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Abstract: In this exploratory study, near-threshold scattering of D and D* meson is investigated using lattice QCD

with Ny =2+1+ 1 twisted mass fermion configurations. The calculation is performed in the coupled-channel Liischer

finite-size formalism. The study focuses on the channel with I(J7€) = 1*(17~) where the resonance-like structure

Z:(3900) was discovered. We first identify the two most relevant channels and the lattice study is performed in the

two-channel scattering model. Combined with the two-channel Ross-Shaw theory, scattering parameters are extrac-

ted from the energy levels by solving the generalized eigenvalue problem. Our results for the scattering length para-

meters suggest that for the particular lattice parameters that we studied, the best fit parameters do not correspond to

the peak in the elastic scattering cross-section near the threshold. Furthermore, in the zero-range Ross-Shaw theory,

the scenario of a narrow resonance close to the threshold is disfavored beyond the 30 level.
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1 Introduction

In the past decade, various exotic hadronic resonance-
like structures have been observed by numerous experi-
mental groups. These structures, due to their unknown
nature, are generally called XYZ particles. The most inter-
esting ones are the charged structures that have been dis-
covered in both the charm and bottom sectors. These
structures necessarily bear a four valence quark structure
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0qq’ Q , where Q is a heavy flavor-quark, while ¢ and ¢’
are the light-flavored quarks. For different light flavors,
these are charged objects. Another interesting feature is
that they tend to appear close to the threshold of two
heavy mesons with valence structure Qg and §'Q. The
physical nature of these structures has been discussed in
many phenomenological studies. For example, they could
be shallow bound states of the two mesons due to the re-
sidual color interactions, or some genuine tetraquark ob-
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jects. However, even after many phenomenological stud-
ies, the nature of many of these states remains obscure. A
typical example is the structure Z.(3900), which is the
main topic of this paper. It was first discovered by BE-
SHI [1] and Belle [2], and soon verified by the CLEO
collaboration [3]. The nature of Z.(3900) remains open to
debate. For a recent review see e.g. Refs. [4, 5]. It is
therefore highly desirable that non-perturbative methods
like lattice QCD could provide some information on the
nature of these states.

Contrary to many phenomenological studies, lattice
studies of these states are still relatively rare. For the state
Z.(3900), it is readily observed that the invariant mass of
the structure is close to the pp* threshold, naturally sug-
gesting a shallow molecular bound state formed by the
two corresponding charmed mesons. To further investig-
ate this possibility, the interaction between p* and D
mesons near the threshold becomes crucial.

A lattice study was performed by S. Prelovsek et al.
who investigated the energy levels of the two charmed
meson system in the channel where Z, appears in a finite
volume [6]. They used quite a number of operators, in-
cluding two-meson operators in the channels J/yr, DD*
etc., and even tetraquark operators. However, they dis-
covered no indication of extra new energy levels apart
from the almost free scattering states of the two mesons.
Taking pD* as the main channel, CLQCD used the
single-channel Liischer scattering formalism [7-11], and
also found a slightly repulsive interaction between the
two charmed mesons [12, 13]. Therefore, it is also un-
likely they should form bound states. A similar study us-
ing staggered quarks also found no clue for the existence
of bound states [14]. Thus, the above mentioned lattice
studies, whether inspecting the energy levels alone or us-
ing the single-channel Liischer approach, have found no
clue for the existence of a pp* bound state.

On the other hand, starting around 2015, HALQCD
studied the problem using the so-called HALQCD ap-
proach [15], which is rather different from the Liischer
formalism adopted by the other groups. They claimed that
this structure can be reproduced and it is not a usual
bound state or resonance, but rather, a structure formed
due to strong cross-channel interactions, see Refs. [16,
17] and references therein. So far, this possibility was
only seen in the HALQCD approach, but not in the
Liischer-type approaches. In fact, the multi-channel
Liischer formula is known since some time [18-22], and
the Hadron Spectrum Collaboration has successfully
studied various coupled-channel scattering processes in-
volving light mesons using the multi-channel Liischer
formalism [23-26]. It is therefore tempting to verify, or
dispute, the cross-channel interaction scenario suggested
by HALQCD in a coupled-channel Liischer approach.
More importantly, the state Z, has many coupled decay

channels, and if the coupled-channel effects are import-
ant then inspecting the energy levels alone, or perform-
ing only a single-channel scattering study, is not suffi-
cient to understand the nature of these structures. There-
fore, in this exploratory study, we aim to make a step to-
wards the multi-channel lattice computation using the
coupled-channel Liischer approach.

It is well known that in the single-channel Liischer
approach, the energy levels are in one-to-one correspond-
ence with the scattering phase. However, in a two-chan-
nel situation, the S-matrix is characterized by 3 paramet-
ers, all of which are functions of the scattering energy.
Therefore, one needs to re-parametrize the S-matrix ele-
ments in terms of a number of constant parameters so as
to pass from the energy levels to the scattering phases.
One possible choice is to use the K-matrix parametriza-
tion adopted by the Hadron Spectrum Collaboration in
their studies of light meson coupled-channel scattering. In
this work, however, since we are only interested in the
energy region very close to the threshold, we use the
multi-channel effective range expansion, developed a
long time ago by Ross and Shaw [27, 28]. The difficulty
with the multi-channel approach lies in the fact that the
number of parameters needed to parametrize the S-mat-
rix grows quadratically with the number of channels.
Therefore, based on the experimental facts and hints from
the HALQCD study, we attempt to study this problem in
the two-channel Liischer approach. This could be viewed
as the first step beyond the single-channel approximation
using the Liischer formalism. To be more specific, we
single out the two most relevant channels for Z.(3900),
J/yn and pD*, the first being the discovery channel for
Z.(3900) , and the second was shown to be the dominant
channel in the BESIII experimental data [29]. Quite sim-
ilar to the single-channel effective range expansion,
which is characterized by two real parameters, namely the
scattering length ag and the effective range ry, in the two-
channel situation, one needs 5 real parameters to de-
scribe the Ross-Shaw matrix M: 3 for the scattering
length matrix, and 2 for the effective range parameters. If
one would like to go beyond two channels, these num-
bers go up rather quickly. For example, for the case of
three channels, the scattering length matrix has 6 real
parameters, while the effective range adds another 3,
making a total of 9 parameters, which we think is already
too many to handle. Thus, in this paper, using lattice
QCD in the two-channel Liischer formalism combined
with the Ross-Shaw effective range expansion, our aim is
to check whether the cross-channel interaction scenario,
as suggested by the HALQCD, can be realized or not.

The paper is organized as follows. In Section 2, we
briefly outline the computational strategies in the Liischer
formalism, and review the Ross-Shaw effective range ex-
pansion that we use to parametrize the S-matrix elements.
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In particular, we discuss the conditions that should be sat-
isfied in order to have a narrow resonance close to the
threshold. In Section 3, interpolation operators are intro-
duced from which correlation matrices can be computed.
We also outline how the two most relevant channels are
determined from the correlation matrix. In Section 4, cal-
culation details are given and the results for the single-
and two-meson systems are analyzed. By applying the
two-channel Liischer formula, parameters that determine
the Ross-Shaw M-matrix are extracted, and the physics
implied is discussed. In Section 5, we conclude with
some general remarks.

2 Strategies for computation

In this section, we outline the strategies for computa-
tion described in this paper. We start by reviewing the in-
gredients of the Liischer formalism with the focus on the
multi-channel version. We then describe the multi-chan-
nel effective range expansion developed by Ross and
Shaw. The relation of the scattering cross-section with the
parameters of the Ross and Shaw theory are also outlined,
which helps understand the meaning of these parameters.

2.1 Multi-channel Liischer formula

In the original single-channel Liischer formalism, the
exact energy eigenvalue of a two-particle system in a fi-
nite box of size L is related to the elastic scattering phase
of the two particles in infinite volume. For simplicity, we
only consider the center-of-mass frame with periodic
boundary conditions applied in all three spatial directions.
Consider two interacting bosonic particles, which are
called mesons in the following, with mass m; and m, en-
closed in a cubic box of size L. The spatial momentum k
of any particle is quantized according to:

k:(%’r)n, ()

with n being a three-dimensional integer. The exact en-
ergy of the two-particle system in this finite volume is de-
noted as Ei.,(k). This can be obtained in lattice simula-
tions from appropriate correlation functions. Defining a
variable k? via:

Era(k) = \m} + K2+ \fnd + &2, @)

which is the energy of two freely moving particles in in-
finite volume with mass m; and m; having three-mo-
menta k and —k, respectively. It is also convenient to fur-
ther define a variable ¢ as:

¢* = kK*L*/(2n)?, A3)

which differs from n? due to the interaction between the
two particles. The single-channel Liischer formula gives a
direct relation between ¢> and the elastic scattering phase
shift tan5(¢) in infinite volume: [10]

1
geoton(q) = —75 Zoo(l:4) , O]

where Zo(1;4?) is the zeta-function, which can be evalu-
ated numerically once its argument ¢ is given. This rela-
tion can also address the issue of bound states, which is
related to the phase shift §(k) analytically continued be-
low the threshold, see e.g. Ref. [10].

For the two-channel case, the S-matrix now becomes
a 2x?2 matrix in channel space. For example, for the
strong interaction, the S-matrix is usually expressed as,

S = [511 S12 ]_{ ne”” i1 -rPei@)
TS Sxn || i1 _772ei(5.+6z) 77e2i63 ’
)
where ¢, and 6, are scattering phases in channel 1 and 2,
respectively, and n€[0,1] is the inelasticity parameter.
Note that all three parameters, ¢, 6, and n , are functions
of energy. It is known that below the threshold, =1 so
that the coupling between the two channels is turned off
kinematically.
The two-channel Liischer formula now takes the
form,

MK +i ko
S —Sn
Mky) —i kymy
o =0. (6)
kzl’ﬂzS M(k2)+l
N 2 5 —Sx
kym MK3)—i

The function M involves the zeta-function, and the argu-
ments k7 and &3 in this formula are related to the energy of
the two-particle system via,
ki K
E= M =Er+ 2_1/112 ,

where Ey is the threshold energyl). To be specific,
Er =mp+mp. —(myyy, +my) , m; and my are the reduced
masses of the J/ynm and pD* systems, respectively.

For a given partial wave /, the cross-section above the
inelastic threshold consists of the elastic cross-section 0'9
and the reaction cross-section o, given by,

(7

Vs
o) = Z I -sOP,
1
T
o) = F @I DA-ISHP), ®)
2
where Sf? is the S-matrix element for the partial-wave /,
and we have used the unitarity condition for the S-matrix.

1) Although this expression is written in non-relativistic form, it is easily modified to the relativistic form. As shown by Liischer, this is legitimate if we neglect the
polarization effects (exponentially suppressed as e "7L) which is what we always assume to be the case.
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2.2 Ross-Shaw theory

As mentioned above, since 61, 6, and n are all func-
tions of energy, the two-channel Liischer formula (6)
gives a relation among the three functions. It is therefore
crucial to parametrize the S-matrix in terms of constants
instead of functions, and the multi-channel effective
range expansion developed by Ross and Shaw [27, 28]
serves this purpose. Here we briefly summarize the ma-
jor points of this theory.

In the single-channel case, this theory is just the well
known effective range expansion of the low-energy elast-
ic scattering,

kcots(k) = L lrokz Foee, 9)

a 2

where ... designates higher order terms in k* that vanish
in the limit of k> — 0. Therefore, in low-energy elastic
scattering, the scattering length ao and the effective range
ro completely characterize the scattering process. The
Ross-Shaw theory simply generalizes the above theory to
the case of multi-channels. For that purpose, a matrix M
is defined via

M=Kk K12 (10)

where k and K are both matrices in channel space. The
matrix k is the kinematic matrix, which is a diagonal mat-

rix given by
(kO

and k; and k, are related to the energy E via Eq. (7). The
matrix K is called the K-matrix in scattering theory, re-
lated with the S-matrix by,l)

_1+iK

= . 12
1-iK (12)
Another useful formal expression for the matrix K is
K =tan¢, (13)

where both sides are interpreted as matrices in channel
space. From the above expressions, it is easily seen that
K-, that appears in Eq. (10), is simply the matrix coté ,
and that without cross-channel coupling the M-matrix is
diagonal with entries M ~ Diag(k; cotdy,k; cotdy). Thus, it
is indeed a generalization of the single-channel case in
Eq. (9). In their original paper, Ross and Shaw showed
that the M-matrix can be Taylor expanded as function of
energy E around some reference energy Ej as,

Mii(E) = Mij(Ey) + Ry [ - KiEn)| . (14)

where the channel indices i and j are explicitly written.
The matrix M;;(Ey) = Mg)) is a real symmetric matrix in

1) K-matrix is hermitian so that S-matrix is unitary.

channel space, called the inverse scattering length matrix,
and R = Diag(R,R;) is a diagonal matrix, called the ef-
fective range matrix. k7 are the entries of the kinematic
matrix defined in Eq. (11). Therefore, for two channels,
there are altogether 5 parameters that describe the scatter-
ing close to some energy Ey: 3 in the inverse scattering
length matrix M© , and 2 in the effective range matrix R.
As was shown in Ref. [28], in many cases R; ~R, , and
there are only 4 parameters in this description. One could
further reduce the number of parameters to 3 by neglect-
ing the terms associated with the effective range. This is
called the zero-range approximation [27]. For conveni-
ence, Ey is usually taken as the threshold of the second
channel. In such a case, the two-channel Ross-Shaw M-
matrix looks like,

R
M11+71[k%—k%0] M,
My, M22+7k2

where k3 = k}(E = E7).

It is understood that the Ross-Shaw parametrization in
Eq. (14) is equivalent to the K-matrix parametrization
with two poles. In the K-matrix representation, assuming
there are altogether n open channels, the nxn K-matrix is
parametrized as,

K(E)=k'/?. (16)

n T
Ya®Y, 'kl/z,
E-E,

a=1
where £ is the kinematic matrix analogue of Eq. (11), the
label @ = 1,2,--- ,n designates the channels, and each vy, is
a 1xn real constant matrix (an n-component vector). It
was shown in Ref. [28] that this is equivalent to the ef-
fective range expansion (14), but the parameters are more
flexible. In particular, the K-matrix parametrization con-
tains (n” +n) real parameters: n> for n copies of vy, , and
another n for E, , while the n-channel Ross-Shaw para-
metrization has n(n+1)/2+n real parameters, n(n—1)/2
parameters less than the most general K-matrix given in
Eq. (16). In this paper, we focus on the two-channel case
only.

2.3 Resonance scenario in the Ross-Shaw theory

In this subsection, we investigate the possibility of a
narrow peak just below the threshold of the second chan-
nel. In particular, this is studied in the framework of the
two-channel Ross-Shaw theory. It turns out that this re-
quirement imposes some constraints on the different para-
meters of the Ross-Shaw theory. In later sections, we ex-
tract these parameters from our lattice data and try to an-
swer the question if there could exist a narrow peak in the
elastic cross-section.
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It is convenient to inspect the resonance scenario us-
ing the 7-matrix, which is continuous across the
threshold. Formally, it is related to the K-matrix via,

K'=7"4i, (17)
or equivalently, 7 = K(1-iK)~!. The relation between the
S-matrix and 7-matrix is given by,

S =1+2iT, (18)

where both S and T are 2 x2 matrices in channel space.
Since the scattering cross-section o7;; is essentially pro-
portional to |T;;%, in fact we have, see Eq. (8),

4
0’11=—2|T11|2- (19)
ki
Therefore, if we write,
1
T =———, 20
"= 20)

with « real, it is seen that a resonance peak occurs when
a1(E) =0, and the half-width positions are at aj(E) = =1,
respectively. Here, we have neglected the energy depend-
ence of the kinematic factor 1/ kf in o711 , which is legitim-
ate for narrow resonances.

It is convenient to use the idea of complex phase
shifts in two different channels. In this regard, one writes:

Si=eM, §y=e, @21

In order to ensure unitarity, the imaginary parts of the two
complex phase shifts have to be equal and positive:

Im(6¢) =Im(6§) =£>0. (22)

The real parts of the two complex phase shifts need not
be related. Comparing with the general representation in
Eq. (5), we have

§1 =Re(6%), 62 =Re(s5), n=e%, (23)

and the positivity of ¢ ensures that n is a positive real
number between zero and one.

The above equations apply when the energy is above
the threshold. Below the threshold, we have practically
single-channel scattering, and the phase shift for channel
one is real and for the second it vanishes identically:
Si=e%,81,=5,=0,Sn=1

At this stage, it is important to realize that the matrix
M , which is equivalent to cotd , could have a discontinu-
ity at the threshold. This is understandable since at the
new threshold the phase shift for the newly opened chan-
nel usually starts from zero, which is a singular point for
cots. However, the matrix T, which is esind ,is per-
fectly continuous across the threshold, where 6 =0. It is
therefore more convenient to use the 7-matrix (although
parametrized by the M-matrix) to analyze the cross-sec-

1) Thus, it is readily seen that a1 (E) is indeed real.

tion.
Using the complex phase shift in channel one, we
have

T = , cotd = a(E). 24)

cot6¢ —i
We easily obtain the following formula for a(E),

=y 25)

a(E)= ——IMuE) - ———F | -
ki (E) M (E) + kao(E)

where we have substituted —ik, = x» , with «, > 0, for the
case of a bound state in the second channel just below the
threshold".

In the zero-range approximation, meaning that the ef-
fects of the effective ranges are neglected, and both R,
and R, are set to zero, the elastic scattering cross-section
reads,

4

T = 5

M? ’

k%+[Mu— b ) (26)
My + Ky

where «; = V2my(Er — E) is the binding momentum in the

second channel. The function k? also has a mild energy

dependence. The resonance occurs when the second term

in the denominator exactly vanishes, giving

M2
My = —2 (27)
My + Ky
which is equivalent to,
M2
Ky =Ko = _Mi? —-M» . (28)

For later convenience, we introduce the determinant of
the M-matrix,

A=MyMy-M:,. (29)

Therefore, the value of «, at which the resonance occurs
can be written as,
A
Kae M (30)

Thus, in order to have a resonance close to the threshold
the value of ;. has to be a positive number close to zero.
This means that the matrix M has to be singular. This also
makes sense because if the matrix M is singular, then cotd
is a singular matrix, meaning an almost divergent scatter-
ing length, thus signaling a large scattering cross-section.
On the other hand, if the M-matrix is rather large, than the
scattering phase shift matrix is small, leading to a small
cross-section.

It is also straightforward to work out the half-width
positions that correspond to a; = +1, called «5 . They sat-
isfy the following equation,
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M3,
+ky = My — —2— 31
+Ky 11 My +43 (31)
which yields,
M?
12
= ———=— —Mp. 32
K2 M]] ¢k1 2 ( )
Therefore, the half-width T of the peak is given by,
1 ki M?
[=2kd-Ki5)= ——2 . 33
2k el= e e 33)

To summarize, to characterize the narrowness of
the resonance we use the dimensionless ratio
Rnarrow = I'/k; , while for the closeness to the threshold,
we use the dimensionless ratio R;jose = k2c/k1. Accord-
ing to the above discussion, these two ratios read,
A M3,

Ryjose = ————, R =12
close M[ lk] narrow |M121 _ k%|

(34)
In order to have a narrow resonance just below the
threshold, both ratios have to be small. It is also seen that,
apart from the kinematic factor &, all the other quantities
are determined by the parameters in the M-matrix.

With the following masses, my, =3097 MeV,
my; = 140 MeV, mp = 1864 MeV and mp. = 2010 MeV, it
is found that the momentum k; = 709 MeV. Therefore, for
the peak of Z.(3900), taking the values measured in Ref.
[1], we get,

15
RClOSC :ﬁ = 00211 5
46
R =— =0.065, 35
narrow 709 ( )

both of which are small numbers. R;jose and Rnarrow
may be expressed in terms of the three parameters in the
M-matrix as,

M3, — My M

R = s
close M 1k,
Rnarrow = % .
M11 _kl

Therefore, given the parameters Ma, R;|ose @and Rnarrow
we can get the values of M, and M|, , which can then be
compared with the lattice data. In the following, we call
these the closeness and narrowness conditions.

However, since we do not have a physical pion mass
in the calculations, we need to relax this constraint. For a
generic pion mass, we have,

(mD+mD*)2+m,2,—m3N/ 2

2 _ —m2 37
“io 2mp +mp.) my. G

In our calculations, the mass of the relevant mesons are
given in the following table, expressed in lattice units:

my =0.1416(1), myy, = 1.2985(3),

mp- =0.8875(12), mp = 0.7967(4) , (38)
Substituting in the expression for k9, we get,
kio=0.3174. (39)

in lattice units, corresponding to about 720 MeV in phys-
ical units, which is close to the real value of 709 MeV.
Thus, we may require that both ratios are close to their
real values in our analysis. Note that the matrix elements
of the M-matrix also have a dimension of momentum.
Therefore, it is convenient to express all quantities in
units of kyo. In these units, the closeness and narrowness
conditions read,
Rejse = Mi, = MuMa
M,
M2
Rnarrow = Y2 L
11

(40)

a
where all matrix elements are in units of kjo. This is more
convenient when we analyze our data in subsection 4.4.

3 One- and two-particle operators and correl-
ators

Single-particle and two-particle energies are meas-
ured in Monte Carlo simulations by the corresponding
correlation functions, which are constructed from the ap-
propriate interpolation operators with definite symmet-
ries. For the pp* channel, we basically adopted the same
set of operators as in our previous study, see Sec. 3 in
Ref. [12]. We take this channel as an example below. Op-
erators in other channels can also be constructed accord-

ingly.
3.1 One- and two-particle operators

Let us list the interpolation operators for the charmed
mesons. We use the following local interpolating fields in
real space for D mesons:

[D*]: PD(x,1) = [dyscl(x,1), (41)

together with the interpolation operator for its anti-
particle (D"): PD(x,1) = [cysd](x,0) = [PD(x,)] . In the
above equation, we also indicate the quark flavor content
of the operator in front of the definition inside the square
bracket. So, for example, the operator in Eq. (41) creates
a D* meson when acting on the QCD vacuum. Similarly,
one defines P and P | with the quark fields d(x,?) in
Eq. (41) replaced by u(x,f). In an analogous manner, a set
of operators ‘1/5“/ 9 is constructed for the vector charmed
mesons D** , with ys in P“/49 replaced by y;. A single-
particle state with a definite three-momentum k is defined
accordingly via the Fourier transform, e.g.:
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(u/d) - (u/d) —ikx
PUD (k1) = ZP (x,t)e . (42)
X
The conjugate of the above operator is:
[PUD e, 1)]T = Z[P(u/d) (x,0)]ferik*
X

=PU/D(—k,1). (43)

Similar relations also hold for (Vg”/ D and (VE”/ 9 The in-
terpolation operators for J/y, x, p and 7. are formed ac-
cordingly.

To form two-particle operators, one has to consider
the corresponding internal quantum numbers. Since our
target state Z*(3900) likely carries I¢(JP€) = 1*(1*7), we
use:

D*D°+DD*
DD +D*D" (44)
[D*ODO _ D*+D—] + [D*ODO _ D*—D+]

(1) :

Therefore, in terms of the operators defined in Eq.
(41), we have used

ViU 0Pk 0+ VU 0P kr), (45

for a pair of charmed mesons with back-to-back mo-
mentum k.

On the lattice, the rotational symmetry group S O(3) is
broken down to the octahedral group O(Z). We use the
following operator to create the two charmed meson state
from vacuum,

Oh)= D [ VIR0 ko, 0P (-R 0 k)|
ReO(Z)

+V(Ro k. NPV (-Ro koo 1) (46)

where k, is a chosen three-momentum mode. The index
a=1,---,N ,where N is the number of momentum modes
considered in a corresponding channel. In this calcula-
tion, we have chosen N =4 for all channels with
k2 =Q2n/L)n%, n2 =0,1,2,3. In the above equation, the
notation Ro k, represents the momentum obtained from
k. by applying the operation R on k,.

In an analogous fashion, single- and two-particle op-
erators are constructed in other channels. For example,
for the J/yn channel, one simply replaces the operators
for p* and D by the corresponding ones for J/y and =, re-
spectively.

3.2 Correlation functions

One-particle correlation functions, with a definite
three-momentum k&, for the vector and pseudo-scalar
charmed mesons are defined respectively as,

1) We have used the matrix notation.

Y, k) VD ke, )V -k, 0))
CP(t, k) =Pk, yPD(~k,0)) . (47)

From these correlation functions, including similar ones
for the other particles discussed in this study, it is
straightforward to obtain the single particle energies for
various lattice momenta k, which enables to check the
dispersion relations for all single particles.

We now turn to the more complicated two-particle
correlation functions. Generally speaking, we need to
evaluate a (Hermitian) correlation matrix of the form:

Cap(t) = (05 ()O0), (48)

where O, (1) represents the two-particle operator defined
in Eq. (46) in a particular channel. The two particle ener-
gies that are to be substituted in the Liischer formula are
obtained from this correlation matrix by solving the gen-
eralized eigenvalue problem (GEVP): b

C(1) - va(t,t0) = Aa(t,20)C(10) - Vo (t,10) , (49)

with @ =1,2,---,N,, and 7> 1y. The eigenvalues A,(7,%))
can be shown to behave like

/la(t, t()) ~ e*Eu([*[u) +ee, (50)

where E, is the eigenvalue of the Hamiltonian of the sys-
tem, which is the quantity to be substituted in the Liischer
formula to extract scattering information. The parameter
to is tunable, and one can optimize the calculations by
choosing 7y such that the correlation function is domin-
ated by the desired eigenvalues at a particular 7y (prefer-
ring a larger 7y) with an acceptable signal-to-noise ratio
(preferring a smaller 7y). The eigenvectors v, (¢, 1) are or-
thonormal with respect to the metric C(t), v(TYC(to)vﬁ =
048, and they contain the information about the overlap of
the original operators with the eigenvectors.

3.3 sLapH smearing

To enhance the signal for the correlation matrix func-
tions defined in the previous subsection, we have used the
stochastic Laplacian Heavyside smearing (sLapH smear-
ing) as discussed in Ref. [30]. Perambulators for the
charm and light quarks are obtained using diluted
stochastic sources. We adopted the same dilution proced-
ure as in Ref. [31], see Sec. 2.1 in that reference for fur-
ther details. The correlation functions are then construc-
ted from these perambulators.

3.4 Singling out the two most relevant channels

There are four relevant channels in the energy regime
we are investigating, namely J/ynr, DD*, n.0 and D*D*,
with increasing thresholds. It was suggested by the
HALQCD collaboration that the three lowest channels
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have strong couplings among them [16, 17]. To verify
this assertion, we took all four channels and constructed
the cross-correlation matrix C() as defined in Eq. (51).
For each of the four channels, we constructed the two
meson operators in the center-of-mass frame, with back-
to-back three-momenta characterized by a three-dimen-
sional integer n as in BEq. (1), starting from n*> =0 to
n®> = 3. Then, the correlation matrix was measured using
the stochastically estimated perambulators obtained from
the ensemble listed in Table 1. By inspecting the mag-
nitude of the off-diagonal matrix elements relative to the
diagonal ones we get an estimate of the coupling among
these channels.

To visualize this, starting from the correlation matrix
Cop(7) defined in Eq. (48), we define a new cross-correla-
tion matrix C(¢) at a particular temporal separation ¢ as:

Cap(t) = Cap(0)/\[Caa(Crs(0)], (5D

such that the diagonal matrix elements of C(f) are normal-
ized to unity. Since there are four channels and each
channel has four different momenta, the matrix C(f) is a
16 x 16 matrix. If there were no cross-channel couplings,
the matrix would be block diagonal for each channel.

Table 1.
cing is 0.0863fm in physical units, while the pion mass is 320 MeV.

Simulation parameters used in this study. The lattice spa-

ensemble B ayy ajly ays

A40.32 1.9 0.0040 0.150 0.190

(L/a*xTJ/a  Neonf
323 x 64 250

Jlpm

The magnitude of C is shown in Fig. 1 for t =10 for
the case of four channels, namely J/yn, DD* n.p and
D*D*. The columns of the matrix are labeled from left to
right according to the channels: J/yx, DD*, n.p and D*D*.
Within each channel, the columns are numbered accord-
ing to increasing n® for the back-to-back momenta k.
Similar numbering is adopted for the matrix rows, from
top to bottom. Thus, the 16 x 16 matrix is made up of 4 x4
block matrices, and each block is a 4 x 4 matrix represent-
ing the scattering in a particular single channel. It is seen
from the figure that the coupling among channels does
exist, most prominently between pp* and J/yn. We re-
mark that the quantity C is not a physical quantity. In
fact, it depends on the time separation ¢. Since J/yr is the
lightest channel among the four, its mixture with the oth-
er channels increases relative to the other channels as # in-
creases. Nevertheless, the magnitude of the off-diagonal
matrix elements of C still offer a qualitative description
of the coupling among different channels. Since the num-
ber of parameters increases quadratically with the num-
ber of channels, we used two coupled channels in this
study. Therefore, in the following, we focus on the two
channels that are coupled most strongly, namely pp* and
J/yr. Not surprisingly, these two channels also coincide
with the experimental data, see e.g. Ref. [32] , where the
channel pp* is found to be the dominant decay channel
for Z.(3900) , while the channel J/yx is the discovery
channel for Z.(3900).

e | DD

18 1 1 1 I 1
o 2 4 L B

Fig. 1.

10 12 14 16 18

(color online) Density plot of the magnitude of the correlation matrix Cos(1) as defined in Eq. (51) at r = 10 obtained from the

ensemble. Four channels have been included, each with 4 different back-to-back momentum. It is seen that the coupling between

J/yr and pp* is the most important.
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4 Simulation details and results

In this paper, we used Ny=2+1+1 twisted mass
gauge field configurations generated by the European
Twisted Mass Collaboration (ETMC) at B=1.9 , corres-
ponding to a lattice spacing a =0.0863 fm in physical
units. Details of the relevant parameters are summarized
in Table 1.

For the measurements related to the charm sector, we
have used the Osterwalder-Seiler type action with a ficti-
tious ¢’ quark that is degenerate in ¢ [33].

They form an S U(2) doublet characterized by a quark
mass parameter u.. The up and down quark mass values
are also degenerate and the parameter y; is fixed to the
same value as in the sea corresponding to pion mass
my; =320 MeV. For the charm quark, the parameter y. is
fixed in such a way that the mass of J/y on the lattice
corresponds to 2.96 GeV.

4.1 Single meson correlators and dispersion relations

We first checked the single meson dispersion rela-
tions for the mesons involved: n, J/y, D and p*. This is
crucial since we need well established single meson states
in a finite box in order to use the Liischer formalism. We
have attempted to fit the single meson correlators with
various momenta using both the continuum and lattice
versions of the dispersion relations:

=

0.175

0.1504

0.1251

0.1004

Asinh{E/2)

0.075 4

0.050

0.0254

0.00 0.02 0.04 0.06 D..US 0.10 0.12 0.14 016
4%sin(pil2)

o

4sinhEr2)

Dbﬂ 002 Uhd 0.06 O,IOB 010 012 Dl'ld 0.16
4% 5in (py2]

Fig. 2.

EX(p) =m* + Zeont.P” »
3
4sinh? [ EP) =4sinh2(T)+z Z4sin2(ﬁ) . (52
2 2 latt. - 2

It turns out that both work fine for small enough p? , ex-
cept that the lattice version is better in the sense that the
slope Zj,4 is closer to unity than Zgopt . In Fig. 2, the lat-
tice version of the dispersion relations is illustrated for
the above listed mesons. Data points are obtained from
the corresponding single-meson correlators, while the
lines represent linear fits using Eq. (52).

4.2 Two-particle energy levels

To extract the two-particle energy eigenvalues, we
adopt the usual Liischer-Wolff method [9]. For this pur-
pose, a new matrix Q(z,1y) is defined as:

Q(1,19) = Clt0)":C(HC (1) "2, (53)

where g is the reference time. Normally one chooses ¢
such that the signal is good and stable. The energy eigen-
values for the two-particle system are then obtained by
diagonalizing the matrix Q(z,7p). The eigenvalues of the
matrix have the usual exponential decay behavior as de-
scribed by Eq. (50), and therefore the exact energy E, can
be extracted from the effective mass plateau of the eigen-
value A,.

Since we are only interested in the two-channel scen-

Jiw

000 002 004 006 008 010 012 014 016
AL sin®(py2)

D*

ey o = i
o D o =3
4 k-3 ® =4
1 i

4sinh?(E/2)
-
o
=

0.00 0.02 0.04 0.06 0.08 0.10 0 .12 0.14 0.16
4Lsin®(p/2)

(color online) Single meson dispersion relations (the lattice version) for J/w, =, D and p*, respectively. Data points are ob-

tained from the corresponding single meson correlators, and the lines are linear fits using Eq. (52).
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ario, we focus on the correlation sub-matrix in the Jyn
and pp* sector. The correlation matrix is therefore 8 x 8 ,
and the GEVP process yields 8 energy levels. In order to
obtain a good plateau for each energy level, we tried to
remove the thermal state contamination arising from the
lightest J/yn state, see e.g. Refs. [31, 34]. In Fig. 3, we
show a typical behavior of one energy eigenvalue plateau
both with and without this procedure. It is seen that after
performing the thermal state removal procedure, the plat-
eau behavior is greatly improved.

All effective mass plateaus are shown in Fig. 4, and
the final results for E, and the corresponding errors,
which are analyzed using the jackknife method, are sum-
marized in Table 2 together with the fitting ranges and x>
per degree of freedom. It is seen that all energy levels
have a suitable plateau behavior.

4.3 Extraction of scattering parameters

As discussed previously, using the Ross-Shaw theory,
we adopt a four-parameter fit for the data. To be specific,
we use My, M3, My, and R as the parameters to be de-
termined, assuming that the effective range is the same in
the first and second channel. We denote these four para-
meters as {4;}, with i = 1,2,3,4 corresponding to the above
listed four parameters.

The two-channel Liischer formula as shown in Eq. (6)
can be written as,

FAA4LE) =0, (54)

for an energy level E in the finite box. The function F in-
volves various zeta-functions which can be computed nu-
merically once the parameters are given. Thus, for a giv-
en set of parameters {4;}, the above formula can be
viewed as an equation for E. In fact, one can solve for a
tower of £ which can be compared with the lattice simu-
lations. Therefore, following e.g. Ref. [34], we may con-
struct a y? function as,

Jiyn-DD’ Jiyn-DD”

21 o A 21 o Ay
2 0 2
1o 19
e e
17} e e
16 wh Yo,
., $660obotpgeatag BTTIL
15 15
. A P e T e
13 i
s 0 s B} 2 s 0 s 2 2
ta va
Jiyn-DD’ Jyn-DD”
24 o A 21 o Ag
2t 4 o} o
19 19
. B
e LN Il I w8 éeéé 7
&g © @ T
7 ®%05x -;ﬂhﬁ 17 ¢ e TTETY %
: il :
15 15
14 14

13 1

Fig. 4.

AN = Y (ES(AN ~ EEYCHES (D — B,
aff

(55)

where the summation of o and B runs over all available
energy levels used in the fit. The energy levels ES°'({4;})
are obtained by solving Eq. (54) once the parameters {1;}
are given. The energy levels E!*" correspond to the levels
obtained from the lattice data following the GEVP pro-
cess. The matrix C accounts for the correlation of these
quantities since they are all obtained using the same en-
semble. We estimated the covariance matrix C from our
data using the jackknife method.

After minimizing the function can be obtained. In our
calculations, we obtained 8 energy levels. Since the
highest energy level is subject to contamination, we de-
cided to fit the scattering parameters with and without
this level. It turned out that with the highest energy level
included, we get a rather large 2 , while using the lowest
7 levels yields a tolerable y? value. We therefore only list
the best fit parameters using the lowest 7 levels. When
performing the fit, we used the four parameters including
R, and in the zero-range approximation where R=0. It

1.65 T T T T T
16} before removing thermal state
' ¢ after removing thermal state
15549 @ 1
Y ogsp L ° 1
& & §
145 &g ) % .
$3938339 §§§§§§§ 3
141+ .
5 10 15 20 25 30
t/a
Fig. 3. (color online) Effective mass plateau for one of the
energy eigenvalues, with and without the thermal state re-
moval.
N Jiyn-DD” N Jiyn-DD”
21 21 o Ay
2 e
wobe "
18 18 ¢ l
w £ w
1 7 AL o Tl T
‘; MR e T 1 o ee'ee"ﬂi‘zﬁfll
5 10 15 20 25 ! 5 10 15 20 25
2 Jiyn-DD J/yn-DD
z; . ‘ ° )\s 2; éé o )\7
s ¢ 19 .
w8 eéweg-viTl w'® oot 1%
” Tl " %

(color online) Effective mass plateaus for the eight energy levels.
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Table 2.  Energy eigenvalues obtained in the coupled two-channel

scattering.

Eigenvalues [fmin» fmax ] E, X*/Na.oy
Ao [14,24] 1.4411(7) 0.6
A [11,24] 1.5547(6) 1.1
A2 [10,22] 1.6375(10) 0.7
3 [12,22] 1.6868(23) 0.6
A4 [11,22] 1.7058(31) 0.3
s [12, 18] 1.7319(33) 0.4
A6 [12, 18] 1.7610(63) 0.4
A7 [9, 14] 1.8152(30) 0.6

was observed that the four-parameter fit yields a value of
R that is consistent with zero within errors. Therefore, it
makes sense to perform the fit in the zero-range approx-
imation.

The covariance matrix of the fit parameters can be es-
timated following the standard jackknife procedure. For
the case of a three-parameter fit, i.e. in the zero-range ap-
proximation, we obtained the inverse covariance matrix
C~!in lattice units as,

6.49951962  4.3268455  3.24808892

4.3268455 12.51156448 9.33781593 |,
3.24808892  9.33781593  7.4080769

c'=

(56)
where the column and rows of the matrix are labeled ac-
cording to (n1,7m2,m3) = (M1, M12,M,). The covariance
matrix C itself can be easily obtained. If we wish to trans-
form these matrix elements into units in which kg =1,
they have to be either multiplied or divided by the value
of k2, in lattice units.

The results of the fitting procedure are tabulated in
Table 3 , where all quantities are in lattice units. The er-
rors of each parameter are equal to the square root of the
corresponding matrix element of the covariance matrix C.

4.4 Discussion of the results

Since the presence of the effective range parameter R
is marginal, in the following discussion we only focus on
the case of three parameters. For later convenience, we
collectively denote these parameters as
n = (Mi1,Mi5,M»)" € R? and the value of  which minim-
izes the y? function is denoted as n*. All parameters are in
units of kj.

In a small neighborhood around the best fit value for
1 , the function y?(;)) can be parametrized as,

1
X)) = x> () + szc—l W, (57)

Table 3. Parameters M,, M,,, M}, and R obtained by minimizing the
x? function defined in Eq. (55). All quantities are in lattice units.
The corresponding values of the total 2 and the number of degrees
of freedom are also listed. The errors of various parameters are ob-
tained by the jackknife analysis.

No. of levels M My, My R X*/Naos
7 —77(18)  37(1.1) -33(28) 0.12(12) 0573
7 ~7510.45) 3.7(12) -3.1(1.5) 0.58/4

where w=n-n*, and C is the covariance matrix, which
also yields the errors (and the cross-variance) for the fit
parameters.

The matrix C~! is a 3x 3 positive-definite symmetric
real matrix which can be diagonalized via some rotation
matrix R. In fact, setting x = R-w and requiring that the
new matrix R C~'R is diagonal, we have

RT-C™'R=Diag(1/03,1/03,1/03) . (58)

The confidence level can then be determined by us-
ing the change of the y? function relative to its minimum
in the parameter space. Denoting

AP = x> ) - x> (1) (59)

this quantity is diagonal in terms of the rotated paramet-
ers x:
3.2
Mw=3 )5 (60)
i=1 Yi
Therefore, for a given value of Ay?(x), the above equa-
tion becomes a three-dimensional ellipsoid centered at the
origin of xeR? , with three half-major axes given by:
2Mx%0, \2Ax20, and +/2Ax203, tespectively. In terms
of the original variable w, this is a rotated ellipsoid with
the rotation characterized by the matrix R which diagon-
alizes the matrix C~".
It is known that for the three-parameter y? fit, the 1o,
20 and 3¢ contours  can be determined by requiring that
Ax? = 3.53, 8.02, 14.2 , respectively. Thus, denoting

w= (M - MTI Mir — MTZ,MQQ - M;Z)T, the CllipSOid,

1
AXZZEWT'C_I'W, (61)

centered at n* = (M, M;,, M},) encloses 68%, 95.4% and
99.7% probability for the parameters.

On the other hand, the closeness and narrowness con-
ditions given in Eq. (36) yield a parabola and a hyper-
bola in the r; — 1, plane for a given value of ;3 = My, re-
spectively. We can require that R qe and Rnarrow are
smaller than some prescribed cut values,

t t
Rnarrow < Rﬁgrrow ’ RCIOSC < Rzilose ' (62)

1) In three dimensions, they are in fact surfaces instead of contours. But since we will be showing two-dimensional intersections, we will call them contours instead.
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We can therefore check whether these conditions are sup-
ported by our y? fit.

To summarize, these conditions are, using the units
system where ko = 1:

s@-n)'C -0 <A, (63)
nZ
n- Rc+ <1, (64)
narrow
M3+ Ro, 1 <73 - (65)

For a given value of Ay?, the first inequality (63) im-
poses an ellipsoid that encloses a certain probability
around the best fit value at n = n*; the second inequality
(64) implies a region bounded by a hyperbola in the nn,
plane independent of the value of 3 = My,; the third in-
equality requires that the point (1;,7, ) is in a region that
is above the parabola for a given value of 173 = M.

Therefore, if we want to have a narrow resonance
close enough to the threshold, described by the ratios
Riarow and RGS it has to lie in the overlapping region of
the above mentioned parabola and hyperbola. By inspect-
ing the location of the overlapping region with respect to
Ax?* contours, we can set the confidence intervals for the
parameters. This can be done when a particular value of
n = My is given.

In Fig. 5, the situation is illustrated for three particu-

lar wvalues (from left to right) of My, namely
My = M;z,M;2 +AM22,M;2 —AMQQ, where AMQQ is the er-

ror of My,. Here, all quantities are in the units system
where ko = 1. In each panel of the figure, the common
center of the two ellipses corresponds to the minimum of
the y? function, i.e. the best fit values of (177,m5) for a giv-
en value of r3. The two elliptical shaded regions around
the common center correspond to 1o~ (68% probability)
and 30 (99.7% probability) contours for the parameters
(n1,m2) = (M1, M1;). The lower left shaded region corres-
ponds to the narrow resonance condition described by the

inequality (64), while the upper right shaded region cor-
responds to the resonance which is close to the threshold,
i.e. inequality (65). In this figure, the two ratios have their
"true" physical values for Z.(3900), i.e. R = 0.0211 and
R =0.065. 1t is clearly seen that the overlapping re-
gions, which are located in the top left corner of each
panel, are very far away from the 30~ contours. Therefore,
for this set of parameters, it is highly unlikely that the
three-parameter Ross-Shaw model can describe a reson-
ance that, as Z.(3900), is both narrow and close to
threshold.

Since in our simulations we do not have a physical pi-
on mass and a physical charm quark mass, the two ratios
and the parameter ;¢ could change to have non-real val-
ues. However, since the ratios are dimensionless, we do
not expect them to change drastically. Similarly, as we
saw previously, the value of kg is also not very different

from its physical value. Nevertheless, we take
Rintow = RS . = 0.1 and inspect the relation between the

overlapping regions and the constant Ay? contours again.
These are shown in Fig. 6. It is seen that even for this set
of parameters, the overlapping regions are still far from
the 30~ contours, showing that the three-parameter Ross-
Shaw model can not explain a narrow resonance close to
the resonance described by Ry, = RSt =0.1.

We have also tried other parameter sets and the out-
come is quite similar. Therefore, as far as the parameters
are concerned, it seems that the three-parameter Ross-
Show model cannot realize a scenario in which a narrow
resonance appears close enough to the threshold. This can
be understood from the following physical argument, re-
lated to the fact that the best fit values for the M-matrix
elements are all very large, either in lattice units or in
units of ko . Recall that this matrix is related to the cotd
matrix, or to the inverse scattering length matrix, c.f. Eq.
(10). Large matrix elements of M, if the matrix itself is
non-singular, yield large inverse scattering length, mean-

Mg, = M3,

60

Myy = M;, + AMy, M2 = M3, = AM32

50

40

30

Malkio

20

10

-160 -140 -120 -100 -80 —60 -40 -20 O -80 -60
Ma1/kio

Fig. 5.

panels, from left to right, correspond to different values of 13 = May: Moy = M

0
40 -20 0 -250 -200 -150 -100 -50 0

Ma1/k1o Maa/k1o

(color online) Various contours obtained from Eq. (63) together with the constraints in Eq. (64) and Eq. (65). Three different

s M2 = M}y, + AM2; and My = M}, — AM», respectively,

where AM»; is the error of M. In each panel, the central point of the two ellipses corresponds to the best fit value (n],7;) for a given

value of n;. The two elliptical shaded regions around the central points correspond to 1o and 30 contours for the parameters

(m.m2) = (M11,M12). The lower left shaded region corresponds to the narrow resonance condition described by the inequality (64),

while the upper right shaded region corresponds to the resonance which is close to the threshold, i.e. inequality (65). The two ratios

have their "true" values for Z.(3900), i.e. R =0.0211 and R"

close narrow

=0.065.

103103-12



Chinese Physics C Vol. 43, No. 10 (2019) 103103

30 Ma; = M3,

Mia/kio

o N & o ®

Maz = M3, + AM; M3z = M3, — AM3;

~100 -80 -60 —40 -20 0 -50 —40
Ma1/k1o

Fig. 6.

ing a negligible scattering effect. This is the reason why
the zero-range Ross-Shaw theory has difficulty to gener-
ate a narrow resonance peak near the threshold. Further-
more, we could ask why are the matrix elements of M so
large? This is implicitly hidden in our energy levels E,,
see Table 2. All energy levels we used in the Liischer for-
mula are rather close to the free two-particle energy
levels. This fact in turn generates large values for the M-
matrix elements.

However, it is still premature to draw the conclusion
that the three-parameter Ross-Shaw theory cannot de-
scribe a narrow resonance close to the threshold. In the
above argument, we have not taken into account the sys-
tematic errors. Only statistical errors are considered and
they are assumed to be normally distributed. Although we
used dimensionless quantities in our study to bypass the
scale setting problems, there are still several systematic
effects. Also, we have used one non-physical ensemble,
and a further study is required to perform an extrapola-
tion to a physical point. Another systematic effect is that
we have only considered two channels. Of course, one
could try to add more channels, e.g. pn.. For that purpose,
one needs many more energy levels, since even the three-
channel Ross-Shaw theory in the zero-range approxima-
tion needs 6 parameters. In order to determine them, more
energy levels are needed, which could be attempted in the
future.

5 Conclusions

Let us now outline the main conclusions of our study:

e In this exploratory lattice study, we used the
coupled-channel Liischer formula together with the Ross-
Shaw theory to study the near-threshold scattering of pp*
, which is relevant for the exotic state of Z.(3900).

e We singled out the two most strongly coupled chan-
nels, namely pD* and J/yx. The fact that these two par-
ticular channels show the strongest coupling is supported
both by our correlation matrix estimation and by the ex-
perimental facts.

e QOur results showed that the inverse scattering
length parameters M;;, M, and My, are huge in mag-

(color online) Same as the previous figure except that the ratios are R

-30 -20 -10 0
Ma1/k1o

-160 -140 -120 -100 -80 —-60 —40 -20 0O
Ma/k1o

- Rcul

narrow

=0.1.

close

nitude, indicating that it is unlikely that any resonance
that is both narrow and close enough to the threshold
could be generated.

e Unlike the findings of the HALQCD collaboration,
our results do not support a narrow resonance-like peak
close to the threshold, when the two most relevant
coupled channels are taken into account.

e However, one has to keep in mind that we have not
estimated the systematic uncertainties. All error estim-
ates were purely statistical. The systematics could be due
to finite lattice spacing, non-physical pion and charm
quark masses, finite volume effects, etc., which need to
be clarified in future studies.

To summarize, in this paper we presented an explorat-
ory lattice study for the coupled-channel scattering near
the pD* threshold using the coupled-channel Liischer
formalism. We used the 2+1+1 twisted mass fermion
configurations and a lattice spacing of 0.0863 fm with the
pion mass of 320 MeV. The two most relevant channels,
namely Jynr and pD* were studied, which were singled
out from the four channels by a correlation matrix analys-
is. To extract the scattering information, we fitted our lat-
tice results using the Ross-Shaw theory, a multi-channel
generalization of the conventional effective range theory.
Using our lattice data, the matrix elements of the M-mat-
rix were obtained together with the effective range para-
meter, which turns out to be marginal.

Our results indicate that it is unlikely that both the
narrow resonance condition and the condition that the
resonance is close enough to the threshold could be satis-
fied, unless the parameters happen to be in a small corner
of our parameter space, far away from the best fit values.
It should be kept in mind that we have only considered
statistical errors, and that further studies with more lat-
tice spacings and volumes, pion masses and charm quark
masses, or even more channels, are needed to quantify the
systematic effects. We hope that this exploratory study
could shed some light on the multi-channel study of the
charmed meson scattering, which is intimately related to
Z.(3900).
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