (—1) in both parity and
charge conjugation. Then all the P-wave states (with
Ly =1) will have odd parity and the opposite charge
conjugation in comparison with the S-wave states. In
Table 1 we list the J¢ quantum numbers of the 10 pos-
sibilities which we consider for the S-wave and P-wave
all-charm tetraquarks built with spin 1 diquarks (also in
accordance with Refs. [66] and [15]).

Table 1. Results for the J¢ quantum numbers of
the T4, with [Sd:Sd‘Zl—)ST :0,1,2]®LT =0,1.

St Lt Jr Jrc
0 0 0 ot+
1 0 1 1+-
2 0 2 ot++
0 1 1 1--
1 1 2 2—+
1 1 1 1—+
1 1 0 0—+
2 1 3 3——
2 1 2 92—
2 1 1 1--
3 Results

In this section we present the results of the calcula-
tions with the formalism outlined in the previous sec-
tion. We use the following notation in our tables: the
principal quantum number is N (N =1 for the ground
state, N =2 for the first radial excitation and so on),
¢ is the orbital angular momentum, S is the total spin
and J the total angular momentum. In spectroscopy no-
tation the states are usually labeled by N25+1¢; with
0=0,1,2,3,...—S,P,D,F,..., for example 135, for J/.

3.1 Charmonium

In order to get good estimates of diquark and
tetraquark properties, we first study the spectrum of the
conventional charmonium states to observe how well we
can fit the experimental data. In our model we con-
sidered the zeroth-order potential of the form Coulomb
plus linear plus smeared spin-spin interactions. We sep-
arate the spin triplet (S=1) and spin singlet (S=0) be-
fore solving the Schrédinger equation. Using r,=—4/3,
S1=85,=1/2 and S=0 or S=1, we replace the operator
S1:S2 by the constant [S(S+1)—S51(S;1+1)—S2(Sa+1)]/2
and we find the wavefunction y(r) and the eigenvalue E.
In Fig. 3 we show the zeroth-order potential for total
spin 0 or 1. Later the spin-orbit and tensor corrections
are included, splitting orbitally-excited states.

We performed a fit with experimental values from
the PDG [67]. The four parameters were allowed to vary
in the following range: 1.1<m.<1.9 GeV, 0.1<a,<0.7,
0.050 < b < 0.450 GeV?, 0.7< 0 < 1.3 GeV. The results
are also very similar to those from Refs. [46, 47], which

Effective Potentials for S=0 and S=1
Ver (1) [GeV]

1.0

0.5

o [Gev™]

====== Spin Singlet (S=0)

—— Spin Triplet (S=1)

Fig. 3. Effective Potentials: Coulomb plus linear
plus smeared spin-spin, for S = 0 and S = 1.
Parameters are a, = 0.5202, b = 0.1463 GeV?,
0=1.0831 GeV.

were obtained with the fit of 11 c¢ states with equal sta-
tistical weight. We have included two more, h,(1P) and
Xe2(2P), in a total of 13 states as input, obtaining the
following values:

m.=1.4622 GeV,
b=0.1463 GeV?,

o, =0.5202,
o=1.0831 GeV. (27)

Several fits with different numbers of input states and
alternative models were tested in Ref. [49]. There is
one particular alternative case worth mentioning. In
this case, we considered the spin-spin interaction as a
first-order perturbation, proportional to the wavefunc-
tion at the origin, with the radial coefficient given by Eq.
(6) (without the Gaussian smearing), and also removed
the Thomas precession term from the spin-orbit interac-
tion, which is proportional to the string tension b on Eq.
(7). In this way the spin-dependent corrections come
exclusively from the Breit-Fermi Hamiltonian describing
one-gluon exchange, as in Ref. [43]. In this scheme it
was possible to very accurately fit the 6 ground states
1S and 1P: 0.(1'S,), J/9(1°S1), he(1'P1), xeo(1°Fp),
Xe1(13P1), Xe2 (13 Py), with the parameter set m,=1.2819
GeV, a,=0.3289 and b=0.2150 GeV?2. This set is appeal-
ing since the mass of the charm quark is exactly the PDG
value [67] obtained in the M S scheme, 1.2840.03 GeV,
and the coupling constant «; is also smaller, favoring the
assumption of the perturbative regime of QCD. However,
for radial excitations, especially above the DD thresh-
old, this scheme does not work very well and hence we
restrict ourselves to the results obtained with the model
that gives the best agreement with the whole experimen-
tal data set, since we believe this might yield better pre-
dictions for higher new charmonium states and also for
the diquark and tetraquark.

In Table 2 we present the wavefunction properties.
Notice that the inclusion of the spin-spin interaction
in the zeroth-order potential creates a small difference
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between the wavefunction of the spin singlet and spin
triplet. The spin 0 states receive a negative contribu-
tion from this interaction in the potential, which causes
the short-distance region of the potential (small r coor-
dinate) to be “more negative”, generating states with
smaller root mean square radius, higher value of the
wavefunction at the origin, and higher quark velocity.

Table 2. Results for charmonium c¢ wavefunctions
from the model. Parameters are m.=1.4622 GeV,
as=0.5202, b=0.1463 GeV?, and 0=1.0831 GeV.

U2
N25+1lg MO /GeV  |R(0)|2/GeV3  (r2)1/2/fm <§>
118 2.9924 1.5405 0.375 0.336
138 3.0917 1.1861 0.421 0.253
1tp 3.5105 0 0.678 0.257
13P 3.5191 0 0.689 0.246
218 3.6317 0.7541 0.839 0.308
238 3.6714 0.7092 0.867 0.293
1D 3.7951 0 0.899 0.280
13D 3.7958 0 0.901 0.278
2lp 3.9334 0 1.071 0.324
23p 3.9427 0 1.082 0.315
3ls 4.0481 0.6088 1.210 0.364
338 4.0755 0.5914 1.230 0.357
21D 4.1591 0 1.258 0.350
23D 4.1604 0 1.261 0.348
418 4.3933 0.5430 1.531 0.424
435 4.4150 0.5340 1.547 0.419

The spin-dependent interactions are very important
in charmonium spectroscopy because they can test the
QCD dynamics in the heavy quark context, lying be-
tween the perturbative and the non-perturbative regime.
Particularly interesting is the role of the spin-spin in-
teraction in orbitally-excited states. It is convenient to
define the spin-average mass of a multiplet (spin here
means J), also known as “center-of-weight” or “center-
of-gravity” (c.0.g.):

> (@J+1)M(N>$+1,)
(M(N>5%105))= Z(2J+1) , (c.o.g.) (28)

For the P-wave ground state, for example, we have:
_ S5M(1°P)+3M(1°Py)+M(1°Fy)
= 5 )
Interestingly, in the spin-average mass the spin-orbit
and tensor corrections cancel each other and hence if the
spin-spin correction is zero in the orbitally-excited sin-
glet state (1' P, for instance), its mass should be equal
to this spin average. However, the spin-spin correction
is zero for orbitally-excited states only if it is treated as
a first-order perturbation proportional to the wavefunc-
tion at the origin. In our model, where we include the
Gaussian term non-perturbatively, there will be a small

(M(1*P;)) (29)

difference. Therefore, in the present model the value of
the mass M© (before the splitting due to the orbital
and tensor spin-dependent corrections) of the orbitally-
excited states with total spin S=1, like the 13 P, is equal
to the c.o.g. of these states.

In Table 3 we present the results for the masses in-
cluding the spin interactions. Note that the contribution
of the spin-spin interaction to orbitally-excited states is
not zero, especially in the P-wave, even though the wave
function at the origin is still compatible with zero. Be-
cause of that the spin singlet in orbitally-excited states is
slightly different from the spin-average (c.0.g.). The ex-
perimental measurements of 1P states suggest that they
should be very close (see Table 4 for experimental val-
ues). As pointed out in Ref. [68], a precise measurement
of the difference between the c.o.g. of the 13P; states and
the singlet 1! P; can provide useful information about the
spin-dependent interactions in heavy quarks. Actually,
the prediction for h.(1'P;) is already close to the exper-
imental value and even more so if one 