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Abstract: The effective Lagrangian of a finite volume system should, in principle, depend on the system size. In the

framework of the Nambu-Jona-Lasinio (NJL) model, by considering the influence of quark feedback on the effective

coupling, we obtain a modified NJL model so that its Lagrangian depends.on the volume. Based on the modified NJL

model, we study the influence of finite volume on the chiral phase transition at finite temperature, and find that the

pseudo-critical temperature of crossover is much lower than that obtained in the normal NJL model. This clearly

shows that the volume dependent effective Lagrangian plays an important role in the chiral phase transitions at finite

temperature.
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1 Introduction

Dynamical Chiral Symmetry Breaking (DCSB) is a
very important feature of Quantum Chromodynamics
(QCD). With the increases of temperature or/and chemic-
al potential, there appears a phase transition from hadron-
ic matter to a new phase, the quark-gluon plasma (QGP).
This phase transition may occur in the relativistic heavy
ion collisions at RHIC [1, 2] in the Brookhaven National
Laboratory (BNL). It is believed that the phase transition
is a crossover at high temperature and small chemical po-
tential, while it is a first order phase transition at low tem-
perature and large chemical potential. Thus, there pos-
sibly exists a critical end point (CEP) at finite temperat-
ure and chemical potential (see Refs. [3-6] and reference
therein). Determining the existence of CEP and its loca-
tion in the QCD phase diagram is one of the main goals
of the heavy ion collision experiments. For this purpose,
the second phase of the beam energy scan at RHIC will
be performed between 2019 and 2020 [7, 8] , and we are
optimistic that the experimental results could answer
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these questions. On the theoretical side, various non-per-
turbative QCD models and theories are considered, and
the influence of various factors in the real experimental
environment on the possible QGP production in heavy
ion collisions are studied in the QCD phase diagram. For
example, one needs to consider the effects of finite tem-
perature, finite density and strong magnetic fields gener-
ated in the experiments on the possible CEP at finite tem-
perature and chemical potential [3-5, 9-13]. It should be
pointed out that many previous calculations of the QCD
phase diagram are based on infinite thermodynamical
systems without considering the QGP generated in the
laboratory, i.e. that the so-called fireball is very limited in
size. The volume of the smallest fireball produced in
RHIC could be as small as (2 frn)3 [14], although its
volume before freeze-out in Au-Au and Pb-Pb collisions
ranges from 50 fm® to 250 fm’ [14-16]. Since the fire-
balls produced in the laboratory are of finite size, the fi-
nite size effect on CEP must be considered in the second
phase of the beam energy scan at RHIC.

The finite volume effects have attracted considerable
theoretical attention in the past decades [17-20]. The cur-
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rent studies are based on the assumption that the effect-
ive Lagrangian of a finite (small) volume physical sys-
tem is the same as the corresponding infinite physical
system. Based on this assumption, different models are
adopted for studying the finite volume effects on the
QCD phase transition, for example, the Random Matrix
Theory (RMT) [21-25], Quark-meson-model [26-31],
(Polyakov-loop extended) Nambu-Jona-Lasinio (NJL)
model [32-38], Dyson-Schwinger equations (DSEs) [39,
40], etc. Since the spatial size of the physical system is
limited, it is necessary to select appropriate spatial bound-
ary conditions. Usually, periodic or anti-periodic bound-
ary conditions are adopted [20], which results in discret-
ized momenta in spatial direction, as is the case with Mat-
subara frequency in imaginary temperature field theory.
As an example, for a fermion in a finite volume, the
quark momentum is discretized and the integral over all
spatial momenta is replaced by a sum over discrete mo-
mentum modes. The discretized momentum depends on
the selected anti-periodic boundary condition (APBC)

2 2
Pappc = 4Li2 ; (n,-+ %) i =0,21,22., (1)
where L is the cubic volume size. It can be easily seen
from the above equation that we must include the contri-
bution of all frequency modes when considering the fi-
nite volume effects. If an infrared cutoff of the three-di-
mensional momentum is applied, the contribution of low-
frequency modes is ignored. Similatly, if a three-dimen-
sional ultraviolet momentum cutoff is used, the contribu-
tion of all high-frequency modes is neglected, which is, in
principle, problematic. In addition, if the same boundary
conditions in both spatial and temporal (temperature) dir-
ections are chosen in the Euclidean space, namely anti-
periodic boundary conditions for fermion fields and peri-
odic boundary conditions for boson fields, the discretiza-
tions in the spatial and temporal directions are physically
equivalent [20].

As shown in the finite temperature field theory, the
running couplings in Quantum Electrodynamics (QED)
[41, 42] and QCD [43] depend on temperature. The fol-
lowing question then naturally arises: the effective Lag-
rangian of a finite volume system should, in principle, de-
pend on the system size, similarly to a finite temperature
system where it depends on temperature; so, how should
an effective Lagrangian be constructed to reasonably re-
flect the finite volume effects? This is the motivation for
this paper.

Before we introduce the effective Lagrangian of a fi-
nite volume system with spatial size effects, let us briefly
review how we introduced in previous studies the temper-
ature dependent effective Lagrangian in a finite temperat-
ure system. As is known, the quark propagator and gluon
propagator satisfy their respective DSEs and they are
coupled to each other. Therefore, the gluon propagator

should depend on the temperature and/or chemical poten-
tial, which is also shown clearly in lattice simulations.
However, in the framework of the usual DSEs, the gluon
propagator is only used as phenomenological input, and
the coupling between the gluon propagator and the quark
propagator is not considered, as are not considered the ef-
fects of temperature and chemical potential on the gluon
propagator. More specifically, in the framework of the
NJL model, the coupling constant can be regarded as the
inverse of a "static" gluon propagator, and the effect of
the quark propagator on the "static" gluon propagator
should be, in principle, included. The authors of Refs. [9,
11, 13, 44] considered the influence of quark feedback on
the "static" gluon propagator through the operator product
expansion (OPE) method, and obtained a modified NJL
model with quark feedback. In the modified NJL model
described in Refs. [9, 11, 13, 44], the coupling constant G
in the NJL model is modified into G, + G,{gny), where G,
weighs the influence of quark feedback on the "static"
gluon' propagator (The physical mechanism for quark
feedback is given in the appendix of Ref. [44] ). With an
additional parameter that is introduced in the modified
NJL model, it reflects better the relationship between the
quark propagator and the gluon propagator, which is the
basic requirement of QCD. More importantly, in the
modified NJL model [44] one can fit better the lattice
data at finite temperature, which reflects the fact that the
introduction of quark feedback to study the chiral phase
transition at finite temperature is physically reasonable.
Since the discretization of spatial and temporal directions
are physically equivalent in the Euclidean space, simil-
arly to the imaginary temperature field theory, the effect-
ive coupling is temperature dependent, and it is possible
to construct an effective coupling that also depends on the
finite volume. Obviously, since the quark condensate de-
pends on temperature and/or chemical potential, the ef-
fective coupling in the modified NJL model naturally de-
pends on temperature and/or chemical potential. Based on
the physical equivalence of spatial and temporal direc-
tions in the Euclidean space, we introduce the finite
volume dependent effective Lagrangian using the same
approach as in the finite temperature and finite chemical
potential system.

This paper is organized as follows: In Section 2, the
modified NJL model with finite volume dependent coup-
ling is introduced. The chiral phase transition in the mod-
ified NJL model is presented in Section 3, and the conclu-
sion is given in Section 4.

2 The modified Nambu-Jona-Lasinio model
with finite volume dependent coupling

As is well known, the NJL model is a low energy ef-
fective theory of QCD, which can describe the main fea-
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tures of non-perturbative QCD, e.g., Dynamical Chiral
Symmetry Breaking. The Lagrangian of the usual two-
flavor model is given by

- - G .- -
L=ibpy—miy+ 5|00 +@ysm)’]. @)

where m denotes the current quark mass of two-flavor
light quark and G denotes the coupling constant. Then,
the gap equation is given as

M=m- %wx 3)

where M denotes the constituent quark mass. Since this is
an unrenormalizable theoretical model, a method of regu-
larization is necessary. The commonly used NJL model
generally uses a three-momentum cutoff in the mo-
mentum space to regularize the amount of divergence. It
is important to note that this ultraviolet (UV) regulariza-
tion of the (P)NJL model is not suitable for studying
small volume effects. Equation (1) clearly shows that all
frequency modes in momentum space contribute to the fi-
nite volume effects. If a UV cutoff (for example, three-
momentum cutoff NJL model) is adopted, the contribu-
tion of high frequency modes would be ignored. 1f a
simple infrared cutoff is adopted [34, 36, 38], the contri-
bution of low frequency modes would be ignored. In our
case, we have to abandon the commonly used three-mo-
mentum cutoff and instead use the proper-time regulariz-
ation to study the finite size effects. This is because the
proper-time regularization is not plagued by the UV mo-
mentum cutoff.

In this paper, the scheme of proper time regulariza-
tion proposed by J. S. Schwinger [45] is adopted

lﬁnﬂzﬁdsexp[—s(p2+m2)], @)

A2

where A denotes the ultraviolet cutoff. Thus, the gap
equation (3) is given by

M =m+4GN ~Mf d'p fdsexp[—s(p2+M2)]
) en?

M
=m+-—G f dss2exp(-sM?). (5)
37‘[3 L

a2

At zero temperature, the normal NJL model reproduces
well the properties of hadrons. However, in the case of fi-
nite temperature, the result can not recover lattice simula-
tions. To fit the lattice simulations at finite temperature
within the OPE method proposed in Refs. [10, 11, 13,
44], the coupling in the Lagrangian (2) is modified into

G — G1+Ga(=Yy)). (6)
There are four parameters, G|, G,, m and A available for
fitting the results of lattice simulations at zero and finite
temperatures. We stress that G;, G, and A can reproduce
the pion mass and decay constant, and G = Gy + Go(—{J)))
at zero temperature. It is found that one additional para-

meter is required for fitting the lattice results at finite
temperature [46, 47]. Therefore, the gap equation (3) is
modified into

G1+G2M/7r3f dss_zexp(—sM2)

] ™
xf dss_2exp(—sM2).

Az

M
M=m+—
373

According to the finite temperature field theory, the gap
equation at finite temperature is given by

MT 3 272 o 2

M =m+—— |G +GoMT —— f dsOy(e ¥ T8y g3/2e=sM }
nn a\rJs

X f dsp(e FT5) g3 2e=M (8)

Here, 65(x) = 2x!/* 3,2  x"*D_ Thus, the coupling natur-
ally depends on temperature. Considering the equival-
ence of spatial and temporal directions in the Euclidean
space, the coupling constant should depend on the
volume in a finite volume system. Therefore, we can dir-
ectly extend the calculations in the above infinite thermo-
dynamic system to a finite temperature and finite volume
system.

In principle, thermodynamical properties of a finite
volume system depend not only on the size of the system but
also on its geometric shape. In this paper, as an interest-
ing attempt, we take a cubic box as the geometric shape
of the system. We consider a cubic box with edge length
L and anti-periodic boundary conditions in all spatial dir-
ections for a fermion, i.e.,

Y(x0, X1, X2, X3) = =Y (x0, X1 + L, X2, X3),

Y(xo, X1,%2,X3) = —h(x0, X1, X2 + L, X3),

(X0, X1, X2,%3) = =¥ (X0, X1, X2, X3 + L).
Thus, the momentum is replaced by the discrete momenta
(p1,p2,p3,p4) = (2ny + Drt/L,2ny + Dn/L,2n3 + Dt/ L,
(2ng4 + DHT), where ny,ny,n3,ng € (—c0,00), and the mo-
mentum integral is replaced by a sum of discrete mo-
menta with
dp4 R 1 Z
(27.[)4 L3

151,153,114, =—00

The gap equation in a finite volume (cubic box) at fi-
nite temperature is given by
M = m+4MN;

x{Gl +G222—3T f ds[6s (e—“ﬁ‘)]3[@(e“‘"’”)]exp(—st)}

x{é f ds[92 (e”Z?)r[ez(e—“”’”)]exp(—sM2)}.
©)

From Eq. (9), if we use anti-periodic boundary condi-
tions for both spatial and temporal directions in the Euc-
lidean space, it is easy to see that discretization of time
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and space are completely equivalent. Specifically, the ef-
fects of 1/L and T on the quark gap equation are mathem-
atically equivalent. Thus, similarly to increasing the tem-
perature, it can be expected that the chiral symmetry will
be partially restored with decreasing the system size L.

3 Chiral phase transition in a finite size cubic
box at finite temperature

With increase of temperature, a chiral phase trans-
ition appears. The quark condensate is adopted as an or-
der parameter to describe the chiral phase transition,

d*p 4M

=) =TrS (p) = NchfWIm-

As is known, there is a second order phase transition at fi-
nite temperature in the chiral limit, and a crossover bey-
ond the chiral limit (m#0). To locate the pseudo-critical
temperature of the crossover, the thermal susceptibility is
used

)
XT = oT (10)
and the pseudo-critical temperature is located at the peak
of the susceptibility [48, 49].

In this paper, to perform numerical calculations, the
parameters are chosen as follows: A=990 MeV and m =
5.5 MeV, which are obtained by fitting the pion mass
m; = 138MeV and the pion decay constant f; = 93MeV
[50]. Moreover, G, =22.3 GeV  and G, =0.5003 GeV ",
which are obtained by fitting the results of lattice simula-
tions [47] in the infinite volume thermodynamical sys-
tem, as shown in Fig. 1 [11]. o, = ((Y)7/{W)o) in Fig. 1
denotes the normalized quark condensate. From Fig. 1, it
is found that the results fit well the lattice simulations at
finite temperature, although there is only one more addi-
tional parameter. As the quark condensate depends on
both the temperature and size of the finite volume system,
the modified coupling naturally depends on the temperat-
ure and size.

Fig. 2 shows the quark condensate as a function of
temperature for different system sizes. It is easy to see
that the condensate decreases with smaller L at low tem-
peratures. As spatial and temporal directions are equival-
ent, the decrease of size means increase of temperature,
which enhances the fluctuations and leads to restoration
of DCSB. With temperature increase, due to thermal fluc-
tuations, DCSB is partially restored and the condensates
of different sizes tend to be equal. For L =4 fm, the con-
densate is almost the same as for an infinite thermody-
namical system, which implies that systems larger than 4
fm can be regarded as infinite thermodynamical systems.
This result agrees qualitatively with the results of differ-
ent model calculations [27, 39].

1.0

0.8

— G,=223GeV ™
0.6}

e e lattice

04f ]

0.2+ ]

L ]
0.0 k. . . . X
0.00 0.05 0.10 0.15
T/GeV
Fig. 1. (color online) The results of the modified NJL model
compared with the lattice simulations from Ref. [47].
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Fig. 2. (color online) The quark condensate as a function of
temperature in the modified NJL model.

As is known, the effective coupling decreases in the
perturbative regime with increase of temperature [43].
However, in the strong coupling regime, this is not very
clear. In our study, the influence of quark feedback is in-
cluded in the modified NJL model and the effective coup-
ling is divided into two parts: the first part, G, , is inde-
pendent of the system size and temperature, while the
second, G, {yy), depends on the system size and temper-
ature. In Fig. 3 , the system size dependent coupling is
shown as a function of the system size at zero temperat-
ure. Clearly, the effective coupling decreases with de-
creasing size. Due to the equivalence of spatial and tem-
poral directions in the Euclidean space, the decreasing
system size leads to enhancement of fluctuations, so that,
in principle, the effective coupling should decrease as the
size decreases. It is known that, once the coupling con-
stant is smaller than a critical coupling constant, the non-
trivial solution of the gap equation cannot be found in the
NJL model [51], which means that DCSB is partially re-
stored. In Fig. 4 , the quark condensate is shown as a
function of the system size at zero temperature. With de-
creasing system size, the quark condensate also de-
creases, and the chiral symmetry is partially restored.
With increase of the system size L, the condensate tends
to a constant when L > 4 fm, which means that a finite
volume system can be regarded as equivalent to an infin-
ite thermodynamical system. This is consistent with the
conclusions we have obtained for the effective coupling
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the system size L at zero temperature.
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Fig. 4.
at zero temperature.

Quark condensate as a function of the system size L

as a function of spatial size.

Let us now proceed to the calculations of thermal sus-
ceptibility. Since the effective coupling decreases with
decreasing size of the system, the modified NJL model,
when compared to the normal NIJL, should result in a
chiral phase transition for the same size L. In Fig. 5 and
Fig. 6 , the susceptibilities for both models are shown for
system sizes L = 3 fm and L = 2 fm, respectively. It is
found that the susceptibilities have a smooth peak, which
means that the transition is a crossover at a finite temper-
ature. For L = 3 fm, the pseudo-critical temperature 7, =
156 MeV in the modified NJL model is smaller than in
the normal NJL model, which is 7. = 181 MeV. As the
size decreases, e.g. for L =2 fm, the pseudo-critical tem-
perature also decreases: in the modified NJL model it is
T, =149 MeV, and T, = 180 MeV in the normal NJL
model. Therefore, the pseudo-critical temperature de-
creases in both models. This result agrees with the other
model calculations [34, 35, 38]. The transition temperat-
ure in the modified NJL model is smaller than in the NJL
model, which means that the quark feedback increases the
fluctuations and reduces the transition temperature. In or-
der to study the contribution of the quark feedback and of
the anti-periodic boundary conditions on the pseudo-crit-
ical temperature, the susceptibilities in the modified and
normal NJL models are shown in Fig. 6. From Fig. 6, it is
easy to find that the pseudo-critical temperature of the

500000 F P \b - — - Modified NJL model ]
r | — Normal NJL model
400000 | » v

» 300000 f

200000 ¢

100000 ¢
o A *oeu
0n y . - > X v
100 120 140 160 180 200 220

T/MeV

Fig. 5.
ure for the system size L = 3 fin.

The thermal susceptibility as a function of temperat-

600000

N Modified NJL model with L =2 fm

500000 SN Normal NJL model with Z =2 fm

PR \— — - Modified NJL model in infinite volume;
400000 7N ‘' NJL model in infinite volume

5300000
200000
100000
0

120 140 160 180 200 220

Fig. 6. (color online) The thermal susceptibilities for the
modified and normal NJL models in infinite volume, and
for the modified and normal NJL models for the system size
L = 2 fin (with anti-periodic boundary conditions), as a
function of temperature.

chiral phase transition is due to both the modified effect-
ive coupling and the anti-periodic boundary conditions,
and that the effect of the modified effective coupling is
more pronounced. This further demonstrates the import-
ance of introducing the effective coupling that is related
to the spatial size. Specifically, for the case of an infinite
volume, the modified NJL model reduces the critical tem-
perature from 7, = 183 MeV to T, = 156 MeV, and this
critical temperature is even smaller than in the normal
NIJL model with L = 2 fm (7, = 180 MeV). It is also
found that the modified NJL model with anti-periodic
boundary conditions further reduces the critical temperat-
ure (7, = 149 MeV). The above calculations clearly show
that the transition temperatures obtained by considering
the size dependent effective Lagrangian are much smal-
ler than the corresponding temperatures obtained with the
size independent Lagrangian. We believe that this fact
should be considered in the forthcoming second phase of
the RHIC energy scan.

4 Conclusion

In principle, the effective Lagrangian of a finite
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volume thermodynamical system should be different
from the infinite thermodynamical system. However, the
studies of the finite volume effects are usually made on
the basis of the effective Lagrangian of an infinite ther-
modynamical system with different boundary conditions
[20]. In this paper, we tried to introduce an effective Lag-
rangian that naturally depends on the finite volume size.
Specifically, within the usual framework of the NJL mod-
el, we obtained a modified NJL model with finite volume
size dependence, by considering the quark feedback to
the "static" gluon propagator. Based on this modified NJL
model, we studied the chiral phase transition in finite
volume and finite temperature systems, and compared the
results with the normal NJL model. We found that quark

feedback can reduce the temperature of crossover in a
fixed system size. This implies that quark feedback is
very large. To our knowledge, this is the first time that an
effective Lagrangian has been used to analyze the effects
of volume size on the chiral phase transition in a finite
temperature and finite volume system. Due to the equi-
valence of spatial and temporal directions in the Euc-
lidean space, a decrease of system size is equivalent to an
increase of temperature. The effective coupling in the
modified NJL model shows a decreasing behavior as the
volume size decreases. In this paper, we only studied the
chiral phase transition at finite temperature. To locate the
CEP, this model must be extended to the case of finite
chemical potential, which is the next step in our work.
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