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Abstract: The coupled AAnn—Z~ pnn system was studied to investigate whether the inclusion of channel coupling is

able to bind the AAnn system. We use a separable potential three-body model of the coupled AAnn— =" pnn system

and a variational four-body calculation with realistic interactions. Our results exclude the possibility of a AAnn

bound state by a large margin. Instead, we found a £~ ¢ quasibound state above the AAnn threshold.
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1 Introduction

The possible existence of bound states of two neut-
rons and two A hyperons is a controversial subject. Re-
cently, Bleser et al. [1] provided a new interpretation of
the results of the BNL AGS-E906 experiment to produce
and study double hypernuclei through a (K~,K*) reaction
on 'Be [2]. Following a suggestion made by Avraham
Gal, they explored the conjecture that decays of a j‘\ Al
double hypernucleus may be responsible for some of the
observed structures in the correlated n~ —7n~ momenta.
However, in a recent calculation using the stochastic vari-
ational method in a pionless effective field theory ap-
proach [3], it has been concluded that the AAnn system is
unbound by a large margin. We had previously come to
the same conclusion [4] in a study of the uncoupled
AAnn system using local central Yukawa-type Malfliet-
Tjon interactions reproducing the low-energy parameters
and phase shifts of the nn system and the latest updates of
the nA and AA Nijmegen ESCO08c potentials. It is import-
ant to note that to create a AAnn bound state the four
particles must coincide simultaneously because the sys-
tem does not contain two- or three-body subsystem bound
states. Thus, the probability of this event occurring is
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rather small.

In this study, we take the calculation one step further
by considering the coupled AAnn—Z="pnn system to in-
vestigate whether the inclusion of channel coupling is
able to bind the AAnn system. If this were not the case,
we would study whether there could be a E pnn sharp
resonance or quasibound state above the AAnn threshold.
In the AAnn—E"pnn system, the effect of channel coup-
ling arises from the process AA — ENprocess in the two-
body channel (i, j) = (0,0). The channel EN can be real-
ized in two ways, 2% or Z~p; however, if one restricts
the calculation to S waves, the subchannel 2% cannot
contribute, since three neutrons cannot exist with a sym-
metric space wave function. Thus, only the subchannel
= p will contribute.”

We present two different approaches. First, we ad-
dress a three-body model AA(nn)—E"p(nn), where the
dineutron (nn) is treated as a particle of isospin 1 and spin
0. All the two-body interactions are assumed to be simple
Yamaguchi separable potentials. This allows us to search
for solutions in the real axis, bound states, and complex
plane, resonances, and quasibound states. Later, we per-
form a variational four-body calculation with realistic
local two-body interactions, which are necessarily restric-
ted to energies in the real axis.
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4) We have explicitly checked that the Z%nnn system is unbound by a large margin due to the mixed symmetry nature of the spin wave function of the three neut-
rons, what requires a mixed symmetry radial wave function. We have calculated the binding energy of Annn and Z0nnn states with our variational method, obtaining a
result that it is always above threshold. On the other hand, this is reasonable because if the mixed symmetric radial wave function of the three neutrons would not penal-
ize the interaction, the *H = pnnn would be bound in nature due to the stronger pn interaction. However, no ‘H positive parity level has ever been reported.
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2 The AA(nn) - = p(nn) three-body model

In this model, we treat the dineutron (nn) as an ele-
mentary particle with mass m,, = 2m,, isospin 1, and
spin 0 with two-body interactions given by Yamaguchi
separable potentials [5]. This is based on the model pro-
posed in Ref. [6] to search for resonances of the
AAN -ENN system. Replacing one of the nucleons in the
lower and upper channels by a dineutron, N — (nn) equa-
tions of Ref. [6] are similar to those of this study. The dif-
ferences originate from the fact that in the AAN —-ENN
system, two of the three particles in the upper channel are
identical, while in the AA(nn) — E™ p(nn) system, the three
particles in the upper channel are different.

2.1 Three-body equations

We take the dineutron (nn) as particle 1. In the lower
channel, the two A's are particles 2 and 3 while in the up-
per channel, particles 2 and 3 are the =~ and p, respect-
ively. Following the graphical method of Ref. [7], the
equations of the AA(nn) — 2~ p(nn) system are as follows,

AITyY =2¢1[EMM1L3YGo(3)(3IT3)

+(UAEPINR)G)2IU)
+(ANTEPIIBYG(3)3IUS),

(IT3) == GBI 3)(213)Go(3)(3IT3)
+ 3" 3)BIDGo(1(Ty),

MUY =(1IE PIIXLR2)Go(2)2IU>)
+(1IE PI(13)Go(3)(3|Us)
+ 201167 PMNIXABGHB)BITS),
(2IUs) =257 12)(213)Go(3)(3|U3)
+ QISP RY2NGo(11 U,
(lUs) =@I™= 13)X312)Go(2)(2|U2)
+ GBI BYBIDGo(1XUY ). (1)

For all the uncoupled interactions, we assume separable
potentials of the form,

Ve = @
such that the two-body r—matrices are,
= ghiiel, 3)
with
= : @

()1 —(1Golgly

In the case of the two-body channel responsible for the
channel coupling, (i, j) = (0,0), we use a separable interac-
tion of the form,

VT =gDay el (5)
such that

AT LA (6)
with

A —ANTEPRGE P - AM(1 - AT PGE )

T = = = - 4
LN PRGAGE P (1- MG (1 - AT PGE )

5 _ _(/lll\Afi'P)zGAA —AIE_p(l _/l/I\AGAA) 0
1 (/lé\A—E’P)chAGE’p -(1- /l?AGAA)(l _ /IIE’PGE*p) ’

_MEp
AA-Ep _ _E p-AA _ 1
f a T OMEPRGANGE AAGAA EpnEpy’
APV TEP2GANGE P — (1= AMGAN(1- 27 PGE P)
and (11X1) =20 Mg MM 1(13)Go(3)(3lgs™ ™ H(31X3)

AA—

GM =(g™MGolg™™y, + T E P ETPIR)Go(2)(21g )" ) 21Y2)

G7 (PGl ) ® + 70N E P PIIBYGo(3)3BIgY™ = Y(3IYa).
\5] 1 ’

(31X3) = = 79" M3)(213)Go(3)(31g Y™ ¥(31X3)

where for simplicity we have redefined {4 = 7fAAA, ’ 3 N 8 N ‘ 83 :

AN = A e + 7N M B BINGo (g X]11X),

Using Egs. (3) and (6) into the integral equations (1) A1y =7 7T PIXR)Go(2)(21gY"™ P )2IY»)
and introducing the transformations (ilT,-)z(ilgl?")(ilX,»)
and (|U;) = (ilgf‘)(il)ﬁ), one obtains the one-dimensional

integral equations

+175 7(gT PI1I3)Go(3)(3Igy"™= X3IY3)

+275 P IBYGH(3)BIgY ™ Y 3BIX3) s
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Q1Y) =10 (1" 12)213)Go(3)(3IgT™= Y(3IY3)

+ 70" (G 2)2INGo(1)(g: P)(IYT),

3IY3) =19 (g0 3)(312)Go ()21 (2| Y2)
&= 13)BEINGo(1(LgT XYY (9)

Egs. (9) can be extended into the complex energy plane
following the method of Ref. [8].

(nn)="
+ T3

2.2 Two-body inputs

The E~¢t — AAnn process occurs with quantum num-
bers (1,J) = (1,0), such that, since we restrict our calcula-
tion to S waves, the contributing two-body channels
in our three-body model are: the (nn)p channel
(i,j)=(1/2,1/2), the (nm)A channel @, j)=(1,1/2), the
(nn)E~ channel (i, j) = (3/2,1/2), and the AA—-Z"p chan-
nel G, j) = (0,0).

We use Yamaguchi form factors for the separable po-
tentials of Egs. (2) and (5), i.e.,

1
a?+p?’

8(p) = (10)

Thus, for each uncoupled two-body channel, we have to
fit the two parameters « and A.

In the case of the (nn)p subsystem with quantum
numbers (i, j) = (1/2,1/2), the trittum channel, for a given
value of the range « the trittum binding energy (8.48
MeV) determines the strength A through Eq. (4) as,

1
(8IGo(Ep)Ig)”
with the value of @ determined from the binding energy
of “*He (28.2 MeV) through the solution of the three-body

system (nn)pp. The parameters of this model are given in
Table 1.

(11)

Table 1.
coupled partial waves: o (in fm ') and A (in fm ).

Parameters of different separable potential models for un-

Model Subsystem @) a A
(nn)p (1/2,172) 1.07 —0.5444
(nn)A (1,1/2) —0.1655
: (nn)E~ 3/2,172) —0.2904
(nn)A (1,1/2) —1.1560
2 (nn)E~ 3/2,172) -1.7719
3 (nn)A (1,1/2) —3.9450
(nn)E~ 3/2,12) —5.4162

In the case of the (nm)A subsystem with quantum
numbers (i, j) = (1,1/2), we fit the two parameters of the
interaction to the ground state and spin-excitation ener-
gies of the 2H hypernucleus. This is considered as a
three-body system (nn)pA with quantum numbers
(1,J) =(1/2,0). For the (nn)p subsystem, we use the inter-

action previously described and for the pA the separable
potentials for j=0 and j=1, constructed in Ref. [6].
Thus, for a given value of the range @, we fit the strength
A to the binding energy of 4H (10.52 MeV) [9]. To ob-
tain the range «, we calculate the binding energy of the
excited state (1,J) =(1/2,1) (9.43 MeV) [9]. Fora =1, 2,
and 3 frn'l, the values 9.93, 9.81, and 9.77 MeV, were ob-
tained, respectively, which are labeled as models 1, 2, and
3 in Table 1. The f\H spin excitation is difficult to fit,
since it depends strongly on the tensor force arising from
the transition AN — XN [9-12]. Therefore, we did not con-
sider larger values of a.

In the case of the (nn)Z~ subsystem with quantum
numbers (i, j) = (3/2,1/2), we do not have any experi-
mental information available to calibrate our separable
potential model. However, in a couple of recent calcula-
tions [13, 14] based in the strangeness —2 Nijmegen
ESCO08c potential [15], a bound state is predicted with a
binding energy of 2.89 MeV below the ENN threshold.
Thus, we used this result to obtain the strength A of the
separable potential employing Eq. (11) and taking the
range « equal to that of the (nn)A subsystem. We provide
in Table 1 the parameters corresponding to different mod-
els 1, 2, and 3.

In the case of the coupled AA—Z"p subsystem, we
first use a recent lattice QCD study by the HAL QCD
Collaboration [16] with almost physical quark masses
(my; = 146 MeV and mg = 525 MeV). In this model, the H
dibaryon was calculated through the coupled channel
AA-EN system, appearing as a very sharp resonance
just below the EN threshold [16, 17]. We have construc-
ted a model, labeled A, yielding similar AA and EN
phase shifts as those in Ref. [16]. The parameters of this
model are listed in Table 2. Furthermore, we also con-
sidered the separable potential model of the AA —EN sys-
tem constructed in Ref. [6], which is based in the Nijme-
gen ESCO08c potential [15]. This model is shown in
Table 2 as model B. Naturally, in the AA(nn)—E" p(nn)
calculation, we use the parameters A} 7 = AM-EN /2
and A5 7 = 5N )2.

Table 2.  Parameters of two separable potential models for coupled
partial wave (i, j) = (0,0): Q/I\A, QIEN (in fmfl)’ /I/I\A, AIEN, and
AMEN (i fin ),

Model ot ApA aiN =N AMAEN
A 13465 —0.1390  1.1460  —0.3867  0.0977
B 1.25 -0.0959 4287 1.302 1.243

2.3 Results

We show in Table 3 the energy eigenvalues of the
two models A—B of the coupled AA —EN system and the
three models 1-3 of the (nn)A and (nn)=Z~ systems. We
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Table 3. Energy eigenvalue of the AA(nn) — E~ p(nn) system (in MeV) measured with respect to the E~ pnn threshold. Results in parenthesis are those
of uncoupled E~7 binding energy.

Model 1 2 3
A —12.80-i0.05 (—12.73) —13.46-i0.04 (—13.37) —13.52-i0.04 (—13.43)
B —-10.99-i0.06 (—10.92) —11.04-i0.07 (-10.93) —-10.89-i0.07 (-10.77)

also provide in parentheses the energy of the uncoupled
E~t system. This table indicates that the real part of the
energy eigenvalue is slightly below the energy of the un-
coupled E7¢ system, and the imaginary part of the energy
eigenvalue is roughly the difference between the un-
coupled energy and the real part of the energy eigenvalue.
Thus, this state appears as a narrow E~¢ quasibound state
decaying to AAnn. The reason for the narrow width of the

="t state stems from the weakness of the AA—EN trans-
ition potential [15, 16], that on the other hand is also re-
sponsible for the H dibaryon appearing as a very sharp
resonance just below the EN threshold [17].

Finally, in Table 4 we list the corresponding values of
the Z7¢ scattering lengths of the two models A-B, which
may be of use in the calculation of the energy shift of the
atomic levels of the Z7¢ atom.

Table 4. E7¢ scattering length (in fm). Results in parentheses depict those of uncoupled Z~¢ scattering length.

Model 1 2 3
A 1.286—-i0.005 (1.293) 1.030-:0.003 (1.036) 0.957-i0.003 (0.963)
B 1.551-i0.015 (1.567) 1.315-i0.016 (1.339) 1.268 —i0.018 (1.298)

3 The AAnn and = pnn four-body problems
3.1 Four-body calculation

The four-body problem has been addressed by means
of a generalized Gaussian variational (GGV) method [18,
19]. The nonrelativistic Hamiltonian is given by,

H= Z—+ Z Vi),

mi i<j=1

(12)

where V(7;) is a local central two-body potential.

The four-body wave function is taken to be a sum
over all allowed channels with well-defined symmetry
properties:

S
VERD = D X RU(Z.2), (13)
k=1

where s is the number of channels allowed by the Pauli
principle. Y=r-F, and
7= (m 7 +maih)/(my +my) — (m3r3 +myiy)/(m3 +my)  are
the Jacobi coordinates. y3! are orthonormalized spin-
isospin vectors, and R,(X,¥,?) is the radial part of the
wave function of the «™ channel. To obtain the appropri-
ate symmetry properties in a configuration space,
R(X,¥,?) is expressed as the sum of four components,

2>_ 2 -
X=r—r,

R(%.3.2) = ZW"R"u 5.2) (14)

where w! = +1. Finally, each R}(X,¥,?) is expanded in
terms of NV generalized Gaussians

i 32 i 32 i n
_be 6L _szl

¥

=l

N

. L

RI%5,2) =) alexp[-ai ¥
i=1

—eisgf-f—fisgf~f], (15)

where s} are equal to +1 to guarantee the symmetry prop-
erties of the radial wave function and al,ai,---, fi are the
variational parameters. The latter are determined by min-
imizing the intrinsic energy of the four-body system. We
follow closely the developments of Refs. [18, 19], where
further technical details can be found about the wave
function and the minimization procedure.

The numerical method described in this section has
been tested in different few-body calculations in compar-
ison to the hyperspherical harmonic formalism, for ex-
ample Refs. [19, 20], or the stochastic variational ap-
proach of Ref. [21] for some of the results presented in
Ref. [22]. As a benchmark calculation to show the capab-
ility of the method, we have studied the “He, a nnpp sys-
tem with (7,J) = (0,0), using the spin-averaged Malfliet-
Tjon (MT-V) potential of Ref. [23]. Results for the
(1,J) = (0,0) four-nucleon problem can be found in Table
11.2 of Ref. [21]. This was solved with different numeric-
al methods, obtaining a full converged binding energy of
31.3 MeV.

We have studied the (Z,J) = (0,0) nnpp state with the
GGV method using the MT-V potential of Ref. [23],

—HAT e_ﬂxr

+B

Vij(r):—A (16)

w1th parameters: A =578. 09 MeV ua =1.55 fm”,
=1458.05 MeV, up=3.11 fm”. As in Ref. [21], w
have used #%/my = 41.47 MeV fm’. As a pure S wave cal-
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Table 5. S wave two-body channels contributing to nnpp system with (Z,J) = (0,0)

Viz - Vi Vi3 - Vaa
nn(ij)=(1,0) - pp(i)=(1,0) np(ij)=(0,1) - np(ij)=(0,1)
np(i.j)=(1,0) - np(ij)=(1,0)

culation, the different two-body channels contributing to
the (1,J) = (0,0) nnpp state are shown in Table 5. With
N =25 generalized Gaussians in Eq. (15), we obtained a
binding energy of 31.2 MeV, which demonstrates the
capability of our method and gives confidence in the res-
ults. The spin-averaged MT-V potential reproduces the
trittum binding energy reasonably well, yielding a result
of 8.25 MeV.

3.2 AAnn system

The uncoupled AAnn system with (I,J) =(1,0) was
examined in detail in Ref. [4] using local central
Yukawa-type Malfliet-Tjon interactions. In Table 6, we
summed up the different two-body channels contributing
to the (1,J) = (1,0) AAnn state. The parameters of the AN
and AA two-body channels were obtained by fitting the
low-energy data and the phase-shifts of each channel, as
given in the most recent update of the strangeness -1 [24]
and -2 [15] Nijmegen ESCO08c potential. The low-energy
data and the parameters of these models, together with
those of the NN interaction from Ref. [25], are given in
Table 7. As can be seen in Fig. 2 of Ref. [4], there is no
AAnn bound state.

The system hardly gets bound for a reasonable in-
crease of the strength in the AA interaction. Although one
cannot exclude that the genuine AA interaction in dilute
states, as the one studied here, could be slightly stronger
that the one reported in Ref. [15]. However, one needs a
multiplicative factor in the attractive term of Eq. (16)
gaa = 1.8 to obtain a bound state. Such modification
would destroy the agreement with the Nijmegen ESCO08c
AN phase shifts. This is a very sensitive parameter for the
study of double-A hypernuclei [26], and this modifica-
tion would produce an almost AA-bound state in free
space, in particular it would give rise to a{‘s’: =-29.15 fm
and ro,’\SA0 =1.90 fm. The four-body system would also be-
come bound by taking a multiplicative factor 1.2 in the
NN interaction. However, such a change would make the
So NN potential as strong as the 3S; [23], and thus the
singlet S wave would develop a dineutron bound state,
a,’\g:’ =6.07 fm and rof\glo\' =1.96 fm. The situation is
slightly different when dealing with the AN interaction.
We used a common factor gys for the attractive part of

the two AN partial waves, 'Sy and 3S;. The four-body
system develops a bound state for gy, = 1.1, giving rise

. AN _
to the AN low-energy parameters: ajy’ =-5.60 fm,

ro,’}’;’ =2.88 fm, a{}’\l’ =-291 fm, and roﬁ\S’?' =2.99 fm, far
from the values constrained by existing experimental
data. In particular, these scattering lengths point to the
unbound nature of the AAnn system based on the hyper-
on-nucleon interactions derived from chiral effective field
theory in Ref. [27], because it is less attractive:
aly’ €[-2.90,-2.91] fm and afy €[-1.40,-1.61] fm (see
Table 1 of Ref. [27]).

It is also worth mentioning that Ref. [28] tackled the
same problem by fitting low-energy parameters of older
versions of the Nijmegen-RIKEN potential [29, 30] or
chiral effective field theory [31, 32], by means of a single
Yukawa attractive term or a Morse parametrization. The
method, employed to solve the four-body problem is sim-
ilar to the one we applied in our calculation, thus the res-
ults might be directly comparable. Our improved descrip-
tion of the two- and three-body subsystems and the intro-
duction of the repulsive barrier for the 'Sy NN partial
wave, relevant for the study of the triton binding energy
(see Table 2 of Ref. [33]), leads to a four-body state
above threshold, which cannot get bound by a reliable
modification of the two-body subsystem interactions. As
clearly explained in Ref. [28], the window of Borromean
binding is more and more reduced for potentials with
harder inner cores.

For the sake of consistency with Sec. 2, we have re-
peated the calculation using the latest AA interaction de-
rived by the HAL QCD Collaboration [16]. The paramet-
ers of the AA HAL QCD potential are given in the last
line of Table 7. Although the AA interaction of Ref. [16]
is slightly more attractive than that of the Nijmegen
ESCO08c potential [15], the AAnn state remains unbound.
The more attractive character of the HAL QCD AA inter-
action can be easily tested by trying to generate a AAnn
bound state with the multiplicative factor in the attractive
term of Eq. (16) of the AA interaction. While with the
model of Ref. [15] a multiplicative factor gap = 1.8 is ne-
cessary to obtain a bound state, whereas with that of Ref.
[16], the bound state is developed for gaa = 1.6.

We also studied the coupled AAnn—E"pnn system, to

Table 6. S wave two-body channels contributing to the AAnn system with (1,J) = (1,0)

Vi - V34

Vl 3 - V24

nn(i,j)=(1,0) - AA(i,j)=(0,0)

nA(ij)=(1/2,0) -
nA(ij)=(1/2,1) -

nA(i,)=(1/2,0)
nAGi)=(1/2,1)
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Table 7. Low-energy parameters and parameters of local central Yukawa-type potentials given by Eq. (16) for NN, AN, and AA systems contributing

to (1,J) = (1,0) nnAA state.

Ref. (i, ) AMeV fm) m (fmfl) B(MeV fm) u s(fm™") a(fm) ro(fm)
NN  [25] (1,0) 513.968 1.55 1438.72 3.11 -23.56 2.88
(1/2,0) 416 1.77 1098 3.33 -2.62 3.17
AN [24]
1/2,1) 339 1.87 968 373 -1.72 3.50
[15] (0,0 121 1.74 926 6.04 -0.85 5.13
AA
[16] (0,0) 207.44 1.87 627.6 3.63 -0.62 732

——

check if the coupling to the upper channel E~ pnn could
help to generate a AAnn bound state. For this purpose,
one needs a parametrization of the AA —EN transition po-
tential. As has been explained in Sec. 2.2 the HAL QCD
Collaboration has recently derived a AA—EN transition
potential [16] with almost physical quark masses. In their
results, the A dibaryon appears as a very sharp resonance
just below the EN threshold, which indicates a rather
weak AA—-EN transition potential. We have paramet-
rized this interaction by means of a Malfliet-Tjon interac-
tion as in Eq. (16) with parameters: A =61.66 MeV,
pa=1.79 fm ', B=227.01 MeV, up =325 fm . The de-
tails of the EN interaction are discussed in the next sub-
section. The coupled AAnn—E"pnn system is clearly un-
bound. Thus, it only remains to study the possible exist-
ence of a =~ pnn bound state that may decay to AAnn.

3.3 E"pnnsystem

We now study the uncoupled E pnn system with
quantum numbers (/,J) = (1,0), to look for a possible
bound state. This system contains several bound states
made of subsets of two- and three-body particles. It con-
tains the deuteron, the tritium, the (i, j) = (1,1) ZN bound
state predicted by the Nijmegen potential [15] with a
binding energy of 1.56 MeV, and the (i,))=(3/2,1/2)
ENN bound state with a binding energy of 2.89 MeV dis-
cussed in Sec. 2.2. If there is a = pnn bound state, it
would not be stable unless its binding energy exceeds
mz-, —map =28.6 MeV. Otherwise, it would decay to
AAnn. If its binding energy is larger than that of the triti-
um, it would appear as a E7r resonance or quasibound
state decaying to AAnn.

To perform this study we need the EN in three differ-
ent partial waves. In Table 8, we show the different two-
body channels contributing to the (I,J)=(1,0) = pnn
state. First, we use the full set of ZN interactions of the

Nijmegen group [15]. As for the case of the two-body
channels described in Sec. 3.2, we have constructed the
two-body amplitudes for all subsystems entering the four-
body problem studied by solving the Lippmann-Schwing-
er equation of each (i, j) channel,

tii(p,p"se) =Viji(p,p") + f pdp" Vii(p,p'")
0

x ——1;i(p”,p'se), 17
e—pl'2/2/_l l_[(p p ) ( )

where
, 2 a . . ’
Vitp.p') =2 fo Pdr jolprViyis(e'D). (18)

and the two-body potentials consist of an attractive and a
repulsive Yukawa term as in Eq. (16). The parameters of
the EN channels were obtained by fitting the low-energy
data as given in the most recent update of the strangeness
-2 Nijmegen ESCO08c potential [15]. Further, as men-
tioned above, the HAL QCD Collaboration [16] has re-
cently derived a potential for the (i, ) =(0,0) AA-EN
channel with almost physical quark masses. Thus, we
have performed the calculation with both models for the
(i,/) =(0,0) AA—ZEN channel, Nijmegen ESCO8c [15]
and HAL QCD [16]. The low-energy data and the para-
meters of the different EN interactions are given in
Table 9.

With N =15 generalized Gaussians in Eq. (15), we
have obtained a =~ pnn bound state of 14.43 MeV with the
(i, j) = (0,0) HAL QCD interactions and 10.78 MeV with
the Nijmegen potentialsl). In both cases, the (I,J) =(1,0)
E~pnn state lies below the lowest two-body threshold,
=7r. This state would decay to the AAnn channel with a
very small width, as shown in Sec. 2.3 and Ref. [34]. The
results are in close agreement with those obtained with
the separable potential three-body model shown in Table 3.

Table 8. S wave two-body channels contributing to Z~ pnn system with (1,J) = (1,0)

Vi - V34

Vi3 - Vaa

PE (i,))=(0,0)
PE (i)=(1,0)

nn(i,j)=(1,0) -
nn(i,j)=(1,0) -

nZ (i)~(1,0)
nZ (ij)=(1,1)

np(i,/)=(1,0) -
np(i)=(0,1) -

1) Note that the mass of *He changes by 0.24 MeV from N = 15 to N = 25, so the result is fully converged.
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Table 9.
(1,J) =(1,0) E pnn state.

Low-energy parameters and parameters of local central Yukawa-type potentials given by Eq. (16) for EN system contributing to the

Ref. (i) A/(MeV fm) g /fm! B/(MeV fim) up/fm™! a/fm ro/fm
[16] 161.38 1.17 197.5 2.18 - -
(0,0)
[15] 120 1.30 510 2.30 - -
EN
[15] (1,0) 290 3.05 155 1.60 0.58 -2.52
[15] (1,1) 568 4.56 425 6.73 491 0.53

In all models, the binding is larger than that of the tritium,
and a slightly deeper bound state is obtained when using
the HAL QCD interactions for the two-body coupled
channel (i, j) = (0,0). By including the Coulomb =~ p po-
tential, the binding energies are increased roughly by 0.75
MeV with the HAL QCD interaction and 0.53 MeV with
the Nijmegen potentials, yielding final binding energies
of 15.18 MeV and 11.31 MeV, respectively.

4 Outlook

It has been suggested in Ref. [1] that some of the
structures observed in the correlated 7~ — 7~ momenta by
the BNL AGS-E906 experiment [2], aiming to produce
and study double hypernuclei through a (K~, K*) reaction
on 'Be, could result from the decays of a 4, n double hy-
pernucleus. We have studied the coupled AAnn—ZE"pnn
system to investigate whether the inclusion of channel
coupling is able to bind the AAnn system. We employed
two different approaches. The first one is a separable po-

tential three-body model of the coupled AAnn—ZE"pnn
system, tuned to the known experimental data that allows
us to evaluate the E77 binding energy and its decay width
to AAnn. The second one is a generalized Gaussian vari-
ational method based on realistic two-body interactions
tuned in known two-, three-, and four-body systems ex-
perimental data.

With the available two-body interactions that are ad-
justed to describe what is known about the two- and
three-baryon subsystems, neither a AAnn bound state nor
a resonance is obtained. However, we have found a =7¢
quasibound state with quantum numbers (Z,J) = (1,0)
above the AAnn threshold. The stability of the state is in-
creased by considering the Coulomb potential. The differ-
ent approaches to the AA —EN interaction lead to similar
results, and the weakness of the AA—Z=N transition po-
tential explains the narrow width of the Z7¢ quasibound
state. Finally, we calculated the E7¢ scattering length,
which may be useful in the calculation of the energy shift
in the atomic levels of the 27+ atom.
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