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Abstract: In this study, we explore the entanglement of free spin-i, spin-1, and spin-2 fields. We start with an ex-

ample involving Majorana fields in 1+1 and 2+1 dimensions. Subsequently, we perform the Bogoliubov transforma-

tion and express the vacuum state with a particle pair state in the configuration space, which is used to calculate the

entropy. This clearly demonstrates that the entanglement entropy originates from the particles across the boundary.

Finally, we generalize this method to free spin-1 and spin-2 fields. These higher free massless spin fields have well-

known complications owing to gauge redundancy. We deal with the redundancy by gauge-fixing in the light-cone

gauge. We show that this gauge provides a natural tensor product structure in the Hilbert space, while surrendering

explicit Lorentz invariance. We also use the Bogoliubov transformation to calculate the entropy. The area law

emerges naturally by this method.
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1 Introduction

The quantum field theory entanglement is widely
studied in the literature [1-3]. Recently, the source of en-
tanglement entropy was likewise considered in [4]. It ex-
presses the vacuum state in terms of the superposition of
particle pair states in the configuration space by the
Bogoliubov transformation, which transforms the origin-
al degrees of freedom to actual local degrees of freedom.
Interestingly, it tells us that the entanglement entropy ori-
ginates from the particle pairs across the boundary. The
area law [1, 5-7] emerges naturally by this method. In [4],
only the free scalar field is discussed. In this study, we
generalize it to 1+1 and 2+1 dimensional Majorana (spin-

1 . . .

=) field, 2+1 dimensional U(1) gauge (free spin-1) field,

and 3+1 dimensional weak gravitational (free massless

spin-2) field. Because there is a Hilbert space with a
.1

tensor product structure for the spin-— field, the general-

ization is straight forward. As for higher spin fields, more
treatments are required because of the gauge redundancy.

The definition of entanglement entropy in gauge the-
ory was discussed in [8, 9]. The definition of entangle-
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ment entropy is heavily dependent on the tensor product
structure of the Hilbert space. However, because of the
gauge redundancy, there is no natural structure as such in
the Hilbert space of the gauge field. Some studies ad-
dressed the entanglement entropy of the gauge field with
various prescriptions [10, 11], which give up the direct
tensor product structure and introduced a "center". It is
clear that this issue is also present in the gravitational the-
ories [12, 13], as gravitational theories likewise are gauge
theories. The tensor product structure problem of gravita-
tional theories is still under discussion [14]. In this study,
we deal with the gauge redundancy by the light-cone
gauge for both the free U(1) gauge field and the gravita-
tional field (or strictly speaking, a free spin-2 field). We
demonstrate that this gauge-fixing provides a natural
tensor product structure in the Hilbert spaces belonging to
them, while surrendering the explicit Lorentz invariance.
Imposing the light-cone gauge, we find that the Lag-
rangian of the U(1) gauge field and gravitational field
simplifies significantly and behaves like a massless scal-
ar field. Subsequently, we quantize them and obtain their
Hilbert spaces with the tensor product structure. We per-
form the Bogoliubov transformation of the theories and
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express the ground state in terms of a local basis of de-
grees of freedom. Finally, we calculate the second Rényi
entropy, which is a good approximation of the entangle-
ment entropy. We find that in such a prescription, the
area law is also naturally preserved.

Our paper is organized as follows. In Section 2, we
make a Bogoliubov transformation of the 1+1 dimension-
al Majorana field and consider its second Rényi entropy.
In Section 3, we perform this procedure for the 2+1 di-
mensional Majorana field. In Section 4, we derive the
Lagrangian of the 2+1 dimensional free U(1) gauge field
in the light-cone gauge and obtain its Hilbert space with
the natural tensor product structure. Then we perform a
Bogoliubov transformation and calculate the second
Rényi entropy. In Section 5, we generalize our method to
the 3+1 dimensional gravitational (free spin-2) field in
the light-cone gauge. In Section 6, we provide conclu-
sions of our work.

2 1+1 dimensional Majorana fermion - a pair
of left and right moving fermions

The Majorana field ¢ is a field sharing the same Lag-
rangian with the Dirac field, but satisfying the condition
W* =, which means that the anti-particle and particle of
the Majorana field are the same [15]. In 1+1 dimensions
at t = 0, a Majorana field with y* = (o, io) has the form
[16]

W) = f 1 ( w+k ) b
: k
et e O
w=k \ ¢ | ik
. b' |e", 1
w—k( M ) _k] M
where the annihilation and creation operators b, and bT

satisfy the anti-commutation relation {by,b } (k- p).
We define the vacuum |0) as the vacuum of thls set of op-
erators, i.e. bi|0) =0

Let us consider the following Bogoliubov transforma-

tion [17]
_ dk aik ikx
o= [ ) @

which transforms the operators (bk,bik) into the new set
of operators (aix,ax;). For the Majorana field, we have the
relation

{Wa(X),¥5(0)} = 0apd(x—y). (3)
where «,8 = 0, 1 represent the two components of the Ma-
jorana field. To satisfy (3), the operators ai; and as,
should have the relation
= 0;;0(k + p), 4)

where i, j = 1,2. We choose

{ai,ajp}

ay = % (ak +aik), (%)
ay, = —i% (Clk - aik), (6)

where (ak,afk) are new annihilation and creation operat-

ors that satisfy the anti-commutation relation {ak,a;} =
6(k—p). We can verify that (5) and (6) satisfy the con-
straint (4). We define the vacuum |Q), which is annihil-
ated by a, i.e. a|Q) =0. Hence, we obtain the Bogoli-
ubov transformation between (ak,aik) and (bk,bik)

( by )_ 1 ( Vo+k—Vo-k Vo+k+ \/w—k)
b ] 2vo\ Vo+k+ Vo—k Vo—k- Vo+k

Ak
X( aik )
Certainly, we have

Vo+k=- Vo-k)a +(Vo+k+ Yo—k)d').
®)

=0, the new set of operators satis-

(N

b= 2\/—((

Because we have b;|0)
ty
(Vorrk= Vor-k)ac+(Vo+k+ Vo=k)a',) 10y =0. ©)

The vacuum |0) can be expressed as a state constructed
from the new set of operators

1 _chaiaix
10) =;e ‘ €2) (10)

S

where y is the normalization factor, |Q) is the vacuum
defined by a; |Q2) = 0 and the coefficient Cj is fixed by

—Crala’,)I). (11)

c Yo+k+ Vo—-k w+u (12)
k: =
Yo+k—- Vo—-k k

Following [4], let us consider a system with a finite
number of sites. The inverse Fourier transform of the op-
erator ay, is

ac= aye ™V, (13)
N
where N is the site label. The vacuum |¥) = |0) of the op-
erator by can thus be written as
Py =— ]_[ (1 - Z Cre* ™ Dalal |10y
( Zch fhralal 19, (14)

where f& =e*¥D To compute the entanglement en-
tropy, the configuration space is divided into two regions
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A and A, where the sites in each region are labelled by
small letters () and small letters with bar (7), respect-

ively. The region A we choose can be any subregion of
the total system. The state |¥) is

Py ~ %[ ZZCk fhalal ZZC fhaial ——ZZCkﬁf,aTaT]lm (15)

where f + f/n

A reduced density matrix of p, is constructed by tracing out the degrees of freedom in region A.

1 . ,
pa =Tz () (¥)) = ?I[l - ckf,f,a;,aj) 12)44¢€2 [1 =Y >t anrazf]]mm
k nl kol

+1Q)44(€Q

24

+a] Q)4 (Qlay [A<Q|(

wl

This expression is already quite revealing. We can see
that the first and second line actually lead to no entangle-
ment. They contain operators acting only on 4 or A. The
third line explains the large amount of entanglement
between regions A and A - entanglement is created when
pairs of particles are created, one inside 4 and the other in
A. Moreover, as we shall see below, these particles that
are created cannot be separated by too large of a distance,
because the amplitude decreases rapidly with separation.

Tracing out the degrees of freedom in region A gives
the following coefficients in p4

> a,an]{ZZCk featal

—ch;k[Z H B+ 1)+ Z]

m{ZZc faka ][Zchﬁf,a;l;]m
sl k nl

=ZZCk,Ckfm, Fir 17

kk' nll'

Ko =x(C 1)

The reduced density matrix p,4 is then
[2) (= [€2) 2+ 1) (1] +12) <21,

(18)

where the subscript label 4 for the vacuum in region 4 is

dropped,
12)= chk }fla;al' 1€2), (19)

ID¢H= )" CLCif

kk' nll

1
pa= g [(1+k0) [€2)(Qf -

,,za |Q> (Qlay . (20)

Let us consider the second Rényi entropy S,. The square
of the reduced density matrix is

m[ZZc; ];f';'a;aﬁ,][
kr
Z sz;:]l( A

Y3 st Jos
ZZCkﬁ,a;)m}. (16)
il

k

1
Pi = [((1+k0) + 2 ) I(Q = (1 + k0 +K2) Q)2

= (L +ko+£2) [2)(Ql+x1 [ (1] + (1 +k2) 12)€2]].  (21)
The coefficients «; and «, are given by

«y |1 (L =1 {HT) ]

[Z Z Cr Ckfn nlal Q) (Qlay ]

kk' nll
(Z D CrCe it ;|Q><Q|aqf]
//// paq’
% ok ok T
D CLCCLCu Fof Fifnk ] 190 (Qlag,
kk'k k' Bl pg
k2 =(212)

=( [Z > szﬁli,aran'J[Z D ckf",a,;aj) )
kowl
_chck[z p ,f,)+22).

n

S, is computed by taking the trace of (21)
S2= ~InTip} = ~In((1+ ko) + &2 + Ikt |+ (1 +k2)c2), (22)

where |« | is given by

k1l = Z ZCZ/CkC;fka”f fnz

kk'k k™ apll

@3

In the 1+1 dimensional Majorana fermion case, the
coefficients C; control the range of the interaction. The
factor Y, Cr. frlfz can be converted to an integral by taking a
continuum limit with an IR cut-off € and UV cut-off K

K .
Fnl = Z Ck ,I;l =~ ‘L dkw_]:ﬂelk(n—l)a (24)
k

K
~ F(x) = f dk“’T“’e“‘X. (25)
€
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This is evaluated numerically and shown in Fig. 1.

The figure shows that the interaction between sites
falls over large distances. The sites near the boundary
make the main contribution to the entanglement entropy.

15

10

F (x)

Wy,

‘m.,»w

m.\*Tﬁva.vm..._,Q_oﬁ?mM-gvﬁ;:;_w 5

X

Fig. 1.
and imaginary part of the integral (25), respectively. Both

(color online) Red and blue lines represent the real

the real and imaginary parts of the integral decrease quickly
with distance, and the long range contribution is very small.

€ =0.1and K = 10 are used in this plot.

3 2+1 dimensional Majorana fermion

In 2+1 dimensions at ¢ = 0, the Majorana field with
Y = (07, —io,, i07x) has the form [16]

ek 1] a)+ky)
2 b
VD= f a)+ky( ketip |7

1 w—ky ) | ikw
+ 22 26
’—w—ky( —kp—ip |7k (26)

where the annihilation and creation operators b; and bj;

ky + i

be )\ 1 k=i
bl ) 2vw Vketin
o=k,

Certainly, we have

by = 1 ky—iu
T Vo ke +in

The vacuum |0) can be expressed as a state constructed
from the new set of operators

1 _cha;aik
0= —e ¥ 1) (35)
Y
1 i
=~ [(1-Cafdl, )i, (36)
Y k

- = +iJw—k,

ky +iu

satisfy the anti-commutation relation {b;,b } 6(k D).
We define the vacuum |0) as the vacuum of thls set of op-
erators, i.e. bi|0) =0

Let us consider the following Bogoliubov transforma-

tion
YD) = f (Z;) i) 27)

which transforms the operators (bk,b_k) to the new set of
operators (aj,ax). For the 2+1 dimensional Majorana
field, we have the relation

{l//a()?)"pﬁ@} = 6{1/36()?_}7)’ (28)

where @, =0, 1 represent two components of the Major-
ana field. To satisfy (28), the operator aix and a,, should
have the relation

{ai,ajp) = 51‘/5(7?"' 125 (29)
where i, j = 1,2. We choose
1 t

ajg=—=\ax+ta_,), (30)

faea)
612]<=—Z'L(Clk—clT ) (31)

ﬁ —k
where (ak,afk) are new annihilation and creation operat-
ors that satisfy the anti-commutation relation
{ax,a p} 5(k— ). We can verify that (30) and (31) satisfy

the constraint (29). We define the vacuum |Q), which is
annihilated by q, i.e. a;|Q)=0. Hence, we obtain the
Bogoliubov transformation between (ak,aik) and (bk,bik)

J—F[ 1w
s

ky +iu

Joik

w+ky

kyt+ip . ke+ip :
\/);Tky+l,/w—ky]ak—(\/);Tky+z,/w—ky]a_k} (33)

Because we have b;|0) = 0, the new set of operators satisfy

b

ky+iu

h +i,/w—ky]ajk]|o> =0. (34)
y

[
where y is the normalization factor, |Q) is the vacuum
defined by a; |Q2) = 0, and the coefficient C} is fixed by

ky+ip+iw—ipy

Ci = (37)

ke+ip—iw+ipy

Following [4], let us consider a system with a finite
number of sites. The inverse Fourier transform of the op-
erator ay, is
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ay = Zaﬁe_iz'ﬁ, (38)
N
where N is the site label. The vacuum |¥) = |0) of the op-
erator b; can now be written as
~ _ ik-(N-L) T
P) ]_[ 1 Z Cre a’al |1
k N,L
S ZZCkaLa 1), (39)

where f§, = e*¥-I)_For a simplification of notations, we
neglect the vector nation and denote 7 as n. To compute
the entanglement entropy, the configuration space is di-
vided into two regions 4 and A, where the sites in each
region are labelled by small letters (n) and small letters
with bars (), respectively. The region 4 we choose can
be any subregion of the total system. The state |¥) is

|Lv>=$(1 PIICTEEESWICE

al
ch Fratahiq, (40)

where f% = £+ k.

Following the same procedure of the case in 1+1 di-
mensional Majorana field, we can obtain the reduced
density matrix and the second Rényi entropy S,, which
have the same form as (18) and (22), respectively. The
only difference is the expression of Cj.

In the 2+1 dimensional Majorana fermion case, the
coefficients C; also control the range of the interaction.
The factor Y, Cy f}fl can be converted to an integral by tak-
ing a continuum limit with an IR cut-off € and UV cut-off
K

ky+ip+iw—iky

K
Fu= ) Cify=~ dk.dk ik =D
! zk: & j; j; Yk + i — iw+ik,
(41)
ky+iu+iw—iky
~F dk,dk elkrthy) (42
() = f f yk +iu—iw + iky (42)

This is evaluated numerically and shown in Fig. 2.

The figures show that the interaction between sites di-
minishes over large distances. The sites near the bound-
ary contribute most significantly to the entanglement en-
tropy. Hence, an area law is expected in this model.

Fig. 2.

(color online) Plots of integral (42) in 2+1 dimensional Majorana fermion model. The left and right figures represent the real

and imaginary parts of the integral, respectively. The amplitude of the surface decreases quickly with distance, and the long range
contribution can be neglected. € = 0.1 and K = 10 are used in these plots.

4 Gauge field in light-cone gauge

In this section, we consider the 2+1 dimensional free
U(1) gauge field in the light-cone gauge. To this end, we
derive the Lagrangian, and verify that it is the same as a
massless scalar field. Subsequently, we perform the
Bogoliubov transformation to calculate the entropy.

4.1 Model of gauge field in light-cone gauge

We consider the entanglement entropy of 2+1 dimen-
sional Maxwell fields with light-cone gauge-fixing. In

this study, we use the Minkowski metric 5, = diag(-1,1,1)
with the Minkowski coordinate (12, x',x?). We also intro-
duce the light-cone coordinate x*, x~, x*> with

+
X

(% £xh). (43)

1
V2
With regard to the light-cone coordinate, interested read-
ers can read the book [18]. In the light-cone gauge, the
vector is defined as

(44)

053102-5



Chinese Physics C Vol. 43, No. 5 (2019) 053102

and the metric becomes
0 -1 0
Aw=l -1 0 0| (45)
0 0 1
The vector in the light-cone gauge has the properties

a,=-a anda_ =—a".
Following is the calculation of the 2+1 dimensional

. . 1
Maxwell fields. We start with the Lagrangian £ = 7 Fu F*.

Because £ is a scalar, y; v can be 0, 1, 2 or +, —, 2. We
start with the light-cone coordinate. Because of the asym-
metry of F,,, F.,=F__=Fj=0,the Lagrangian be-
comes

1 1
L= —ZFWF’“’ =-3 (2F+_F+’ +2F o F + 2F_2F’2).

(46)

For the light-cone gauge, A* =0 and A_ =-A" =0. By
imposing the gauge-fixing, we find that the Lagrangian
becomes

L= %(G_A_)Z +0_A%(0, A%+ 0,A7). (47)

With the light-cone gauge fixing A*(p) =0, we have

1 .
A" = —+(p2A2) [18]. We perform the Fourier transforma-
tion

u d3p ipx Au
The Fourier transformation of £ is
~ 1 _ _
L==5(p-A7) = p-A%(p. A%+ poA7)
1 1 1
== 5 (p-—P*A%) = p AN A%+ pr—p?A7)
P P
1
== 5 (A + p ATp AT+ AP A
1 _
=§(p2A2)2 +p_A2p A%, (49)

When written in the momentum space of Minkowski
spacetime, it becomes

=~ 1 1
L=3pa% =S - (HHA*?
= SRS AV (PPADD). (50)

When we perform the inverse Fourier transformation and
return to Minkowski coordinates, the expression becomes

L= %((%AZ)Z - %[(alAz)2 +(:2A4%]. D

This is exactly the same Lagrangian as the massless scal-
ar field, and the corresponding Hamiltonian is

H = %((%Az)z + %[(51142)2 +(0A%)]. (52)

To simplify the notation in the next subsection, we depict

A% as AY. The Lagrangian and Hamiltonian can be written
as

L= %@Amz - %[@Ay)Z +(@,4%)’), (33)
H = %(a,Ayf + %[(axm‘)z +(0,A%]. (34)

Here, there is no gauge redundancy in the Lagrangian
(53). The Hilbert space of AY should have the tensor
product structure, so we can consider its entanglement en-
tropy. It behaves like a free scalar field, which coincides
with the trivial center case of [11].

4.2 Bogoliubov transformation and entropy of gauge
field in light-cone gauge
In the 2+1 dimensional U(1) gauge field with the

light-cone gauge, from (53), we have the equation of mo-
tion

oA’ =0, (55)
b L L
where O = _ﬁ+ﬁ+6_y2' We can find that there is

only one physical degree of freedom in the 2+1 dimen-
sional U(1) gauge field, and the component with physical
freedom AY satisfies the equation for the massless scalar
field. For the non-zero components of the gauge field, we
have the solution

A\ (k1 1 ke (1 )¢ ke
(3 )L S o Joet e o0

Let us consider a Bogoliubov transformation, which
transforms the set of operators (bk,bfk) to the following
set of operators

AV &K ay w2
(Ay )—f%( an e . (57)

With operator aj; and ay, the commutation relations of
AY and AY are expressed as below

, - &2k d2p o
(A0, A5 )] = f o= f L larg an J
—is(2— ), (58)
[AY (%, l‘),Ay()_l), Hl= [Ay()?, l),Ay()_l), n]=0. (59)

We need to have

[ark,azp] = i8(k + P, (60)
(a1 a1p] = [az, a2p] = 0. (61)
We choose
1 t
ay = ay+a',), 62
1k @( c+aly) (62)
. |a t
ax ==i\|5 (ak —a_k), (63)
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where a is a real parameter. The operator a; and a,, have
the commutation relations

|awa}]| = 5k - p, (64)
lak,ap] = [az,a;] =0. (65)

We define q;|Q) = 0, where |Q) is the vacuum of the new
set of operators. We find that (62) and (63) satisfy (60)
and (61). Thus, from (56), (57), (62), and (63), we have
the Bogoliubov transformation

() B 2

bik iV2w ta) . /
V2a 2 V2a
(66)

with w = [k} +k}. From the above Bogoliubov trans-

formation, we have
. |a iw . e s
+1 E)ak‘f‘(\/ﬁ—l E)a_k). (67)

aik) are the annihilation and creation operators

by < 1 (( iw
“T V2o \\ V2
Here (ay,

of the new modes. We also have the vacuum |0), which is
annihilated by b,

brl0) = 0. (68)
From (67), we find that the new set of operators satisfy

(( \l/(;)_a +i\/g)a"+( \Z/C;—a "'\/g)afk)m) 0. (69)

The vacuum |0) can be expressed in terms of a state con-
structed from the new set of operators

o) (70)

_—]_[ 1-Craja’) 1), (71)

where y is the normalization factor, |Q) is the vacuum
defined by a; |QQ) = 0, and the coefficient C; is fixed by

w—a

Cr=

w+a’ (72)

We find that the Bogoliubov transformation of the
light-cone gauge field is very similar to that of the free
scalar field [4].

Let us consider a system with a finite number of sites.
The inverse Fourier transform of the operator gy is

ay = Zaﬁe_ilzﬁ, (73)
N

where N is the site label. The vacuum |¥) =
erator b, can now be written as

|0) of the op-

1€2)

) z% 1—[{1 _cheuzw 0 aﬁ

E L

2%[1 _chkaLa *‘“]lg) (74)

E NL

=

where f&, = (V-0 For a simplification of notations, we
neglect the vector nation and denote 7 as n. To compute
the entanglement entropy, the configuration space is di-
vided into two regions 4 and A, where the sites in each
region are labelled by small letters () and small letters
with bars (7), respectively. The region 4 can be chosen as
any subregion of the total system. The state |¥) is

|‘{J>z$( Zchf’;amj chk kalal
nl
——ZZCkf,aa)lﬂ), (75)

where /% = £+ ff.

Following the same procedure of previous cases, we
can obtain the reduced density matrix and second Rényi
entropy S,, which have the same form as (18) and (22),
respectively. The only difference is the expression of C;.

In 2+1 dimensional U(1) gauge field theory in the
light-cone gauge, the coefficients C; also control the
range of the interaction. The factor Y, Cy f}fl can be con-
verted to an integral by taking a continuum limit with an
IR cut-off € and UV cut-off K

nl—ZCkfnk/—f f

K K o
zF(x,y):f f dkxdky%el(k\erk\y)’ (77)

with w= \/k}+k;. This is evaluated numerically and

shown in Fig. 3.

The figures show that the interaction between sites di-
minishes over large distances. The sites near the bound-
ary contribute most significantly to the entanglement en-
tropy. Hence, an area law is expected in this model.

1k (- l)a

(76)

5 Free spin-2 field in light-cone gauge

In this section, we consider the 3+1 dimensional free
spin-2 field theory in the light-cone gauge. To this end,
we derive the Lagrangian and find that it is also the same
as the massless scalar field. Subsequently, we perform the
Bogoliubov transformation to calculate the entropy.

5.1 Model of free spin-2 field in light-cone gauge

We consider the entanglement entropy of the 3+1 di-
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Fig. 3.

(color online) Plots of integral (77) in 2+1 dimensional U(1) gauge field with light-cone gauge. The left and right figures rep-

resent the real and imaginary parts of the integral, respectively. The amplitude of the surface decreases quickly with distance, and the

long range contribution can be neglected. € = 0.1, K= 10 and @ = 1 are used in these plots.

mensional weak gravitational field g, =7, +h, with
light-cone gauge-fixing. Here, Ay, is a spin-2 field. In this
study, we use the Minkowski metric 7, = diag(-1,1,1,1)
with the Minkowski coordinate (12, x!, x%, x3). We also in-

troduce the light-cone coordinate x*, x~, x%, x*> with
1
x= — % +xh. (78)
\2
In the light-cone gauge, the vector is defined as
+ 1 0 1
a = —(a xa), (79)
\2
and the metric becomes
0 -1 0 O
. N -1 0 0 O
Nuy = Tfuv = 0 0 1 0 (80)
0 0 0 1

The vector in the light-cone gauge has the properties
a,=—-a anda_ =—a*.

Now we come to the calculation of weak gravitation-
al (spin-2) field. We start with the Ricci scalar R. Be-
cause R is a scalar, y; v can be 0, 1, 2, 3 or +, —, 2, 3. We
begin with the light-cone coordinate. We impose the
gauge-fixing h** = h*~ = h*! =0, where I=2,3. For the
components with subscript indexes, the gauge fixing is
h__=h_, =h_;=0. For calculating the Ricci scalar R, we
use

™ = ﬁ 98av n 9gpy  0gap

= - 81
o 2 | axB  Ox@  Ox¥ ®1)
and
Ryy = 0415, — 0,10, + T4, T, — T3 I, (82)
The Christoffel symbols are
10h
rt, =-=" 83
2 oxm (83)
10h
= (84)

1 0hyy
rf,=-—, 85
1J 2 Ox ( )
It =Tt =TI, =0, (86)
_ 1 0h
@
__ 106hy,
T2 9x (88)
I-—_=0, (89)
- 1 0h,.
L==577 (90)
10,
= 2 ox~’ ©h
- 1{0h;, Ohyy Ohyy
L= _E( ox! * axl ox* )’ ©2)
1(.0h oh
I _ +1 ++
Do = 2 (2 axt  oxl )’ ©3)
10h
I +1
== 4
T2 0x ©4)
r'_=o, 95)
1({0hy Ohy Ohyy
rr == _
+ 2(ax1 T o ) (%6)
1 (3hﬂ
rf, === 97
=72 9x- ©7
1 6}1/1 a]’lK[ BhJK
e =c| =+ — - : 98
K70 (axK ox) oxl ) ©8)

The Ricci scalar is given by
R=#"Ruy=7""Re+7 "R_y +7"'Riy = =2R._+Ryz, (99)

where the repeated /, J, and K are summed, and we take
this convention below. We have
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="
* 2 0x2  20xI0x

_ 18Phes 1 8Phy 1ah”(ah+, Ohyr  Oh.y

4 0x= \ ox’/ * oxt  ox!
(100)
and
_ Phy Pl V(O Oy (huy Oy
T ox0x! " oxlox 2\ 0x )~ ox \oxt  ox’
A [(0hk ' (Ohk  Oha\ (aon)
4\ ox! ox!  oxK | |
The Ricci scalar can be written as
_Ph oW 1on'( o on' on
T Ox2  oxlox!  20x \ ox)  Oxt  oxl
1(on~\*  onl’ (on Lo
2\ Ox~ ox= \ oxt  ox/
1 JK\2 1K J1\2
_Lyfonmy _(on _ ohT\"| (102)
4\ ox! ox)  oxK

When expressed in Fourier space and considering the
light-cone gauge-fixing, we can obtain [18]
1

h'= = —ph" (103)
P
and
—_ 1 -1 _ P1PJ 1y

With the above relations, we have

1 1
R= —2])117]]’1” + Ep—p+hljhl‘] _ EPJPKh”hIK
1 JK\? IK JI\?
+Z[(p1h )= (psh'® - pich )] (105)

Because h'/ is symmetric and traceless, there are only two
degrees of freedom /2% and h?3. We expand the above ex-
pression with 7,J, K = 2,3, and obtain

R=-2p;psh" + (p+p— - %pi - %ﬁé’) [(hzz)2 + (h23)2]

=—2ppsh + % ((p0)2 - (P1)2 - (P2)2 B (p3)2)
|2+ ()]
(106)

Apart from the total derivative term 9;9,h!/, the Lag-
rangian of the gravitational field can be written as

L= 2@~ (TR + @Y - (W), (107)

where V =8,i+d,j+d.k. We have replaced 1?2 and h*
with 27 and A respectively. There is no gauge redund-
ancy in the Lagrangian (107). We can expect that the Hil-
bert space of #*? and #** should have the tensor product
structure, so we can consider the entanglement entropy of
this model. Hence, we provide a prescription of the entan-
glement entropy of a free spin-2 field.

5.2 Bogoliubov transformation and entropy of free spin-2

field in light-cone gauge

In the 3+1 dimensional gravitational (spin-2) field
with the light-cone gauge, we have two independent de-
grees of freedom. From (107), we have the equations of
motion

or” =0, o’* =0. (108)
The equations of motion are the same as the free mass-
less scalar field. Their solutions are

a3k " -
7 (x) = f —(bke-lk'f +b*e1"'f) (109)
V2w k
and
a3k PP
P(x) = —(b,’(e"k"‘+bTe‘ ) (110)
V2w k

respectively, where (bk,b,t) and (b/k,b:) are the creation
and annihilation operators of two physical degrees of
freedom.

Let us consider the mode (bk,bz). For the operator »>?,
its canonical momentum is Y. We obtain the solution

¥y 31 o o
h = d k} — 1 bre'* + .1 b’ eh¥,
WY Qn): V2w \ —iw iw k
(111)

Let us consider a Bogoliubov transformation, which

transforms the set of operators (bk,bfk) to the following
set of operators

hY d%]? alk ik
AL 3 e
(2m): \ 2%
With operator aj; and ay, the commutation relations of

h and 2" are expressed as below
ek g

(112)

T e I PR
(271')2 (27‘[)2
=io(¥— ),
(113)
[ (%, 1), R (3, 0] = [P (X,1), ?” (F,0)] = 0. (114)

We find that apart from the dimension, the Bogoliubov
3+1 dimensional spin-2 field with the light-cone gauge is
the same as that of the 2+1 dimensional U(1) gauge field.
Moreover, they are both the same with the free scalar
field. The form of the Bogoliubov transformation is the

same as (66), with w = ([k? + k% + k2.

We define the vacuum |0) by b,|0) = 0, and the vacu-
um |Q) by a;|Q) =0 in the 3+1 dimensional spin-2 field
with the light-cone gauge. Because of the Bogoliubov
transformation, the vacuum |0) can be expressed by the
vacuum |Q) and operator (ak,a};) as
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l’ Ckzik
0= —e ¥
Y

= [1(1-cula’ o,

k

1€2) (115)

(116)

where y is the normalization factor, and the coefficient C;
is fixed by

with w = (Jk3 +k} + k2.

We can consider a system with a finite number of
sites. We can divide the system into two parts, 4 and A.
The region A we choose can be any subregion of the total
system. Considering the state |¥) = |0), we can obtain the
reduced density matrix ps and the second Rényi entropy
S,, which have the same form of the cases in previous
sections. The only difference is the expression of C;.

In the 3+1 dimensional spin-2 field with the light-
cone gauge, the coefficients C, also control the range of
the interaction. The factor ), Cy ffz can be converted to an
integral by taking a continuum limit with an IR cut-off e
and UV cut-off K

Z " K K K w—a ]?(4 [3
Fnl = Ckfnlz f f f dkxdk}dkz e!viimha
T € € € w+a

(118)

K K K w—a
~ F(x,y.2) = f f f dk,dk,dk, —— !k rrharha),
€ € € w+ta

(119)

with w = [k} +kj + k2. Numerical evaluation in the spe-
cial case of x = y = z gives the result shown in Fig. 4.

The figure shows that the interaction between sites
once again diminishes over large distances. The sites near
the boundary contribute most significantly to the entan-
glement entropy. Hence, an area law is expected in this
model as well.

(117)

400
N 200
= L .
= 2 4 6 8 10
& 200 i x=y=z
~400 U
Fig. 4. (color online) Plots of integral (119) in 3+1 dimen-

sional gravity with the light-cone gauge in the special case
of x = y = z. Both the real and imaginary parts of the integ-
ral decrease quickly with distance, and the long range con-
tribution can be neglected. € =0.1, K =10 and @ =1 are
used in this plot.

6 Conclusions

In this study, we explore the entanglement of free

spin-z, spin-1 and spin-2 fields. First, we consider the

1+1 dimensional Majorana field, which is just a pair of
left and right moving fermions, and the 2+1 dimensional
Majorana field. We perform the Bogoliubov transforma-
tion of their modes and express the vacuum with a
particle pair state in the configuration space. Sub-
sequently, we calculate the second Rényi entropies in the
finite systems. Let us emphasize that while a Majorana
Weyl fermion is well known to be non-local, a local Hil-
bert space can be defined when both chiralities are
present. This is demonstrated explicitly in the current
note. After that, we generalize the method to the 2+1 di-
mensional free U(1) spin-1 gauge field and the 3+1 di-
mensional gravitational (free spin-2) field. Because of the
gauge redundancy of the higher spin field, there is no Hil-
bert space with a natural tensor product structure. We
take the light-cone gauge for both fields and find that
their Lagrangians behave like a free massless scalar field.
The light-cone gauge allows simple quantization, while
surrendering explicit Lorentz invariance. Nonetheless, it
provides a candidate tensor product structure. The defini-
tion of entanglement entropy is dependent on both the
state and the operator algebra. If the operator algebra is
gauge-invariant [10], the corresponding entanglement en-
tropy is likewise gauge-invariant. In this work and in
[11], the operator algebras implicitly chosen are not
gauge-invariant, such that the corresponding results fol-
low trend. In our past study [11], we explored several dif-
ferent algebras and demonstrated which of those would
reproduce the universal log terms found in Casini [10]. It
is, however, expected that generic non-gauge invariant al-
gebra choices, such as those considered in the current
note, lead to a result that is gauge-dependent. For the
U(1) gauge field, the Lagrangian behaves like a scalar
field, which coincides with the trivial center case of [11].
As for the gravitational (free spin-2) field, we provide a
prescription to observe the tensor product structure of the
Hilbert space. Before doing so, there is no prescription of
the gravitational (free spin-2) field. After we obtain their
Hilbert spaces with a tensor product structure, we calcu-
late the second Rényi entropies. This method can be help-
ful in dealing with the Hilbert space and entanglement of
the perturbative gravitational field, i.e. weak gravitation-
al field. In the non-perturbative regime, the structure of
the Hilbert space is still not clear. In all the cases studied,
we find that the entropy originates from the particle pairs
across the boundary, and the area law emerges naturally.

We would like to thank Prof. Yong-Shi Wu for critical
and meticulous reading of our manuscript. LYH acknow-
ledges the Thousands Young Talents Program.
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