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Abstract: The existence of light sterile neutrinos is a long-standing question in particle physics. Several experiment-
al “anomalies” might be explained by introducing eV mass scaled light sterile neutrinos. Many experiments are act-
ively searching for such light sterile neutrinos through neutrino oscillation. For long baseline experiments, the matter
effect should be treated carefully for precise calculation of the neutrino oscillation probabilities. However, this is usu-
ally  time-consuming or  analytically  complex.  In  this  manuscript,  we adopt  a  Jacobi-like  method to  diagonalize  the
Hermitian Hamiltonian matrix and derive analytically simplified neutrino oscillation probabilities for 3 (active) + 1
(sterile)-neutrino mixing for a constant matter density. These approximations can reach a considerably high numeric-
al accuracy while retaining their analytical simplicity and fast computing speed. This would be useful for current and
future long baseline neutrino oscillation experiments.
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1    Introduction

θ13

± Z0

Neutrino oscillation has been indisputably established
by atmospheric,  solar,  reactor,  and  accelerator  experi-
mental results [1]. After recent reactor experiments [2-4]
discovered  the  last  unknown  mixing  angle  in  the  3-
neutrino mixing framework, neutrino oscillation measure-
ments entered a precision era. The nonzero neutrino mass
provides convincing evidence of new physics beyond the
standard  model.  Introducing  right-handed  neutrinos  is  a
natural way to introduce the neutrino mass. In the stand-
ard electro-weak V-A theory, right-handed neutrinos can-
not  couple  with W  and  bosons.  While  the  electron
collider  experimental  data  [5]  constrain  the  number  of
active  light  neutrino  flavors  to  three,  other  new types  of
light neutrinos must be sterile. Currently, there is no the-
oretical  constraint  on  the  sterile  neutrino  mass.  They
could  be  very  massive  (1015 GeV),  as  suggested  by  the
see-saw mechanism; they could also be dark matter in the

keV mass range;  in  addition,  they might  also be as  light
as sub-eV, which would explain the CMB measurement.

87.9±22.4±6.0 νe
νµ µ+

4.7σ
νµ νµ

σ

If light sterile neutrinos mix with the active neutrinos,
their signature  might  be  observed  with  neutrino  oscilla-
tion experiments. The LSND observed  
signal  events  from  the  source  from  decay  at  rest,
which  suggests  a  sterile  neutrino  with  mass  greater  than
0.4 eV [6, 7]. Recently, the MiniBooNE experiments re-
ported  a  excess of  electron-like  events  when  com-
bining both the  and  beam configurations. The signi-
ficance of  the  combined  LSND  and  MiniBooNE  ex-
cesses can even reach 6  [8], although the source of the
low  energy  excess  from  MiniBooNE  remains  unclear.
Experimental  hints  of  the  existence  of  eV  mass  scaled
sterile  neutrinos  have  also  been  derived  from  short
baseline  reactor  neutrino  experiments [9-11].  However,
the uncertainties  associated  with  theoretical  reactor  anti-
neutrino flux calculations might be underestimated, lead-
ing  to  an  observed  excess  of  antineutrino  events  at  4 –6
MeV  relative  to  the  predictions  [12-16].  Therefore,
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whether the  reactor  anomaly  can  be  completely  attrib-
uted to  the  theoretical  modeling  or  sterile  neutrinos  re-
mains uncertain.

It  is  worth  mentioning  that  although  eV-scale  sterile
neutrinos can  help  explain  several  experimental  anom-
alies, they are  not  quite  theoretically  motivated.  In  addi-
tion, they are also in tension with the muon neutrino dis-
appearance results,  especially  with  respect  to  recent  res-
ults  from  IceCube  [17]  and  MINOS/MINOS+  [18].  The
most recent combined analysis with the MINOS+, Bugey,
and  Daya  Bay  experiments  set  a  very  strong  limit  on
sterile  neutrino  mixing  [19], which  can  almost  com-
pletely exclude  the  LSND  and  MiniBooNE  sterile  neut-
rino hypothesis in the eV-scale region. However, a more
convincing and direct testing would come from muon de-
cay at rest experiments, such as the proposal of JSNS2 [20].
Certainly, the  existence  of  eV  mass  scale  sterile  neutri-
nos therefore requires further evidence. Many reactor and
accelerator neutrino experiments have been actively sear-
ching for sterile neutrinos at various mass scales [21-25].

For  long  baseline  accelerator  neutrino  experiments
[26, 27],  the  neutrino  matter  effect  plays  an  important
role in neutrino mass hierarchy [28, 29] and CP violation
[30]  measurements.  As  first  indicated  by  Wolfenstein,
neutrinos  propagating  in  matter  will  oscillate  differently
from those in a vacuum [31]. The presence of electrons in
matter changes  the  energy  levels  of  the  propagation  ei-
genstates  of  neutrinos  due  to  charged  current  coherent
forward  scattering  of  the  electron  neutrinos.  Later,
Mikheyev  and  Smirnov  [32]  further  observed  that  the
matter effect can produce resonant maximal flavor trans-
itions when neutrinos propagate through matter at certain
electron densities. Super-Kamiokande observes an indica-
tion of different solar neutrino fluxes during the night and
day for  solar  neutrinos  passing  through  additional  ter-
restrial  matter  in  the  earth  at  different  periods  [33].  For
sterile  neutrino  and  other  new  physics  explorations,  the
matter effect has to be calculated carefully and precisely,
especially for  long  baseline  neutrino  oscillation  experi-
ments.

θ13
θ13
θ13

Neutrino oscillation  in  matter  can  be  solved  accur-
ately using numerical or analytical calculations [34] with
a  complex  matrix  diagonalization  algorithm.  In  practice,
analytic  approximations  are  more  commonly  used  in
neutrino experiments and are useful for understanding the
oscillation features.  High-precision  analytical  expres-
sions for 3-neutrino oscillation in matter have been thor-
oughly  studied  [35-48]. Some  of  them  employ  the  per-
turbation theory and rely on expansions in parameter .
Given the large  observed, higher order corrections as-
sociated with  are needed to achieve numerical accur-

acy.  Thus,  the  oscillation  expressions  usually  become
quite  complicated.  In  Ref.  [49],  the  Jacobi  method  was
introduced  to  diagonalize  the  real  Hermitian  matrix.  It
maintains the  same analytical  expressions  for  the  neutri-
nos propagating in matter as for those in vacuum in terms
of the effective neutrino mixing angles and mass-squared
differences in matter.

θ14 θ24 θ34
δ24 δ34

For  sterile  neutrinos,  the  oscillation  expressions  will
be  very  complicated  if  additional  light  sterile  neutrinos
exist  [22].  Compared  with  standard  3-neutrino  mixing,
the simplest 3 (active) + 1 (sterile)-neutrino mixing has 3
additional mixing angles (i.e., , , and ) and 2 ad-
ditional CP phases  (i.e.,  and ).  Furthermore,  as
sterile  neutrinos  do  not  interact  with  matter,  the  neutral
current potential for active neutrinos also needs to be con-
sidered.  N.  Klop et  al.  [50] developed  a  method  to  con-
vert 3+1-neutrino mixing with matter effects into a Non-
Standard  Interaction  (NSI)  problem  in  the  3-neutrino
mixing case.  Here,  we follow the rotation strategy intro-
duced in Ref. [49] and adopt the Jacobi-like method [51,
52], which  can  diagonalize  the  Hermitian  complex  mat-
rix, to derive analytical approximations for the 3+1-neut-
rino  oscillation  in  matter.  While  retaining  the  simplicity
of  the  formula,  these  expressions  can  also  achieve  very
good numerical accuracy and fast calculation speed. This
could  be  very  useful  for  the  current  and  forthcoming
neutrino oscillation experiments.

This paper  is  structured  as  follows.  Section  2  intro-
duces the fundamental theory of neutrino mixing and os-
cillation, including sterile neutrinos and the matter effect.
The basic idea behind the Jacobi-like method and the de-
rivation  of  analytical  approximations  for  sterile  neutrino
oscillation probabilities are presented in section 3. Lastly,
the accuracy of the proposed work is demonstrated in sec-
tion 4 with two long baseline accelerator neutrino experi-
ments. Further details on the Jacobi-like method and for-
mula derivation are presented in the appendix.

2    Theoretical framework
2.1    Neutrino oscillation

νe νµ ντ
ν1 ν2 ν3

In the standard neutrino mixing paradigm, three neut-
rino  flavor  eigenstates  ( , , )  are  superpositions  of
three neutrino mass eigenstates ( , , ).νeνµ

ντ

 = U

ν1ν2
ν3

 . (1)

Here, U is  the  Pontecorvo-Maki-Nakawaga-Sakata
(PMNS) mixing matrix [53-55], which can be parameter-
ized as

U = R23(θ23,0)R13(θ13, δ13)R12(θ12,0) =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e−iδ13

0 1 0
−s13eiδ13 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 , (2)
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Ri j(θi j, δi j)
i j θi j

δi j ci j = cosθi j si j = sinθi j
0 ⩽ θi j ⩽ π/2 0 ⩽ δi j ⩽ 2π

where  denotes  a  counterclockwise  rotation  in
the complex -plane through a mixing angle  and a CP
phase  with  and . This work ad-
opts the conventions  and .

α β
Under the plane wave assumption, the general oscilla-

tion probability  from -flavor  type neutrinos  to -flavor
type neutrinos can be expressed as

Pνα→νβ =δαβ−4
∑
i> j

ℜ
(
UβiU∗αiU

∗
β jUα j

)
sin2∆i j

±2
∑
i> j

ℑ
(
UβiU∗αiU

∗
β jUα j

)
sin2∆i j, (i, j = 1,2,3) (3)

∆i j

where the upper and lower signs correspond to the neut-
rino and antineutrino cases, respectively.  stands for

∆i j ≡
∆m2

i jL

4E
= 1.267

∆m2
i j

eV2

(GeV
E

)( L
km

)
, (4)

∆m2
i j = m2

i −m2
j

νi ν j

where  is  the  mass-squared  difference
between the neutrino mass eigenstates  and .

∆m2
21 ∆m2

32 θ12 θ13 θ23

δ13

According  to  Eq.  (2)  and  Eq.  (3),  3-flavor  neutrino
oscillation  is  described  with  six  parameters,  including
two  independent  neutrino  mass-squared  differences
(  and ), three mixing angles ( , , and ),
and  one  leptonic CP phase  ( ).  Following  the  same
convention,  the  4-flavor  neutrino  mixing  matrix  can  be
parameterized as

U =R34(θ34, δ34)R24(θ24, δ24)R14(θ14,0)
×R23(θ23,0)R13(θ13, δ13)R12(θ12,0) , (5)

θ14

θ24 θ34 δ24 δ34 ∆m2
41

with  six  additional  neutrino  oscillation  parameters: ,
, , , , and 1). The exact parameterization

expression for each mixing element is listed in Appendix
A.  The  general  expression  for  the  neutrino  oscillation
probabilities still follows Eq. (3) by simply increasing the
total number of neutrino flavors and mass eigenstates to 4.

|∆m2
41| ≫ |∆m2

31|

∆m2
4k(k = 1,2,3) ⟨sin2∆4k⟩ ≈

1
2

In  practice,  when  sterile  neutrinos  are  much  heavier
than  active  neutrinos  ( ),  due  to  the  finite
detector space  and  energy  resolution,  the  rapid  oscilla-
tion  frequency  associated  with  the  large  mass-squared
differences  between  the  4th  and  other  mass  eigenstates

 will be averaged out, leading to 

. The neutrino oscillation equation can then be  simpli-
fied to

Pνα→νβ =δαβ−4
∑
i> j

ℜ
(
UβiU∗αiU

∗
β jUα j

)
sin2∆i j

±2
∑
i> j

ℑ
(
UβiU∗αiU

∗
β jUα j

)
sin2∆i j

− 1
2

sin2 2θαβ (i, j = 1,2,3) (6)

sin2 2θαβ = 4|Uα4|2(δαβ− |Uβ4|2)with .  In  this  paper,  we
prefer  to  use  the  full  oscillation  formula  to  preserve  the
rapid oscillations induced by sterile neutrinos.

2.2    Matter effect

Z0

W±

When active  neutrinos  propagate  through  matter,  the
evolution  equation  is  modified  by  coherent  interaction
potentials, which are generated through coherent forward
elastic  weak  charged-current  (CC)  and  neutral-current
(NC) scattering in a medium. All active neutrinos can in-
teract with the electrons, neutrons, and protons in matter
through  the  exchange  of  a  boson  in  the  NC  process.
However,  only  electron  neutrinos  participate  in  the  CC
process with electrons through the exchange of .

VCC =
√

2GF Ne

GF Ne

VNC = −
√

2
2

GF Nn

Nn VCC VNC

For electron neutrinos, the CC potential is proportion-
al to the electron number density. , where

 is the Fermi coupling constant, and  is the electron
number density.  The  NC  potentials  generated  by  elec-
trons  and  protons  will  cancel  each  other  because  they
have opposite signs and the number densities of electrons
and protons  are  basically  the  same in  the  Earth.  The  net

NC  potential, ,  is  only  sensitive  to  the
neutron  number  density, .  Both  and  need  to
swap signs for antineutrinos.

For 3-flavor  neutrino  oscillation,  only  the  CC poten-
tial needs  to  be  considered  for  the  electron  neutrino  ei-
genstate, while the NC potential is a common term for all
neutrino flavors and has no net effect on neutrino oscilla-
tion.  However,  the  NC  potential  cannot  be  neglected  in
the  3+1-flavor  neutrino  case,  as  sterile  neutrinos  do  not
interact with matter. The effective Hamiltonian in the fla-
vor eigenstate representation for 3+1-flavor neutrino mix-
ing is given by

H =Hv+V =
1

2E

U

0 0 0 0
0 ∆m2

21 0 0
0 0 ∆m2

31 0
0 0 0 ∆m2

41

U†

+


ACC 0 0 0

0 0 0 0
0 0 0 0
0 0 0 ANC


 , (7)

Hv
ACC ANC

where  is the neutrino Hamiltonian in vacuum and V is
the matter effect potential.  and  for neutrinos are
given by

ACC = 2EVCC = 7.63×10−5(eV2)
(
ρ

g/cm3

)( E
GeV

)
, (8a)

ANC=−2EVNC=3.815×10−5(eV2)
(
ρ

g/cm3

)( E
GeV

)
, (8b)
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ρ VCC
VNC ACC ANC

ρ

ρ 2.6 3

respectively, where  is the mass density. Similar to 
and , both  and  have to swap signs for anti-
neutrinos. In this work, we assume a constant . If there is
no special declaration,  will be set to  g/cm  by default.

Ψα

ö i
d
dt
Ψα =HΨα

H

The evolution  of  the  neutrino  flavor  state  can  be
calculated using the Schr dinger equation .
After  diagonalizing the  effective  Hamiltonian matrix ,
we  can  calculate  the  neutrino  oscillation  probability  in
matter using the equation

Pνα→νβ =δαβ−4
∑
i> j

ℜ
(
ŨβiŨ∗αiŨ

∗
β jŨα j

)
sin2 ∆̃i j

±2
∑
i> j

ℑ
(
ŨβiŨ∗αiŨ

∗
β jŨα j

)
sin2∆̃i j , (i, j = 1,2,3,4)

(9)
Ũ

∆m̃2
i j(i, j = 1,2,3,4)

with  the  effective  mixing  matrix  and  effective  mass-
squared  differences .  In  the  following
approximations,  we will  rotate the Hamiltonian from the
mass eigenstate.  For  simplicity,  the  effective  Hamiltoni-
an in the mass eigenstate can be written as

H = U†HU =
1

2E


H11 H12 H13 H14
H21 H22 H23 H24
H31 H32 H33 H34
H41 H42 H43 H44

 , (10)

Hi jwhere the Hermitian matrix element  yields

Hi j =

ACCU∗eiUe j+ANCU∗siUs j (i , j)
∆m2

i1+ACC|Uei|2+ANC|Usi|2 (i = j)
. (11)

Ũ Ũ = URIn this case, the effective mixing  yields , where
R is the diagonalization matrix on H.

3    Analytical approximation

Ũ
∆m̃2

i j(i, j = 1,2,3,4)

As shown in  Ref.  [34], the  exact  solution  for  the  ef-
fective mixing matrix  and effective mass-squared dif-
ferences  can be obtained analytically.
However, obtaining  higher-precision  analytical  approx-
imations for neutrino oscillation in matter would be more
convenient and time-saving. Here, we introduce a Jacobi-
like method,  which is  a  unitary transformation operation
method,  to  diagonalize  the  complex  Hermitian  matrix.
Then, we present the effective mixing matrix and effect-
ive  mass-squared  differences  of  the  3+1-flavor  neutrino
mixing  framework  for  both  neutrinos  and  antineutrinos.
Consequently,  high  accuracy  can  be  obtained  for
the  calculation  of  neutrino  oscillation  probabilities  in
matter.

×3.1    Jacobi-like method: Diagonalization of a 2  2 Her-
mitian matrix

The  Jacobi-like  method,  which  originates  from  the

×

Jacobi eigenvalue  algorithm,  is  an  effective  matrix  rota-
tion approach to diagonalize a complex Hermitian matrix.
Here,  we  start  with  an  example  of  solving  a  2  2 Her-
mitian matrix. A Hermitian matrix

M =
[
α β
β∗ γ

]
(α,γ ∈ R , β ∈ C) (12)

can be diagonalized as

M′ = R†(ω,ϕ)MR(ω,ϕ) =
[
λ− 0
0 λ+

]
(13)

with a rotation matrix

R(ω,ϕ) =
[

cosω sinωe−iϕ

−sinωeiϕ cosω

]
, (ω,ϕ ∈ R) (14)

ϕ = Arg(sign(A)β∗) A = ±|β|where ,  and

tanω =
2A

γ−α±
√

(γ−α)2+4A2
.

ACC ANC

±
tanω
λ− λ+

+ −
∆m2

i j > 0 ∆m2
i j < 0

The choice  of  a  ±  sign  for A is  optional.  For  simplicity,
we select it to be the same sign as that of  and  in
Eq. (8) for the matter effect in the 3+1 framework. The 
sign in the denominator of  is correlated with the ex-
change  of  the  values  of  and  in  Eq.  (13).  In  this
work,  we  adopt ( )  for  the i-j submatrix diagonaliza-
tion  if  ( ). After  rotation,  the  eigenval-
ues of M can be obtained as

λ− =
α+γ tan2ω−2A tanω

1+ tan2ω
, λ+ =

α tan2ω+γ+2A tanω
1+ tan2ω

.

(15)

ϕ

In summary, this method can be easily used to diagonal-
ize  a  complex  Hermitian  matrix  through  rotation,  in
which  the  complex  factor  is used  to  address  the  com-
plex diagonalization.

3.2    Application of the Jacobi-like method to 3+1-flavor
neutrino mixing

4×4

2×2

To accurately diagonalize the  neutrino Hamilto-
nian  Hermitian  matrix  using  the  Jacobi-like  method,  in
principle, we need to perform infinite iterations of a 
submatrix  rotation.  However,  in  practice,  with  only  two
continuous rotations on the effective Hamiltonian, we can
already obtain the analytical approximations for neutrino
oscillation in matter with very high accuracy. The diagon-
alized Hamiltonian yields

Ĥ = R†HR ≈ R2,†R1,†HR1R2 = Ũ†(UHvU†+V)Ũ , (16)
Ũ = UR1R2 R1 R2

Ũ
R34R24R14R23R13R12

Ũ ∆m̃2
i j(i, j = 1,2,3,4)

where ,  and  and  are  the  rotation
matrices. After some mathematical simplifications,  can
be expressed as , which has the same
form  as  standard  neutrino  mixing U.  For  simplicity,  we
only show the major results of  and 
in this section. The complete derivations are presented in
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Appendix B.1 and B.2.

Ũ

With  two  continuous  rotations  on  the  effective
Hamiltonian H, we can obtain the effective neutrino mix-
ing matrix 

Ũ ≈R34(θ34, δ34)R24(θ24, δ24)R14(θ14,0)

×R23(θ23,0)R13 (̃θ13, δ̃13)R12 (̃θ12, δ̃12). (17)

δ̃12

R12 θ̃12 θ̃13 δ̃13 δ̃12

R13 R12
R34 R24 R14 R23

∆m2
21

R12

This  is  very  similar  to  that  in  vacuum (i.e.,  Eq.  (5)),
except  for  one  additional  effective  phase  in the  sub-
matrix . , , ,  and  are the effective angles
and phases as functions of E in  and . In addition,

, , ,  and  are the same as those in vacuum.
In the diagonalization process,  it  is  always better  to  first
apply a rotation to the submatrix that has the largest abso-
lute ratio of the off-diagonal element to the difference of
the  diagonal  elements.  As  is  the  smallest  mass-
squared difference compared with the others, we can start
with the  submatrix rotation first.

R1 = R12(ω1,ϕ1)
θ̃12

δ̃12 ω1 ϕ1

R12(θ12,0)R12(ω1,ϕ1)

After  the  first  rotation  with  the  sub-
matrix,  we can obtain  the  effective  angle  and effect-
ive  phase  represented  as  functions  of  and 
through the combination of :

sin θ̃12 ≈
|c12 tanω1eiϕ1 + s12|√

1+ tan2ω1

,

cos θ̃12 ≈
|c12− s12 tanω1eiϕ1 |√

1+ tan2ω1

, (18a)

eĩδ12 ≈ (c12 tanω1eiϕ1 + s12)(c12− s12 tanω1e−iϕ1 )

cos θ̃12 sin θ̃12(1+ tan2ω1)
,

(18b)
wherein

tanω1 =
2Aω1

(H22−H11)+
√

(H22−H11)2+4A2
ω1

,

Aω1
= ±|H12| ϕ1 = Arg(sign(Aω1

)H∗12) + −
Aω1

 and .  The  and 
signs  in  correspond  to  the  neutrino  and  antineutrino
cases, respectively. After the first rotation ((30) and (64)),
we can obtain the eigenvalues of the effective Hamiltoni-
an submatrix as

λ− =
H11+H22tan2ω1−2Aω1

tanω1

1+ tan2ω1
,

λ+ =
H11tan2ω1+H22+2Aω1

tanω1

1+ tan2ω1
. (19)

θ14

After partial diagonalization on the 1-2 submatrix, the
off-diagonal elements of the 1-3 and 2-3 submatrices be-
come the relatively largest  of  the rest  of  the submatrices
for  both  the  neutrino  and  antineutrino  cases  due  to  the
smallness  of  the  sterile  neutrino  mixing angles  (i.e., ,

θ24 θ34
R2 = R23(ω2,ϕ2) R2 = R13(ω2,ϕ2)

θ̃13 δ̃13 ω2 ϕ2

, ).  In  the  second  rotation,  we  adopt  the
 ( )1) rotation matrix for the

neutrino (antineutrino) case. After the second rotation, we
can obtain  and  as functions of  and :

sin θ̃13 ≈
|c13 tanω2eiϕ2 + s13eiδ13 |√

1+ tan2ω2

,

cos θ̃13 ≈
|c13− s13 tanω2ei(δ13−ϕ2)|√

1+ tan2ω2

, (20a)

eĩδ13 ≈ (c13 tanω2eiϕ2 + s13eiδ13 )(c13− s13 tanω2ei(δ13−ϕ2))

cos θ̃13 sin θ̃13(1+ tan2ω2)
,

(20b)
where

tanω2 =
2Aω2

(H33−λ±)±
√

(H33−λ±)2+4A2
ω2

.

tanω2√
(H33−λ±)2+4A2

ω2

λ+ λ−

Aω2
eiϕ2

In the equation for , the upper (lower) sign in front
of  corresponds  to  the  NH (IH)  (i.e.,
normal hierarchy (inverted hierarchy)) case, and  ( )
corresponds  to  the  neutrino  (antineutrino)  case.  In  the
above  equations,  and  have  different  expressions
for the neutrinos and antineutrinos. For the neutrino case,

Aω2
= |H′23|, ϕ2 = Arg(sign(Aω2

)H′∗23),

H′23 =
H13 tanω1eiϕ1 +H23√

1+ tan2ω1

. (21)

While for the antineutrino case,

Aω2
= −|H′13| , ϕ2 = Arg(sign(Aω2

)H′∗13) ,

H′13 =
H13−H23 tanω1e−iϕ1√

1+ tan2ω1

. (22)

λ′± λ′±

In this rotation, we can diagonalize the 2-3 (1-3) submat-
rix for neutrinos (antineutrinos) in Eq. (B11) (Eq. (B45)),
resulting in two eigenvalues . The formulas for  are

λ′− =
λ++H33 tan2ω2−2Aω2

tanω2

1+ tan2ω2
,

λ′+ =
λ+ tan2ω2+H33+2Aω2

tanω2

1+ tan2ω2
, (23)

for the neutrino case, and

λ′− =
λ−+H33 tan2ω2−2Aω2

tanω2

1+ tan2ω2
,

λ′+ =
λ− tan2ω2+H33+2Aω2

tanω2

1+ tan2ω2
, (24)

for the antineutrino case.
When the  mixing  between  sterile  neutrinos  and  act-

ive neutrinos is relatively small and the neutrino beam en-
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E < 100

θ̃12 δ̃12 θ̃13 δ̃13 Ũ

m̃2
i (i = 1,2,3,4)

λ−
λ′−

∆m̃2
i j

ergy is  GeV, the off-diagonal elements in the ef-
fective Hamiltonian will be very small compared with the
diagonal  elements  after  two  of  the  above  rotations  are
performed. Namely, the effective Hamiltonian is approx-
imately diagonalized. So far,  all  the effective parameters
(i.e., , , , and ) in  have been presented. The
diagonal  terms  in  the  effective  Hamiltonian  in  the  new
representation  can  be  treated  as .  After
subtracting  the  smallest  neutrino  (antineutrino)  mass 
( ),  we  can  obtain  the  effective  neutrino  (antineutrino)
mass-squared difference  as

∆m̃2
21 ≈ λ′−−λ− , ∆m̃2

31 ≈ λ′+−λ− , ∆m̃2
41 ≈ H44−λ− ,

(25)
for the neutrino case, and

∆m̃2
21 ≈ λ+−λ′− , ∆m̃2

31 ≈ λ′+−λ′− , ∆m̃2
41 ≈ H44−λ′− ,

(26)
for the antineutrino case.

Ũ m̃2
i (i = 1,2,3,4)

Till this point, all the effective parameters in 4-flavor
neutrino  oscillation  have  been  presented,  and  hence  the
neutrino oscillation probabilities can be easily calculated
using Eq. (9). As both the CC and NC potentials in mat-
ter  are proportional  to the neutrino energy,  the values of
these  effective  parameters  in  and  are
also energy dependent, as shown in Figs. 1 and 2.

3.3    Discussion

Ũ
θ̃12 θ̃13

δ̃12 δ̃13

The  effective  matrix  in matter  introduces  two  ef-
fective  mixing  angles  and ,  two  effective CP
phases  and , and  effective  mass-squared  differ-

∆m̃2
i j δ̃12ences ,  where  is an  additional  parameter  intro-

duced from the Jacobi-like method. These effective para-
meters  are  clearly  energy  dependent,  as  shown  in
Figs. 1 and 2.

E < 100 θ̃12 θ̃13
θ12 θ13

θ̃12
π
2

0
100 10 sin θ̃12→ 1

sin θ̃12→ 0 θ̃13

E > 1
π

2
E > 100

0
E < 1

δ̃12→ 0
δ̃13→ δ13 1

δ̃12 δ̃13

In Fig.  1,  when  MeV,  and  are  very
close  to  the  and  values  in  vacuum.  The  value  of

 increases  (decreases)  rapidly  up  to  the  maximum 
(the  minimum )  in  the  neutrino  (antineutrino)  energy
range  from  MeV  to  GeV,  leading  to 
( ).  In  contrast,  begins  to  change  after

GeV. It can go up to  assuming NH for neutrinos
and  IH  for  antineutrinos  when  GeV;  it  tends  to
go  down  to  for  the  other  two  combinations.  When

 GeV, both the effective CP phases are close to their
corresponding  vacuum  oscillation  values  (  and

). When the energy increases above  GeV, the
influence of the matter effect on  and  is not negli-
gible.

∆m̃2
i j

E < 100 ∆m̃2
21 ∆m̃2

31 ∆m̃2
41

∆m̃2
21 E > 100

∆m̃2
31 E > 1

∆m2
41 = 0.1 2

∆m̃2
41

E < 100
∆m̃2

21
∆m̃2

31 ∆m̃2
41 E < 100

|∆m̃2
31| 10

In Fig. 2, the effect of matter also changes the values
of  the  effective  neutrino  mass-squared  differences .
When  MeV, , ,  and  are close to
their  vacuum values.  begins  to  vary when 
MeV, while  starts to change after  GeV. In the
case  of  eV  with  the  current  sterile  neutrino
limits,  is  insensitive  to  the  matter  effect  when

 GeV. As the neutrino energy increases, the mat-
ter effect shifts the values of the effective  more than

 and  when  GeV.  It  should  be  noted
that  has a dip structure around  GeV for the anti-
neutrino IH case. This feature also shows up in the 3-fla-

θ̃12 θ̃13 δ̃12 δ̃13 ∆m2
41 = 0.1 2

sin2 θ14 = 0.019 sin2 θ24 = 0.015 sin2 θ34 = 0 δ13 = 218◦ δ24 = δ34 = 0◦

δ̃12 π sin θ̃12

cos θ̃12 θ̃12 [0, π2 ] θ̃12

δ̃12 θ̃12 [0, π2 ] π

Fig. 1.    (color online) The values of , , , and  with respect to neutrino energy. In this figure, we assume  eV ,
, ,  [56],  [57] , and . The solid and dashed lines represent the effective

angles  and  phases,  respectively.  The  shift  of  with  a  factor  of  is  caused  by  the  transmission  of  the  sign  "-"  from  and
, where we set  within , in Eq. (18). In the right-hand plot, as the energy rises,  tends to be negative. At that point of

time, we shift its negative sign to the phase  to ensure that  is in the interval , resulting in a  shift.
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vor neutrino case.

∆m̃2
21

ACC ANC ≪ ∆m2
21≪ ∆m2

31
E≪ 100

∆m̃2
21 ∆m̃2

31
ACC ANC ≪ ∆m2

31
E≪ 1

In  general,  as  shown in Figs.  1 and 2, the  matter  ef-
fect  is  negligible  on  both  and  1-2  neutrino  mixing
when  ( )  (or  equivalently

 MeV).  When  the  energy  increases,  it  is  clear
that the 1-2 neutrino mixing submatrix is affected by mat-
ter considerably more than the other submatrices. So does

.  However,  and  1-3  mixing  neutrino  mixing
still  hold  stable  when  ( )  (or equival-
ently  GeV).  Furthermore,  mixing  between  active
and sterile neutrinos has little impact. From a mathemat-
ical point of view, in the function of rotation angles yield-
ing

tanθ =
2A

γ−α±
√

(γ−α)2+4A2
,

θ14 θ24 θ34

γ−α ∆m2
41

∆m2
41(> 0.1 eV2)

A is  proportional  to  the  values  of , ,  and ,  and
 is inversely proportional to . Hence, the small-

ness  of  these  mixing  angles  and  large 
can  effectively  suppress  the  values  of  the  corresponding
rotation  angles  to  a  negligible  level  in  the  submatrices.
Therefore,  after  the  rotations  on  the  1-2  and  2-3  (1-3)
submatrices  of  the  neutrino  Hamiltonian,  the  effective
Hamiltonian matrix is approximately diagonal.

The  discussion  above  pertains  to  the  general  feature
of  our  derived  oscillation  formula.  In  some  particular
cases, the oscillation formula can be simplified:

δ13 = δ24 = δ34 = 0/π● No CP violations ( )

δ̃12

θ̃12 = θ12+ω1

θ̃13 = θ13+ω2 δ̃13 = δ13

In such cases, the neutrino mixing matrix is real and it
is  not  necessary  to  introduce  an  extra  phase  in  Eq.
(17)  for  the  matrix  diagonalization.  Thus,  this  reverts  to
the  original  Jacobi  method.  The  neutrino  oscillation
forms are identical to those in vacuum with ,

, and .
θ14 = θ24 =●  No  active-sterile  neutrino  mixing  (

θ34 = δ24 = δ34 = 0)
The analytical approximations will reduce to 3-flavor

neutrino oscillations.

4    Accuracy of the approximations

Ũ ∆m̃2
i j

All the  neutrino  oscillation  probabilities  can  be  ex-
pressed  with  Eq.  (9)  based  on  the  effective  and 
calculated  in  section  3.2.  In  this  section,  we  first  check
the accuracy of these approximations. Then, we highlight
the  accuracy  of  this  work  for  two  specific  long-baseline
accelerator  neutrino  experiments,  namely  the  Tokai  to
Hyper-Kamiokande  (T2HK)  and  Deep  Underground
Neutrino Experiment (DUNE).

4.1    General accuracy

∆Pνα→νβ

α β

The accuracy  of  our  approximations  can  be  quanti-
fied with , which is defined as the numerical dif-
ference  between  the  approximations  and  exact  solutions
for neutrinos with  flavor type converting to  type.

∆Pνα→νβ =
∣∣∣∣PExact
να→νβ −PApproximate

να→νβ

∣∣∣∣ . (27)

νe→ νe νµ→ νµ
νµ→ νe νe→ νµ

20◦

90◦

To  check  the  validity  of  our  approximations,
Figure 3 presents the results, as a function of neutrino en-
ergy and  travel  baseline,  on  four  major  neutrino  oscilla-
tion  channels,  including ,  disappearance,
and  and  appearance. The input values for
the oscillation parameters are listed in Table 1. Here, we
conservatively assume the unknown sterile neutrino asso-
ciated mixing angles  to  be as  large as  and unknown
phases to be maximal, i.e, .

20 10−3 10−4
As shown in Fig.  3, when the  neutrino energy is  be-

low  GeV, the accuracy is better than  and  for
the neutrino  disappearance  and  appearance  channels,  re-

∆m̃2
i1(i = 2,3,4) ∆m2

41 = 0.1 2 sin2 θ14 = 0.019

sin2 θ24 = 0.015 sin2 θ34 = 0 δ13 = 218◦ δ24 = δ34 = 0◦
Fig.  2.     (color  online)  The  values  of  with  respect  to  neutrino  energy,  assuming  eV , ,

,  [56],  [57] , and . The solid and dashed lines represent NH and IH, respectively.
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spectively. The accuracy will  improve by one or two or-
ders when the neutrino energy is  smaller.  The numerical
accuracy  of  our  approximations  was  relatively  good  for
most of  the  long  baseline  neutrino  oscillation  experi-
ments, as the difference is approximately one order smal-
ler  than  the  oscillation  probabilities.  The  inaccuracy  of
our approach can be mainly attributed to the limited rota-

tion iterations that were applied. One approach to further
improve the accuracy is to apply some corrections based
on  the  perturbative  method  after  matrix  rotation,  as
shown in Ref. [58]. Naturally, this will increase the com-
plexity of  the  analytical  expression.  Our  current  approx-
imations  achieve  a  good  balance  between  the  numerical
accuracy and  simplicity  of  the  approximation  expres-

δ13Table 1.    Input values for the oscillation parameters. Those associated with active neutrinos except  are derived from recent results [57]. The sterile
neutrino values are conservatively using relatively large values.

active sterile

NH IH

sin2 θ12 0.307 θ14 20◦

sin2 θ13 0.0212 θ24 20◦

sin2 θ23 0.417 0.421 θ34 20◦

∆m2
21 7.53×10−5 2 eV ∆m2

41
20.1 eV

∆m2
32 2.51×10−3 2 eV −2.56×10−3 2 eV δ24 π/2

δ13 π/2 δ34 π/2

∆Pνα→νβFig. 3.    (color online) The accuracies of the approximations in different oscillation channels with .
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20◦ ∆m2
41 0.1

sions. It should be noted that the exact accuracy of the ap-
proximations depends on the exact neutrino mixing para-
meter inputs. Once the sterile neutrino mixing angles are
smaller than  and  is larger than  eV2, the ac-
curacy  of  our  expressions  will  further  impove  compared
with the current evaluation.

4.2    T2HK and DUNE

∼

As shown in Eqs. (7) and (8), the matter effect is pro-
portional to the neutrino beam energy and its propagation
distance. Hence, the matter effect can significantly modi-
fy the neutrino oscillation features for long-baseline neut-
rino  oscillation  experiments,  such  as  T2HK  and  DUNE.
These  experiments  have  relatively  high  energy  beams  at

GeV and  baselines  of  hundreds  and  thousands  of  kilo-
meters.  Here,  we  use  them  as  examples  to  demonstrate

3+1-neutrino  oscillation  and  check  the  accuracy  of  our
approximations.

1300

θ23

DUNE is a next generation on-axis long-baseline ac-
celerator neutrino  experiment.  It  proposes  the  use  of  Li-
quid  Argon  (LAr)  detectors  located  deep  underground,

 km  away  from  the  beam  source.  Its  main  physics
goals are to solve three challenging issues in the neutrino
sector,  namely  neutrino  mass  hierarchy, CP asymmetry,
and  the  octant  of .  It  can  search  for  electron  and  tau
neutrino  (anti-neutrino)  appearance  and  muon  neutrino
(antineutrino) disappearance channels from both the neut-
rino and antineutrino beam modes.

295 2.5◦

T2HK  is  a  proposed  long-baseline  experiment  that
has  the  primary  objective  of  measuring CP asymmetry.
The  far  detector  is  km away and  off-axis  from
the J-PARC beam in  Japan,  when using the  water  Cher-

Fig.  4.     (color  online)  The  left-hand plots  correspond to  the  appearance  channels,  and the  right-hand plots  show the  disappearance
channels in the case of NH. The appendant plots show the accuracies of their corresponding channels.

 

Chinese Physics C    Vol. 44, No. 10 (2020) 103001

103001-9



enkov detector.

∆m2
41 = 0.1 2

Pνµ→νe
Pν̄µ→ν̄e

10−5

Considering  the  existence  of  sterile  neutrinos  with  a
relatively  large  mass-squared  difference eV ,
the high-frequency oscillation feature is clearly shown in
the  muon  neutrino  disappearance  and  electron  neutrino
appearance modes in Fig.  4.  Given the matter  effect  and
CP-violation phases,  the  electron  neutrino  and  antineut-
rino  appearance  probabilities  and  are  very
different.  Compared  with  the  numerical  calculations,  the
accuracy of the analytical approximations can reach 
in the case of Table 1 for neutrinos and antineutrinos, re-
spectively, for  the  appearance  mode.  For  the  disappear-

Pνµ→νµ Pν̄µ→ν̄µ
10−4
ance mode, the accuracies of  and  can reach

 in the case of Table 1.
In Fig. 5, we compare the accuracy of this work with

that of two previous studies for the T2HK and DUNE ex-
periments. Our work clearly shows about an order of bet-
ter accuracy compared with the other two [50, 60], espe-
cially for the DUNE experiment. To achieve a higher ac-
curacy of  the  approximation,  we  can  continue  introdu-
cing a perturbation correction later on the effective neut-
rino mixing and mass-squared differences,  as  adopted in
[58].  However,  given  that  the  accuracy  of  this  work  is
already substantially good for current and near-future ex-
periments, we do not believe this is necessary. 

 
Pν̄µ→ν̄e

δ13 = 90◦ δ14 = 90◦
Fig. 5.    (color online) Comparison of  between DUNE and T2HK in the case of NH with the values listed in Table 1 except the

phases. We adopt  and  according to the convention used by N. Klop et al. [50]. Similar to the examples shown in
their paper, we combine this with a Neutral Current NSI solution [59] to produce the oscillation probability.

 

5    Summary

The  search  for  light  sterile  neutrinos  is  an  area  of
great  interest  in  the  neutrino  field.  Many  long  baseline
neutrino experiments continue to actively search for light
sterile  neutrinos  in  various  mass  regions.  Both  CC  and
NC  induced  matter  effects  are  quite  important  for  those
experiments.  The  analytical  approximations  of  neutrino
oscillation are  preferred  in  experimental  neutrino  re-
search because they save considerable time and are help-
ful for understanding the neutrino oscillation features.

In this manuscript, we introduced a Jacobi-like meth-
od  to  derive  simplified  analytical  expressions  with  good

Ũ
∆m̃2

i j(i, j = 1,2,3,4)

accuracy for  neutrino  oscillation  in  matter.  Compact  ex-
pressions of the effective mixing matrix  and effective
mass-squared  differences  were
presented.  The  accuracy  of  this  work  is  sufficient  for  a
majority of long baseline neutrino experiments.

In addition, the Jacobi-like method is a general meth-
od  for  diagonalizing  complex  Hermitian  matrices.  It  can
also  be  extended  to  other  physics  topics,  such  as  3  (act-
ive)  +  N  (sterile)-neutrino  mixing  and  neutrino  non-
standard interactions.
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with the editing of this manuscript.
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Appendix A: Parameterization of the mixing matrix in vacuum

4×4

In  the  3  +  1  framework,  neutrino  mixing  can  be  written  as  a
 matrix (5). 6 rotation angles with 3 Dirac phases1) are found in

this  matrix.  All  the  elements  of  the  mixing  matrix  are  listed  in
4×4

Table A1. Indeed, if we set the angles and Dirac phases introduced
by  sterile  neutrinos  to  0,  the  matrix  will  reduce  to  3-flavor
neutrino mixing.

Appendix B: Jacobi-like method

4×4

The  matter  effect  for  the  3+1  framework  is  more  difficult  to
calculate  than  for  the  3  neutrino  framework  because  additional
parameters  are  involved  in  the  neutrino  Hamiltonian,  which  is  a

 complex Hermitian matrix and difficult to diagonalize. In this
work,  we  adopt  a  rotation  technique  known  as  the  Jacobi-like
method  to  solve  the  diagonalization  for  complex  Hermitian
matrices. In the following subsections, we provide all the technical
details for the neutrino and antineutrino cases separately.

B.1    Neutrino case

In this subsection, we show the diagonalization of the effective
Hamiltonian with the matter effect and simplify the expressions of
the effective mixing and mass-squared differences for the neutrino case.

B.1.1    Diagonalization process

H12 H21

∆m2
21

In the case of neutrinos, we find that the absolute values of the
elements  and  in Eq. (10) are the relatively largest off-diag-
onal values because of the smallness of . Hence, we should di-

agonalize the 1-2 submatrix first.

First rotation: The rotation matrix can be written as

R1 = R12(ω1,ϕ1) ≡


cω1 sω1 e−iϕ1 0 0

−sω1 eiϕ1 cω1 0 0
0 0 1 0
0 0 0 1

 .
(cω1 = cosω1 , sω1 = sinω1) (B1)

ω1We employ the Jacobi-like method to derive  yielding

tanω1 =
2Aω1

(H22 −H11)+
√

(H22 −H11)2 +4A2
ω1

,

(0 < ω1 <
π

2
− θ12) (B2)

Aω1 = |H12 | ϕ1 = Arg(sign(Aω1 )H∗12) Aω1

H12 R12(ω1,ϕ1)

with  and .  Here  is the  amp-

litude of . After rotation by , we rewrite the Hamilto-

nian in the new representation as

 

Table A1.    Elements of the 4-flavor mixing matrix.

α Uαi -

e

Ue1 c12c13c14

Ue2 c13c14 s12

Ue3 c14 s13e−iδ13

Ue4 s14

µ

Uµ1 −s12c23c24 − c12(s13c24 s23eiδ13 + c13 s14 s24e−iδ24 )

Uµ2 c12c23c24 − s12(s13c24 s23eiδ13 + c13 s14 s24e−iδ24 )

Uµ3 c13c24 s23 − s13 s14 s24e−iδ13 e−iδ24

Uµ4 c14 s24e−iδ24

τ

Uτ1 c12[s13(s23 s24 s34eiδ24 e−iδ34 − c23c34)eiδ13 − c13c24 s14 s34e−iδ34 ]+ s12(c34 s23 + c23 s24 s34eiδ24 e−iδ34 )

Uτ2 s12[s13(s23 s24 s34eiδ24 e−iδ34 − c23c34)eiδ13 − c13c24 s14 s34e−iδ34 ]− c12(c34 s23 + c23 s24 s34e−iδ34 )

Uτ3 c13(c23c34 − s23 s24 s34eiδ24 e−iδ34 )− s13c24 s14 s34e−iδ13 e−iδ34

Uτ4 c14c24 s34e−iδ34

s

Us1 c12[s13(c34 s23 s24eiδ24 + c23 s34eiδ34 )eiδ13 − c13c24c34 s14]+ s12(c23c34 s24eiδ24 − s23 s34eiδ34 )

Us2 s12[s13(c34 s23 s24eiδ24 + c23 s34eiδ34 )eiδ13 − c13c24c34 s14]+ c12(s23 s34eiδ34 − c23c34 s24eiδ24 )

Us3 −c13(c34 s23 s24eiδ24 + c23 s34eiδ34 )− c24c34 s14e−iδ13

Us4 c14c24c34

Chinese Physics C    Vol. 44, No. 10 (2020) 103001
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H′ = R†12(ω1,ϕ1)HR12(ω1,ϕ1) =
1

2E


λ− 0 H′13 H′14

0 λ+ H′23 H′24

H′31 H′32 H33 H34

H′41 H′42 H43 H44

 , (B3)

with the eigenvalues of the 1-2 submatrix

λ− =
H11 +H22 tan2ω1 −2Aω1 tanω1

1+ tan2ω1
,

λ+ =
H11 tan2ω1 +H22 +2Aω1 tanω1

1+ tan2ω1
. (B4)

H′The corresponding off-diagonal terms in  are
H′13 = H′∗31 = cω1 H13 − sω1 H23e−iϕ1 , (B5)

H′23 = H′∗32 = cω1 H23 + sω1 H13eiϕ1 , (B6)

H′14 = H′∗41 = cω1 H14 − sω1 H24e−iϕ1 , (B7)

H′24 = H′∗42 = cω1 H24 + sω1 H14eiϕ1 . (B8)

After  the  first  rotation,  we  can  diagonalize  the  2-3  submatrix
later  because  it  has  a  relatively  large  off-diagonal  element  and  is
useful for simplifying the effective matrix U using Eq. (B22).

Second rotation: The second rotation matrix yields

R2 = R23(ω2,ϕ2) ≡


1 0 0 0
0 cω2 sω2 e−iϕ2 0
0 −sω2 eiϕ2 cω2 0
0 0 0 1

 .
(cω2 = cosω2, sω2 = sinω2) (B9)

ω2The diagonal angle  is compatible with

tanω2 =
2Aω2

(H33 −λ+)±
√

(H33 −λ+)2 +4A2
ω2

, (B10)

(0 < ω2 <
π
2 − θ13)

(0 > ω2 > −θ13) Aω2 H23

Aω2 = |H′23 |
ϕ2 = Arg(sign(Aω2 )H′∗23)

where the upper sign is for NH , and the lower sign
is  for  IH .  is  the  amplitude  of  in  Eq.  (B3)
yielding .  The  additional  complex  factor  is  given  by

. After two rotations, we obtain

H′′ = R†23(ω2,ϕ2)H′R23(ω2,ϕ2) =
1

2E


λ− H′′12 H′′13 H′14

H′′21 λ′− 0 H′′24

H′′31 0 λ′+ H′′34

H′41 H′′42 H′′43 H44

 , (B11)

λ′− λ′+where the diagonal terms  and  obey

λ′− =
λ+ +H33 tan2ω2 −2Aω2 tanω2

1+ tan2ω2
,

λ′+ =
λ+ tan2ω2 +H33 +2Aω2 tanω2

1+ tan2ω2
. (B12)

The corresponding off-diagonal elements obey
H′′12 = H′′∗21 = −sω2H′13eiϕ2 , (B13)

H′′13 = H′′∗31 = cω2H′13 , (B14)

H′′24 = H′′∗42 = cω2H′24 − sω2H34e−iϕ2 , (B15)

H′′34 = H′′∗43 = cω2H34 + sω2H′24eiϕ2 . (B16)

After two continuous rotations, the matrix is approximately di-
agonalized.  We  can  evaluate  the  matrix  diagonalization  using  the
ratio defined as

Ri j ≡
∣∣∣∣∣∣∣ H′′i j

H′′j j −H′′ii

∣∣∣∣∣∣∣ (i < j), (B17)

H′′

0.1
i− j H′′ 5◦

H′′

which  compares  the  relative  size  of  the  off-diagonal  elements  in
 with  the  difference  between  the  two  corresponding  diagonal

terms. Figure B1 shows the ratios for various submatrices with re-
spect to the neutrino energy. All of these are considerably smaller
than , which means that the corresponding rotation angles on the

 submatrix of  will be considerably smaller than  based on
section  3.1.  Thus,  the  matrix can  be  treated  as  an  approxim-
ately diagonalized matrix in our application range.

After diagonalization, the effective neutrino mixing matrix and
mass-squared differences are given by

Ũ ≈ UR12(ω1,ϕ1)R23(ω2,ϕ2)
= R34R24R14R23R13R12︸                     ︷︷                     ︸

U

R12(ω1,ϕ1)R23(ω2,ϕ2) , (B18a)

∆m̃2
21 ≈ λ

′
− −λ− , ∆m̃2

31 ≈ λ
′
+ −λ− , ∆m̃2

41 ≈ H44 −λ− . (B18b)

δ13 = δ24 = δ34 = 0 ϕ1 ϕ2

Ũ

Ũ

If ,  and  will  be  0.  To  establish  the
beauty  of  the  mathematical  form  (it  is  convenient  for  to com-
pletely  have  the  same  form with U)  and  a  good  understanding  of
the matter effect on the oscillation parameters, we continue to sim-
plify the effective mixing matrix  below.

B.1.2    Simplification

R12(θ12,0) R12(ω1,ϕ1)
First, we can observe that there are two 1-2 submatrix rotations

 and  next to each other in Eq. (B18b).  There-
fore, we combine them into one submatrix. The corresponding pro-
cesses are given by

R12(θ12,0)R12(ω1,ϕ1)

=


c12 s12 0 0
−s12 c12 0 0

0 0 1 0
0 0 0 1




cω1 sω1 e−iϕ1 0 0

−sω1 eiϕ1 cω1 0 0
0 0 1 0
0 0 0 1



=


c̃12 s̃12e−ĩδ12 0 0

−s̃12eĩδ12 s̃12 0 0
0 0 1 0
0 0 0 1



eiΘ12 0 0 0

0 e−iΘ12 0 0
0 0 1 0
0 0 0 1


=R12 (̃θ12, δ̃12)D12(eiΘ12 ,e−iΘ12 ,1,1) = R̃12. (B19)

 

H′′
Fig. B1.     (color  online)  The  values  of  the  off-diagonal  ele-

ments in . The solid and dashed lines correspond to NH
and  IH,  respectively.  The  input  oscillation  parameters  are
listed in Table 1.
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Then, we obtain
Ũ ≈ R34R24R14R23R13R̃12R23(ω2,ϕ2) . (B20)

R̃12

θ̃12 δ̃12

Θ12

We can observe that there is a new  consisting of a rotation
matrix with  and  and one diagonal unitary matrix with phase

. These new items yield

s̃12 = sin θ̃12 =
|c12 tanω1eiϕ1 + s12 |√

1+ tan2ω1
,

c̃12 = cos θ̃12 =
|c12 − s12 tanω1eiϕ1 |√

1+ tan2ω1
, (B21a)

eĩδ12 =
(c12 tanω1eiϕ1 + s12)(c12 − s12 tanω1e−iϕ1 )

cos θ̃12 sin θ̃12(1+ tan2ω1)
, (B21b)

eiΘ12 =
c12 − s12 tanω1eϕ1

cos θ̃12
√

1+ tan2ω1
. (B21c)

θ̃12 [0, π2 ] θ12Here, we set the same limit on  in  with .

R̃12R23(ω2,ϕ2)
To maintain  a  similar  oscillation expression to  the  extent  pos-

sible as its form in vacuum, we replace  with
R̃12R23(ω2,ϕ2) ≈ R13(ω2,ϕ2)R̃12 , (B22)

R̃12R23(ω2,ϕ2)where  can be expressed as

R̃12R23(ω2,ϕ2) =


c̃12eiΘ12 cω2 s̃12e−i(̃δ12+Θ12) s̃12 sω2 e−i(̃δ12+Θ12+ϕ2) 0

−s̃12ei(̃δ12+Θ12) c̃12cω2 e−iΘ12 c̃12 sω2 e−i(Θ12+ϕ2) 0

0 −sω2 eiϕ2 cω2 0
0 0 0 1

 , (B23)

R13(ω2,ϕ2)R̃12and  yields

R13(ω2,ϕ2)R̃12 =


c̃12cω2 eiΘ12 cω2 s̃12e−i(̃δ12+Θ12) sω2 e−iϕ2 0

−s̃12ei(̃δ12+Θ12) c̃12e−iΘ12 0 0

−c̃12 sω2 ei(Θ12+ϕ2) −s̃12 sω2 ei(ϕ2−Θ12−δ̃12) cω2 0
0 0 0 1


. (B24)

R̃12R23(ω2,ϕ2) R13(ω2,ϕ2)R̃12

To check the validity of Eq. (B22), we compare all the corres-
ponding  elements  between  and .  As
shown in Fig.  B2,  the  differences  between those two matrices  are
quite small in our application range.

Subsequently, we obtain

Ũ ≈ R34R24R14R23R13R̃12R23(ω2,ϕ2)

= R34R24R14R23R13R13(ω2,ϕ2)R̃12 , (B25)

where

R13(θ13,0)R13(ω2,ϕ2)

=


c13 0 s13e−iδ13 0
0 1 0 0

−s13eiδ13 0 c13 0
0 0 0 1




cω2 0 sω2 e−iϕ2 0
0 1 0 0

−sω2 eiϕ2 0 cω2 0
0 0 0 1



=


c̃13 0 s̃13e−ĩδ13 0
0 1 0 0

−s̃13eĩδ13 0 c̃13 0
0 0 0 1



eiΘ13 0 0 0

0 1 0 0

0 0 e−iΘ13 0
0 0 0 1


=R13 (̃θ13, δ̃13)D13(eiΘ13 ,1,e−iΘ13 ,1). (B26)

The items above can be written as

s̃13 = sin θ̃13 =
|c13 tanω2eiϕ2 + s13eiδ13 |√

1+ tan2ω2
,

c̃13 = cos θ̃13 =
|c13 − s13 tanω2ei(δ13−ϕ2) |√

1+ tan2ω2
, (B27a)

eĩδ13 =
(c13 tanω2eiϕ2 + s13eiδ13 )(c13 − s13 tanω2ei(δ13−ϕ2))

cos θ̃13 sin θ̃13(1+ tan2ω2)
, (B27b)

eiΘ13 =
c13 − s13 tanω2e−i(δ13−ϕ2)

cos θ̃13
√

1+ tan2ω2
. (B27c)

θ̃13 [0, π2 ]Equally, we set the limit on  within . We find

Ũ ≈ R34R24R14R23R13 (̃θ13, δ̃13)D13R̃12 . (B28)

D13R̃12For the same purpose of simplification, we replace  by
D13(eiΘ13 ,1,e−iΘ13 ,1)R̃12 ≈ R̃12D23(1,eiΘ13 ,e−iΘ13 ,1) , (B29)

where

D13(eiΘ13 ,1,e−iΘ13 ,1)R̃12 =
c̃12ei(Θ12+Θ13) s̃12ei(Θ13−δ̃12−Θ12) 0 0

−s̃12ei(̃δ12+Θ12) c̃12e−iΘ12 0 0

0 0 e−iΘ13 0
0 0 0 1

 (B30)

and

R̃12D23(1,eiΘ13 ,e−iΘ13 ,1) =
c̃12eiΘ12 s̃12ei(Θ13−δ̃12−Θ12) 0 0

−s̃12ei(̃δ12+Θ12) c̃12ei(Θ13−Θ12) 0 0

0 0 e−Θ13 0
0 0 0 1

 . (B31)

D13(eiΘ13 ,

1,e−iΘ13 ,1)R̃12 R̃12D23(1,eiΘ13 ,e−iΘ13 ,1)

Figure  B3 quantifies  the  difference  between 
 and . Such an operation is per-

missible due to the small difference.
Then, we obtain

Ũ ≈ R34R24R14R23R13 (̃θ13, δ̃13)R12 (̃θ12, δ̃12)D123 , (B32)

with
D123 = D123(eiΘ12 ,ei(Θ13−Θ12),e−iΘ13 ,1) . (B33)

D123(eiΘ12 ,ei(Θ13−Θ12),e−iΘ13 ,1)Here,  can be cancelled in the neutrino
oscillation  paradigm like  the  Majorana  phases.  Finally,  we  obtain
the last expression for the neutrino mixing matrix as

Ũ ≈ R34R24R14R23R13 (̃θ13, δ̃13)R12 (̃θ12, δ̃12) , (B34)

which has  almost  the  same form as  the standard mixing matrix U
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δ̃12 δ13 = δ24 = δ34 = 0

θ̃12 = θ12 +ω1 θ̃13 = θ13 +ω2 δ̃13 = δ13

δ̃12 = Θ12 = Θ13 = 0

except for an additional . We conclude that if ,
we  can  obtain , , ,  and

. Meanwhile, the effective Hamiltonian becomes
a  real  Hermitian  matrix.  In  that  case,  our  method  reduces  to  the
Jacobi  method,  which  is  a  way  to  address  the  diagonalization  of
real Hermitian matrices.

B.2    Antineutrino case

In this subsection, we diagonalize the effective Hamiltonian in
matter  and  simplify  the  expressions  of  the  effective  mixing  and
mass-squared differences for the antineutrino case.

B.2.1    Diagonalization process
In  the  case  of  antineutrinos,  we  rotate  the  1-2  submatrix  first,

similar to the neutrino case.

First rotation: The rotation is given by

R1 = R12(θ,ϕ1) ≡


cω1 sω1 e−iϕ1 0 0

−sω1 eiϕ1 cω1 0 0
0 0 1 0
0 0 0 1

 ,
(cω1 = cosω1, sω1 = sinω1) (B35)

ω1where  is compatible with

tanω1 =
2Aω1

(H22 −H11)+
√

(H22 −H11)2 +4A2
ω1

,

(0 > ω1 > −θ12) (B36)

Aω1 = −|H12 |
ϕ1 = Arg(sign(Aω1 )H∗12)

with  and  the  additional  complex  factor
.  After  the  first  rotation,  we  obtain  the  new

effective Hamiltonian

H′ =R†12(ω1,ϕ1)HR12(ω1,ϕ1)

=
1

2E


λ− 0 H′13 H′14

0 λ+ H′23 H′24

H′31 H′32 H33 H34

H′41 H′42 H43 H44

 . (B37)

H′The eigenvalues of  in the 1-2 submatrix are

λ− =
H11 +H22 tan2ω1 −2Aω1 tanω1

1+ tan2ω1
,

λ+ =
H11 tan2ω1 +H22 +2Aω1 tanω1

1+ tan2ω1
. (B38)

H′The off-diagonal terms in  are
H′13 = H′∗31 = cω1 H13 − sω1 H23e−iϕ1 , (B39)

H′23 = H′∗32 = cω1 H23 + sω1 H13eiϕ1 , (B40)

H′14 = H′∗41 = cω1 H14 − sω1 H24e−iϕ1 , (B41)

H′24 = H′∗42 = cω1 H24 + sω1 H14eiϕ1 . (B42)

Second rotation: The rotation matrix is given by

R2 = R13(ω2,ϕ2) ≡


cω2 0 sω2 e−iϕ2 0
0 1 0 0

−sω2 eiϕ2 0 cω2 0
0 0 0 1

 .
(cω2 = cosω2 , sω2 = sinω2) (B43)

ω2The rotation angle  yields

tanω2 =
2Aω2

(H33 −λ−)±
√

(H33 −λ−)2 +4A2
ω2

, (B44)

(0 > ω2 > −θ13)

(0 < ω2 <
π
2 − θ13) Aω2 = −|H′13 |

ϕ2 = Arg(sign(Aω2 )H′∗13)

where the upper sign is for NH , and the lower sign
is  for  IH  with  and  a  corresponding
complex factor . After the two operations, we
obtain the new effective Hamiltonian in the new representation:

H′′ = R†13(ω2,ϕ2)H′R13(ω2,ϕ2)

=
1

2E


λ′− H′′12 0 H′′14

H′′21 λ+ H′′23 H′24

0 H′′32 λ′+ H′′34

H′′41 H′42 H′′43 H44

 , (B45)

with

 

R̃12R23(ω2, ϕ2)

R13(ω2,ϕ2)R̃12

Fig.  B2.     (color  online)  Differences  between  
and . The solid and dashed lines correspond to
NH  and  IH,  respectively.  The  input  oscillation  parameters
are listed in Table 1.

 

D13(eiΘ13 ,1,

e−iΘ13 ,1)R̃12 R̃12D23(1,eiΘ13 ,e−iΘ13 ,1)

Fig.  B3.     (color  online)  Differences  between 
 and .  The  solid  and

dashed lines correspond to NH and IH, respectively. The in-
put oscillation parameters are listed in Table 1.
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λ′− =
λ− +H33 tan2ω2 −2Aω2 tanω2

1+ tan2ω2
,

λ′+ =
λ− tan2ω2 +H33 +2Aω2 tanω2

1+ tan2ω2
. (B46)

H′′The residual off-diagonal terms in  are
H′′12 = H′′∗21 = −sω2H′32e−iϕ2 , (B47)

H′′23 = H′′∗32 = cω2H′23 , (B48)

H′′14 = H′′∗41 = cω2H′14 − sω2H34e−iϕ2 , (B49)

H′′34 = H′′∗43 = cω2H34 + sω2H′14eiϕ2 , (B50)

H′′

Ũ ∆m̃2
i1(i = 2,3,4)

Figure  B4 shows  that  the  off-diagonal  terms  of  are negli-
gible as a good approximation. So far, we have obtained the effect-
ive  mixing  matrix  and  effective  mass-squared .
Using the above rotations, we obtain

Ũ ≈ UR12(ω1,ϕ1)R23(ω2,ϕ2)
= R34R24R14R23R13R12︸                     ︷︷                     ︸

U

R12(ω1,ϕ1)R13(ω2,ϕ2) , (B51a)

∆m̃2
21 ≈ λ+ −λ

′
− , ∆m̃2

31 ≈ λ
′
+ −λ′− , ∆m̃2

41 ≈ H44 −λ′− . (B52b)

B.2.2    Simplification
R12(θ12,0)

R12(ω1,ϕ1)

Similar  to  the  neutrino  case,  we  combine  and
 into one submatrix below:

R12(θ12,0)R12(ω1,ϕ1)

=


c12 s12 0 0
−s12 c12 0 0

0 0 1 0
0 0 0 1




cω1 sω1 e−iϕ1 0 0

−sω1 eiϕ1 cω1 0 0
0 0 1 0
0 0 0 1



=


c̃12 s̃12e−ĩδ12 0 0

−s̃12eĩδ12 c̃12 0 0
0 0 1 0
0 0 0 1



eiΘ12 0 0 0

0 e−iΘ12 0 0
0 0 1 0
0 0 0 1


=R12 (̃θ12, δ̃12)D12(eiΘ12 ,e−iΘ12 ,1,1)

=R̃12 , (B53)

with

s̃12 = sin θ̃12 =
|c12 tanω1eiϕ1 + s12 |√

1+ tan2ω1
,

c̃12 = cos θ̃12 =
|c12 − s12 tanω1eiϕ1 |√

1+ tan2ω1
, (B54a)

eĩδ12 =
(c12 tanω1eiϕ1 + s12)(c12 − s12 tanω1e−iϕ1 )

cos θ̃12 sin θ̃12(1+ tan2ω1)
, (B54b)

eiΘ12 =
c12 − s12 tanω1eϕ1

cos θ̃12
√

1+ tan2ω1
. (B54c)

Therefore, we obtain
Ũ ≈ R34R24R14R23R13R̃12R13(ω2,ϕ2) . (B55)

θ̃12 [0, π2 ]Here, we set a constraint on  within .
R̃12 R13(ω2,ϕ2)For further simplification, we exchange  and  by

R̃12R13(ω2,ϕ2) ≈ R13(ω2,ϕ2)R̃12, (B56)

where

R̃12R13(ω2,ϕ2) =
c̃12cω2 eiΘ12 s̃12e−i(̃δ12+Θ12) c̃12 sω2 ei(Θ12−ϕ2) 0

−cω2 s̃12ei(̃δ12+Θ12) c̃12e−iΘ12 −s̃12 sω2 ei(̃δ12+Θ12−ϕ2) 0

−sω2 eiϕ2 0 cω2 0
0 0 0 1


, (B57)

R13(ω2,ϕ2)R̃12and  yields

R13(ω2,ϕ2)R̃12 =
c̃12cω2 eiΘ12 cω2 s̃12e−i(̃δ12+Θ12) sω2 e−iϕ2 0

−s̃12ei(̃δ12+Θ12) c̃12e−iΘ12 0 0

−c̃12 sω2 ei(Θ12+ϕ2) −s̃12 sω2 ei(ϕ2−Θ12−δ̃12) cω2 0
0 0 0 1


. (B58)

R̃12R13(ω2,ϕ2) R13(ω2,ϕ2)R̃12

Figure B5 quantifies the differences between all the elements of
 and .  It  shows  that  the  differences  are

allowable for exchange in the application range of our approxima-

 

H′′
Fig. B4.     (color  online)  The  values  of  the  off-diagonal  ele-

ments in . The solid and dashed lines correspond to NH
and  IH,  respectively.  The  input  oscillation  parameters  are
listed in Table 1.

 

R̃12R23(ω2, ϕ2)

R13(ω2,ϕ2)R̃12

Fig.  B5.     (color  online)  Differences  between  
and . The solid and dashed lines correspond to
NH  and  IH,  respectively.  The  input  oscillation  parameters
are listed in Table 1.
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tion.
Subsequently, we obtain the following approximate simplifica-

tion over different E ranges:

Ũ ≈ R34R24R14R13R13R̃12R13(ω2,ϕ2)

= R34R24R14R13R13R13(ω2,ϕ2)R̃12. (B59)

R13(θ13,0)R13(ω2,ϕ2)It can be observed that  can be simplified as

R13(θ13,0)R13(ω2,ϕ2)

=


c13 0 s13e−iδ13 0
0 1 0 0

−s13eiδ13 0 c13 0
0 0 0 1




cω2 0 sω2 e−iϕ2 0
0 1 0 0

−sω2 eiϕ2 0 cω2 0
0 0 0 1



=


c̃13 0 s̃13e−ĩδ13 0
0 1 0 0

−s̃13eĩδ13 0 c̃13 0
0 0 0 1



eiΘ13 0 0 0

0 1 0 0

0 0 e−iΘ13 0
0 0 0 1


=R13 (̃θ13, δ̃13)D13(eiΘ13 ,1,e−iΘ13 ,1) , (B60)

with

s̃13 = sin θ̃13 =
|c13 tanω2eiϕ2 + s13eiδ13 |√

1+ tan2ω2
,

c̃13 = cos θ̃13 =
|c13 − s13 tanω2ei(δ13−ϕ2) |√

1+ tan2ω2
, (B61a)

eĩδ13 =
(c13 tanω2eiϕ2 + s13eiδ13 )(c13 − s13 tanω2ei(δ13−ϕ2))

cos θ̃13 sin θ̃13(1+ tan2ω2)
, (B61b)

eiΘ13 =
c13 − s13 tanω2e−i(δ13−ϕ2)

cos θ̃13
√

1+ tan2ω2
. (B61c)

θ̃13 [0, π2 ]We also set a bound on  within . Subsequently, we ob-
tain

Ũ ≈ R34R24R14R13R13 (̃θ13, δ̃13)D13R̃12 . (B62)

D13(eiΘ13 ,1,e−iΘ13 ,1) R̃12

Similar to the approach in Eq. (85), we would like to exchange
 and  using

D13(eiΘ13 ,1,e−iΘ13 ,1)R̃12 ≈ R̃12D13(eiΘ13 ,1,e−iΘ13 ,1) , (B63)

where

D13(eiΘ13 ,1,e−iΘ13 ,1)R̃12 =


c̃12ei(Θ12+Θ13) s̃12ei(Θ13−δ̃12−Θ12) 0 0

−s̃12ei(̃δ12+Θ12) c̃12e−iΘ12 0 0

0 0 e−iΘ13 0

0 0 0 1


(B64)

and

R̃12D13(eiΘ13 ,1,e−iΘ13 ,1) =


c̃12ei(Θ12+Θ13) s̃12e−i(̃δ12+Θ12) 0 0

−s̃12ei(̃δ12+Θ12+Θ13) c̃12e−iΘ12 0 0

0 0 e−iΘ13 0

0 0 0 1


. (B65)

D13(eiΘ13 ,1,e−iΘ13 ,1)R̃12 R̃12D13(eiΘ13 ,1,e−iΘ13 ,1)

Figure B6 shows the quantification of the negligible difference

between  and . Again,

it can be observed that the differences are quite small.
Consequently, the effective mixing matrix can be written as

Ũ ≈ R34R24R14R13R13 (̃θ13, δ̃13)R12 (̃θ12, δ̃12)D123 (B66)

with
D123 = D123(ei(Θ12+Θ13),e−iΘ12 ,e−iΘ13 ,1) . (B67)

D123(ei(Θ12+Θ13),e−iΘ12 ,e−iΘ13 ,1)

Ũ

δ̃12 Ũ

Similarly,  here  can be cancelled like
the Majorana  phases  when  neutrinos  oscillate.  Eventually,  the  ef-
fective mixing matrix  is  identical  to  the vacuum case U except
for an additional .  can be written as

Ũ ≈ R34R24R14R13R13 (̃θ13, δ̃13)R12 (̃θ12, δ̃12) . (B68)

θ̃12 = θ12 +ω1 θ̃13 = θ13 +ω2 δ̃13 = δ13

δ̃12 = Θ12 = Θ13 = 0 δ13 = δ24 = δ34 = 0

Similarly,  we  conclude  that , , ,
and  when . It is now much easi-
er to diagonalize the effective Hamiltonian because it is a real Her-
mitian matrix. For real matrices, the Jacobi-like method reduces to
the Jacobi method.

B.3    Effective mixing matrix for 3+1 flavor neutrino in matter

ŨIn this subsection, we summarize the effective mixing matrix 
for both the neutrino and antineutrino cases based on the results of
B.1 and B.2 in Table B1. Using the neutrino oscillation probability
functions in  Eq.  (9)  and the elements  in Table  B1,  every neutrino
oscillation probability is available.

 

D13(eiΘ13 ,1,

e−iΘ13 ,1)R̃12 R̃12D13(eiΘ13 ,1,e−iΘ13 ,1)

Fig.  B6.     (color  online)  Differences  between 
 and .  The  solid  and

dashed lines correspond to NH and IH, respectively. The in-
put oscillation parameters are listed in Table 1.
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Table B1.    The elements of the effective mixing matrix for the 3+1-neutrino case in matter based on the results from section B.1 and B.2. If the sterile
parameters are set to zero, this mixing will reduce to the effective mixing matrix for 3-flavor neutrinos with the matter effect.

α Ũαi -

e

Ũe1 c̃12c̃13c14

Ũe2 c̃13c14 s̃12e−ĩδ12

Ũe3 c14 s̃13e−ĩδ13

Ũe4 s14

µ

Ũµ1 −s̃12c23c24eĩδ12 − c̃12(s̃13c24 s23eĩδ13 + c̃13 s14 s24e−iδ24 )

Ũµ2 c̃12c23c24 − s̃12(s̃13c24 s23eĩδ13 + c̃13 s14 s24e−iδ24 )e−ĩδ12

Ũµ3 c̃13c24 s23 − s̃13 s14 s24e−ĩδ13 e−iδ24

Ũµ4 c14 s24e−iδ24

τ

Ũτ1 c̃12[s̃13(s23 s24 s34eiδ24 e−iδ34 − c23c34)eĩδ13 − c̃13c24 s14 s34e−iδ34 ]s̃12(c34 s23 + c23 s24 s34eiδ24 e−iδ34 )eĩδ12

Ũτ2 s̃12[s̃13(s23 s24 s34eiδ24 e−iδ34 − c23c34)eĩδ13 − c̃13c24 s14 s34e−iδ34 ]e−ĩδ12 − c̃12(c34 s23 + c23 s24 s34eiδ24 e−iδ34 )

Ũτ3 c̃13(c23c34 − s23 s24 s34eiδ24 e−iδ34 )− s̃13c24 s14 s34e−ĩδ13 e−iδ34

Ũτ4 c14c24 s34e−iδ34

s

Ũs1 c̃12[s̃13(c34 s23 s24eiδ24 + c23 s34eiδ34 )eĩδ13 − c̃13c24c34 s14]+ s̃12(c23c34 s24eiδ24 − s23 s34eiδ34 )eĩδ12

Ũs2 s̃12[s̃13(c34 s23 s24eiδ24 + c23 s34eiδ34 )eĩδ13 − c̃13c24c34 s14]e−ĩδ12 + c̃12(s23 s34eiδ34 − c23c34 s24eiδ24 )

Ũs3 −c̃13(c34 s23 s24eiδ24 + c23 s34eiδ34 )− c24c34 s14e−ĩδ13

Ũs4 c14c24c34
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