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Abstract: The cross sections for > 60Ca, recently measured in the 345 4 MeV 7°Zn +° Be reaction, were estimated us-

ing the FRACS parametrization and an empirical formula, which are in good agreement. The FRACS parametriza-

tion and the empirical formula are combined to predict the cross sections for extreme calcium isotopes °>’°Ca in the

70807n +° Be reactions at the incident energies of 60, 80, and 345 4 MeV. The dependence of emperical formula

parameters on the reaction system, as well as the incident energy, are discussed. The results indicate that °>7°Ca can

be discovered in reactions of 60, 80 4 MeV #9Zn +° Be. The predicted binding energy for extreme neutron-rich iso-

topes by the spherical relativistic continuum Hartree-Bogoliubov theory was adopted in the calculation. Hence, the

planned Beijing Isotope-Separation-On Line Neutron-Rich Beam Facility (BISOL), which is a third generation radio-

active ion beam facility, could provide the opportunity to discover ®>’°Ca and neighboring neutron-drip line nuclei.
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1 Introduction

The discovery of 3>®Ca and it's neighbouring iso-
topes, which are supposedly the most neutron-rich nuclei
of different elements known today, opened the door to the
possibility of the existence of more neutron-rich isotopes
[1]. The 7°Ca nucleus has inspired a lot of interest, as it
could represent a double magic nucleus that could be
weakly bound [1]. The decay modes of ¢1:%Ca have been
studied with machine learning [2]. Research in the area of
extreme isotopes could provide extensive information on
the nuclear structure, e.g., shell evolution, life-time, exot-
ic particle emission, and cluster formation, etc. The
RIKEN-BigRIPS two-stage in-flight separator, with its
high precise identification ability, has played an import-
ant role in providing the neutron-rich 71 beam [3]. With
the third generation of radioactive ion beam (RIB) facilit-
ies, the area of drip line nuclei is highly competitive due
to the significant asymmetry of projectile nuclei in real-
ity. Typically, experiments with Zn (neutron-rich) and
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78Kr (neutron-deficient) have been performed, and im-
portant phenomena have been discovered on the RIKEN-
BigRIPS.

The planned Beijing Isotope-Separation-On Line
Neutron-Rich Beam Facility (BISOL), which is a third
generation RIB facility combining the advantages of the
second generation of Isotope-Separation-On Line (ISOL)
and projectile fragmentation (PF) facilities, is able to pro-
duce high density neutron-rich beams generated by fis-
sile fragments from the China Advanced Research React-
or (CARR) from about 20 4 MeV to 150 4 MeV. In
physics, for a projectile fragmentation reaction, more
neutron-rich projectiles enhance the production of neut-
ron-rich isotopes because of the isospin effect [4]. Fissile
fragments, such as *7Zn, can serve as projectiles on
BISOL, which makes it a highly competitive facility
among the third generation RIB facilities around the
world, in particular for intermediate energy heavy-ion re-
actions. Hence, it is of interest to estimate if the very
neutron-rich nuclei, such as 70Ca, could be discovered by
BISOL. The theoretical prediction for isotopes near the
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drip-line is required for experimental design.

Considering theoretical predictions for fragment pro-
duction in PF reactions, the successful models include
different types (provided in a recent review [5]), which
specify general methods to predict the cross-sections of
fragments. For the production of extreme isotopes near
drip lines, FRACS [6] and FRACS-C [7] have been
shown to successfully predict neutron-rich and neutron-
deficient isotopes. In neutron-rich and neutron-deficient
isotopes, even in the extreme cases, an exponential de-
pendence on their average binding energy was observed
[8-10]. Based on the measured cross-sections for >*%°Ca
in the 345 4 MeV 7°Zn +° Be reaction [1], we estimate the
cross-section for %47°Ca combining the FRACS paramet-
rization and the empirical formula between the isotopic
cross-section and the average binding energy. Consider-
ing that the advantage energy range for the radioactive
nuclear beam of the neutron-rich isotope is below 100 4
MeV, three incident energies, i.e., 345, 80,and 60 A MeV for
two reactions 7%8Zn +° Be are investigated in this article.

2 Methods

The FRACS parametrization [6] can predict cross-
sections for fragments that survive in projectile fragment-
ation reactions above 140 4 MeV. The FRACS paramet-
rization originates from the EPAX3 parametrization [11],
however, it overcomes the shortages of the latter's inde-
pendence on the incident energy. For an isotope with
mass number and charge number (4, Z), the cross-section
is described as,

T(A,Z) = Y(A)Y Zpea — Z)Aogs (A, 2), (1)

where Y(A) is the mass yield that depends on the in-
cluded incident energy dependencies terms. The isobaric
distribution Y(Zyo1, — Z), borrowed from the EPAX3 para-
metrization [11] shows that the form of the Gaussian dis-
tribution. Aggs(4,Z2) is introduced in FRACS to deal with
the odd-even staggering phenomenon in the cross-section
distribution.

An empirical correlation between the isotopic cross
section and average binding energy was established by
Tsang et al. [8,12], observing that the neutron-rich cop-
per isotopes obey the formula suggested within the ca-
nonical ensemble theory. Further studies show that the
neutron-deficient isotopes likewise obey this formula
[9,10,13]. The suggested empirical formula is,

o = Cexp[((B')-8) /7], ()
where C and t are free parameters. (B') = (B—¢,)/A de-
notes the average binding energy per nucleon of the frag-
ment, where g, is the pairing energy dealing with the
odd-even staggering phenomenon in the isotopic cross-
section distribution. The form of the pairing energy ¢, is
as follows,

£p = 0.5[(=1)V + (=1)%1eg- A4, 3)

where gy = 30 MeV was chosen according to Ref. [8]. If
the value of C and 7 are known, the cross-section for an
isotope can be predicted using its binding energy.

In this study, both methods are used to predict the iso-
topic cross-section. A general procedure as described in
the following section is maintained to predict the cross-
sections for fragments. We first predict the isotopic cross-
section using FRACS. Subsequently, from the fragments
with measured binding energy reported in AME16 [14],
we determine the values of C and 7 for each isotopic
chain. These are, in the following process, used to pre-
dict the cross-sections with the help of the binding en-
ergy calculated by the spherical relativistic continuum
Hartree-Bogoliubov (RCHB) theory with the relativistic
density functional PC-PK1 [15].

3 Results and discussion

First, the isotopic cross-sections for fragments pro-
duced in the 345 4 MeV 7°Zn+°Be reaction are pre-
dicted by the FRACS parametrization, which are plotted
in Fig. 1 and denoted by full symbols. The predicted res-
ults include the isotopes from Z = 15-30. Compared to
the measured cross-sections (half-full symbols) for °Ca
[(8.0+3.0)x107"3 mb] and ®°Ca [(2.1+1.5)x107"3 mb],
the FRACS predictions (8.5x107'> mb and 3.5x 10714
mb, respectively) are in good agreement.

N 3454 MeV'°Zn+'Be
10°¢ 3
-13 F E
1078 @) z=15-22
1ozt W 2=15 @ Z=16 ]
A 7=1
—~ ’ Z=1
'g 10733 E ' 7=2 E
- P z=2
Q t
<
& 3
R E
10" 3
102 (b) Z=23-30 e E
W Z=23 @ Z=24 ‘A
1033_A Z=25 y Z=26 v ]
& 2=27 ® z=28 _~
® 7=29 y 7=30 ¢
30 40 50 60 70
A
Fig. 1. (color online) Predicted isotopic cross-section distri-

butions for Z =15-30 fragments in the 345 4 MeV "7+
’Be reaction by FRACS parametrization (full symbols). The
measured cross-sections for 3°Ca and ®Ca in the same reac-
tion in Ref. [1] are denoted by the half-full symbols.
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From previous investigations, we can assume that the
predicted results by FRACS are reliable for the isotopes
with known experimental binding energies [6,10,13].
Hence, they can be used to verify whether the correlation
in Eq. (2) is maintained in the isotopes near the neutron-
drip line. In Fig. 2, the correlation between the isotopic
cross section and the average binding energy is plotted in
three panels, i.e., for the Z=15-19 [in panel (a)],
Z =20-25 [in panel (b)], and Z =25-29 [in panel (c)],
respectively. For the isotopes predicted by the FRACS
parametrization, the binding energies are taken from
AME16 [14] (denoted by full symbols). The exponential
dependence of isotopic cross-section on (B’) is main-
tained, as seen from the figure. The values for C and 7 in
Eq. (2) are obtained by fitting the correlation from the
predictions obtained by the FRACS parametrization. The
results show that the slopes of the distribution change
slightly with Z, especially for Z < 19 isotopes, while this
dependence becomes significantly smaller when Z > 25.
This phenomenon is discussed later. The cross-sections
for the more neutron-rich isotopes are predicted by Eq.
(2) with the fixed values of C and 7t for each isotopic
chain by adopting the binding energy predicted by the
RCHB (open symbols) method.
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Fig. 2. (color online) Exponential correlation between o and
(B’y for neutron-rich Z=15-29 isotopes produced in the
345 4 MeV 79Zn +° Be reaction. Lines are determined by fit-
ting full symbols on the basis of Eq. (2). Full symbols de-
note the o predicted by FRACS and the (B’) with the exper-
imental binding energy taken from AME2016 [14]. The
open symbols denote the predicted o by Eq. (2) adopting
the binding energy by a RCHB theory. Half-full symbols
denote the predicted (B’) for 36°Ca using the measured
cross-sections by Tarasov [1].

The planned Beijing ISOL (BISOL) facility is aimed
to provide more neutron-rich projectiles, such as “7n,
which will extend the projectile system to one that is ex-
tremely neutron-rich. The ability provide the chance to
found more neutron-rich isotopes, e.g., "°Ca (which is
supposedly a double magic number nucleus). It is of great
interest to determine the cross-section for extreme iso-
topes in the experiments that could be performed on
BISOL. The isotopic cross-sections for fragments in the
80 4 MeV and 60 4 MeV #Zn+°Be reactions are pre-
dicted using the same methods as those in the 345 4 MeV
707Zn +° Be reactions described above. The isotopic cross-
section distribution for the fragments predicted by the
FRACS parametrization is plotted in Fig. 3. The correla-
tion between the isotopic cross-section and (B’) is plot-
ted in Figs. 4 and 5 for 80 4 MeV and 60 4 MeV *'Zn +
’Be reactions, respectively. Similar results as in the 345 4
MeV 7°Zn +° Be reactions can be found, except that the
slopes for the isotopic distributions are always changing.

The C and 7 values can be compared for different iso-
topes, as well as for reactions at different incident ener-
gies, since the slope of the isotopic distribution varies
with the charge number. Since two different projectiles
(70’8OZn) were investigated, we likewise determine the C
and 7 for the isotopic cross-section distributions for the
345 4 MeV 8Zn+°Be reaction (however, we do not
show the results in this article), and compare the values of
C and 7 in Fig. 6. For the 8Zn +°Be reaction, the incid-
ent energy of the reactions show less influence on C and
7, especially for the 60 4 MeV and 80 4 MeV reactions,
while the difference between the 60 (80) 4 MeV reac-
tions and 345 4 MeV reactions becomes relatively large
when Z > 25. This can be explained, since the FRACS
parametrization has been verified to be effective above
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Fig. 3. (color online) Predicted cross-section for neutron-

rich Z =15-30 isotopes produced in the 60 and 80 4 MeV
807Zn +° Be reactions by the FRACS parametrization.
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Fig. 4. (color online) As Fig. 2, but for the predicted 60 4
MeV 39Zn +° Be reaction.
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Fig. 5. (color online) As Fig. 2 but for the predicted 80 4
MeV #7n +9 Be reaction.

140 4 MeV [6], whereas below 140 4 MeV, the incident
energy dependence of fragment production should be fur-
ther improved with the help of experimental results. It
also can be concluded that C (and 7) significantly de-
pends on the asymmetry of the projectile nucleus, since
there are large gaps between the values for the 79Zn and
807n reactions.
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Fig. 6. (color online) The determined values of C [in panel
(a)] and 7 [in panel (b)] for the isotopic cross-section distri-
butions in the 345 4 MeV 7°Zn +° Be reaction, and in the 60,
80, 3454 MeV #7n +° Be reactions.
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Fig. 7. (color online) Predicted cross-sections for the neut-
ron-rich Z =20 isotopes in the 3454 MeV 7°Zn+° Be reac-
tion, and the 60, 80, and 345 4 MeV #7n +° Be reactions by
FRACS, Eq. (2), which are denoted by squares and circles,
respectively. Measured cross-sections for *%°Ca in the 345
A MeV 7°Zn+° Be reaction are plotted as stars. The cross-
sections for calcium isotopes overlap for #Zn+°Be reac-
tions at different incident energies.

The values of C and 7 clearly depend on the mass of
the projectile nucleus, as well as the charge number 7z of
fragments. The reason has been discussed in Ref. [10] by
comparing Eq. (2) to the canonical ensemble theory with-
in grand canonical limitations. The trend of the depend-
ence of C and 7 on Z changes around Z = 20. For 7 < 20,
the values of C and v decrease when Z increases, which
has also been observed in the neutron-deficient isotopes
of smaller Z [10]. For Z > 20, the values of C and 7 in-
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Table 1. Predicted cross-sections for 3%:00:66.70Ca by FRACS parametrization and Eq. (2). £ has the unit of A MeV, and the cross-sections are in units
of mb.
E Proj. By ¥Ca “Ca “Ca "Ca
70, FRACS 9x 10713 4x10714 9x 10728 1x10772
345 g Eq.(2) 6x10°12 5%10°13 4%1072! 410726
w0, FRACS 4x107° 7x1077 1x10712 7x10718
n
80 Eq.(2) 5%1077 1x1077 1x10712 1x10°1
w0, FRACS 3x107° 6x1077 1x10712 7x10718
n
60 Eq.(2) §x107° 3x10°° 2x10710 7x10713

crease with Z for the 807 reactions, while the value of C
slightly increases with Z, and 7 is relatively consistent for
the 345 A MeV reactions. The magic number Z = 20,
which indicates the shell closure for charge, plays an im-
portant role for C and 7.

Next, we discuss the cross sections for the neutron-
rich calcium isotopes. In Fig. 7 and Table 1 shows the
predicted isotopic cross-section distributions in the 60,
80, and 345 4 MeV 7%807Zn +° Be reactions by the FRACS
and Eq. (2). Both the FRACS parametrization and Eq. (2)
can efficiently predict the measured 3*%°Ca in the 345 4
MeV 7°Zn +° Be reaction. Meanwhile, when the fragment
becomes more neutron-rich, the results predicted by the
FRACS parametrization drop much faster than those by
Eq. (2), exhibiting a significant difference. This could be
attributed to the FRACS parameterizations, where the
parameters are fixed by existing experimental data with a
limited neutron-richness of the fragment. When the frag-
ment reaches the drip-line, the parameters become inval-
id. For the reactions of incident energy below 100 A4
MeV, the energy-dependent parameters in FRACS are
not specially adjusted, and the prediction becomes worse
[6] (A delicate improvement has been made for neutron-
deficient isotopes below 140 A MeV in our recent work
[7]). In Eq. (2), with both C and 7 fixed, the isotopic dis-
tribution obeys the same trend. In the 60 4 MeV and 80 4
MeV 89Zn +° Be reactions, the cross-sections for ®Ca are
predicted to be 2x 1071 mb and 1x 1072 mb, respect-
ively; while for 7°Ca the results are 7x 10> mb and
1 x 10715 mb, respectively. The predictions for ¢7°Ca in
the 345 4 MeV 39Zn +° Be reaction are similar to those of

the 60 A MeV reaction, since the values for C and 7 are
likewise similar. %°Ca and 70Ca are likely to be dis-
covered with the delicate design of a reaction system and
incident energy. %°Ca has the cross-section three mag-
nitudes larger than "’Ca. With the very neutron-rich 80zp
projectile, the production of *6079Ca will be signific-
antly (10°) enhanced compared to the 707n projectile.

4 Summary

In this study, the isotopic cross-sections were studied
by the combination of FRACS parametrization and the
empirical formula between the isotopic cross-section and
average binding energy. The results show that both the
FRACS parametrization and Eq. (2) efficiently predict
the cross sections for 60Ca, which are measured in the
345 4 MeV 7°Zn+°Be reaction. Although FRACS and
Eq. (2) are similar for calcium isotopes of A < 64, the dif-
ference between the two methods becomes very large for
A > 64. Meanwhile, at lower incident energies (< 100 A
MeV), the predictions by FRACS and Eq. (2) are similar.
Further studies show that if the 807n projectile nucleus is
selected and the incident energy of the reaction to 60 4
MeV is lowered, the cross-sections for 9:00:60.70Ca could
be highly enhanced, and the drip-line nuclei °¢7°Ca could
potentially be discovered. Considering the predicted res-
ults, the planned BISOL facility will provide a lot of op-
portunities in the area of research of extreme isotopes at
the neutron-drip line.
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