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Abstract: A universal relation between the leading correction to the entropy and extremality was proposed in the
work of Goon and Penco. In this paper, we extend this work to massive gravity and investigate thermodynamic ex-
tremality relations in a topologically higher-dimensional black hole. A rescaled cosmological constant is added to the
action  of  the  massive  gravity  as  a  perturbative  correction.  This  correction  modifies  the  extremality  bound  of  the
black hole and leads to shifts in the mass, entropy, etc. Regarding the cosmological constant as a variable related to
pressure,  we obtain  the  thermodynamic  extremality  relations  between the  mass  and entropy,  pressure,  charge,  and
parameters ci by accurate calculations. Finally, these relations are verified by a triple product identity, which shows
that the universal relation exists in black holes.
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I.  INTRODUCTION

The  string  landscapes  formed  by  effective  quantum
field theories are broad and complex. However, there are
some theories that appear to be self-consistent but are not
compatible with string theory. Thus, the swampland pro-
gram was proposed [1-4]. Its aim is to find the subset of
infinite space in effective field theories that arises at low
energies from quantum gravity theories with specific con-
straints.  These  constraints  were  first  proposed  in  [1].  As
one  of  the  constraints,  the  weak  gravity  conjecture
(WGC)  has  attracted  much  attention.  It  asserts  that,  for
the lightest charged particle along the direction of a basis
vector in charge space, the charge-to-mass ratio is larger
than  those  for  extremal  black  holes  [2].  This  conjecture
shows that extremal black holes are allowed to decay.

q/m−1 ∝ ∆S ∆S > 0

A proof of the WGC is that it is mathematically equi-
valent to a certain property of a black hole entropy. In [5],
the  authors  introduced  the  higher-derivative  operators  to
the action to compute the shift in the entropy. Using these
operators,  the  extremality  condition  of  the  black  hole  is
modified, and the mass and entropy are shifted. These au-
thors derived the relation between the ratio of charge-to-
mass and the entropy shift, ,  where .
The charge-to-mass  ratio  approaches  unity  asymptotic-
ally  with  increasing  mass.  Thus,  a  large  extremal  black
hole  is  unstable  and  decays  to  a  smaller  extremal  black

hole  with  charge-to-mass  ratios  greater  than  unity.  This
phenomenon satisfies the requirement of the WGC. Sub-
sequently,  WGC  behavior  was  found  in  a  four-dimen-
sional rotating dyonic black hole and other spacetimes [6,
7].  Other  studies  of  the  WGC have  been  reported  in  [8-
23]; see also the references therein.

In a recent study [24], Goon and Penco derived a uni-
versal  extremality  relation  using  perturbative  corrections
to  the  free  energy  of  generic  thermodynamic  systems.
This relation takes the form

∂Mext(
−→Q, ϵ)
∂ϵ

= lim
M→Mext(

−→Q,ϵ)
−T

∂S (M,
−→Q, ϵ)
∂ϵ


M,
−→Q
, (1)

Mext(
−→Q, ϵ) S (M,

−→Q, ϵ)
ϵ−

ϵ
−→Q

∆Mext (
−→Q) ≈

−T0 (M,
−→Q) ∆S (M,

−→Q) |
M≈ M0

ext (
−→Q)

∆Mext(
−→Q) ∆S (M,

−→Q)

−→Q M0
ext

where  and  are the extremality mass
and entropy, respectively. Both of them are dependent,
and  is a control parameter for the free energy.  are ad-
ditional  quantities in thermodynamic systems,  other than
the mass. The above relation can be interpreted as a com-
parison between states in the classical and corrected the-
ories. Meanwhile, an approximation relation 

 was  proposed,  where
 and  are the leading order corrections

to  the  extremal  bound and to  the  entropy of  a  state  with
fixed  mass  and ,  respectively.  is  the  mass  in  the
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∆S > 0

ö

extremal  case  without  corrections.  The  result  shows that
the mass of the perturbed extremal black hole is less than
that of the unperturbed one with the same quantum num-
bers,  if , which  implies  that  the  perturbation  de-
creases  the  mass  of  the  extremal  black  hole.  Therefore,
WGC-like  behavior  exists  in  the  extremal  black hole.  In
particular, the Goon-Penco relation (1) was verified in an
AdS-Reissner-Nordstr m  black  hole  by  rescaling  the
cosmological  constant  as  a  perturbative  correction.  The
approximation relation was also verified using higher-de-
rivative operators introduced in the action.

ö

To further explore the WGC behavior and the Goon-
Penco relation,  researchers  have  studied  the  thermody-
namic  corrections  in  specific  spacetimes  by  introducing
higher-derivative  operators  or  perturbative  parameters
[25, 26].  The  Goon-Penco  relation  was  confirmed,  and
other  extremality  relations  were  obtained.  In  [25], Cre-
monini et al.  computed the four-derivative corrections to
thermodynamic  quantities  in  the  higher-dimensional
AdS-Reissner-Nordstr m black  hole  and  found  the  ex-
tremality relation between the mass and charge,

lim
T→0

(
∂M
∂ϵ

)
Q,T
= lim

T→0
−Φ

(
∂Q
∂ϵ

)
M,T
. (2)

Extending this work to rotating anti-de Sitter spacetimes,
Liu  et  al.  derived  the  extremality  relation  between  the
mass and angular momentum in the BTZ and Kerr anti-de
Sitter spacetimes [26],(

∂Mext

∂ϵ

)
J,l
= lim

M→Mext

−Ω
(
∂J
∂ϵ

)
M,S ,l
. (3)

Relations  (2)  and  (3)  are  extensions  of  the  Goon-Penco
relation (1). These relations will shed light on theories of
quantum gravity.

ci

In this paper,  we extend the work of [24] to massive
gravity  and investigate  the extremality  relations between
the mass and pressure, entropy, charge, and parameters 
of a charged topological black hole in higher-dimension-
al  spacetime.  Einstein's  general  relativity  (GR)  is  a  low
energy  effective  theory.  The  UV  completeness  requires
that GR be modified to meet physical descriptions in the
high  energy region.  Massive  gravity  is  a  straightforward
modification to  GR.  We introduce a  perturbative correc-
tion by adding a rescaled cosmological constant to the ac-
tion  of  massive  gravity.  This  scenario  is  different  from
that  in  [24], where  the  cosmological  constant  was  dir-
ectly  rescaled  in  the  action  and  consistent  with  that  in
[26]. In our investigation, the cosmological constant is re-
garded as  a  variable  related to  pressure  [27-31]. Its  con-
jugate  quantity  is  a  thermodynamic  volume.  The  black
hole mass is naturally interpreted as an enthalpy. The first
reason for this is that the cosmological constant, as a vari-

able, can reconcile the inconsistency between the first law
of thermodynamics of black holes and the Smarr relation,
derived  from  the  scaling  method.  The  second  reason  is
that physical  constants,  such  as  the  gauge  coupling  con-
stants,  Newtonian  constant,  or  cosmological  constant,
which  are  vacuum  expectation  values,  are  not  fixed  and
vary in the more fundamental theories [32].

ci

The rest  of  this  paper  is  organized as  follows.  In  the
next section, the solution of the higher-dimensional black
hole  in  massive  gravity  is  given,  and  its  thermodynamic
properties  are  discussed.  In  section  III,  we  introduce  a
perturbative correction  to  the  action  and  derive  the  ex-
tremality relations  between  the  mass  and  pressure,  en-
tropy, charge, and parameters . Section IV is devoted to
our discussion and conclusion.

II.  BLACK HOLE SOLUTION IN MASSIVE
GRAVITY

(n+2)The action for an -dimensional massive gravity
is [33]

S = 1
16π

∫
dxn+2 √−g

R+ n(n+1)
l2

− F2

4
+m2

4∑
i=1

ciui(g, f )

,
(4)

m2

ci
ui

(n+2)× (n+2) Kµν =
√

f µαgαν

where  the  terms  including  represent the  massive  po-
tential associated with the graviton mass, f is a fixed sym-
metric tensor called the reference metric,  are constants,
and  are  symmetric  polynomials  of  the  eigenvalues  of
the  matrix :

u1 =[K], u2 = [K]2− [K2],

u3 =[K]3−3[K][K2]+2[K3],

u4 =[K]4−6[K2][K]2+8[K3][K]+3[K2]2−6[K4]. (5)

K (
√

A)µν (
√

A)νλ = Aµλ
[K] =Kµµ

The  square  root  in  denotes  and
.

The solution of the charged black hole with the space-
time metric and reference metric is given by [34]

ds2 = − f (r)dt2+
1

f (r)
dr2+ r2hi jdxidx j, (6)

fµν = diag(0,0,c2
0hi j), (7)

where

f (r) =k+
r2

l2
− 16πM

nΩnrn−1 +
(16πQ)2

2n(n−1)Ω2
nr2(n−1)

+
c0c1m2r

n

+ c2
0c2m2+

(n−1)c3
0c3m2

r
+

(n−1)(n−2)c4
0c4m2

r2 ,

(8)
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l2 Λ

l2 = −n(n+1)
2Λ

Ωn

xi c0
hi jdxidx j

n(n−1)k k = 1 0 −1

r+ f (r) = 0

T =
κ

2π
κ = −1

2
lim
r→r+

√
−g11

g00

∂ln(−g00)
∂r

 is  related  to  the  cosmological  constant  as
. M and Q are the mass and charge of the M

black hole, respectively.  is the volume spanned by co-
ordinates ,  and  is  a  positive  integral  constant.

 is the line element for an Einstein space with the
constant  curvature . , ,  or  denotes
spherical,  Ricci  flat,  or  hyperbolic  topology  black  hole
horizons, respectively. The thermodynamics in the exten-
ded phase space of massive gravity have been studied in
[35-41].  The event horizon  is determined by .
A  general  formula  for  the  Hawking  temperature  can  be

given as ,  where  is

the surface gravity. For this black hole, the Hawking tem-
perature is

T =
f ′(r+)

4π
=

1
4πr+

 (n+1)r2
+

l2
+

(16πQ)2

2nΩ2
nr2(n−1)
+

+ c0c1m2r+

+ (n−1)c2
0c2m2+ (n−1)k+

(n−1)(n−2)c3
0c3m2

r+

+
(n−1)(n−2)(n−3)c4

0c4m2

r2
+

 . (9)

The mass expressed by the horizon radius and charge is

M =
nΩnrn−1

+

16π

k+ r2
+

l2
+

(16πQ)2

2n(n−1)Ω2
nr2(n−1)
+

+
c0c1m2r+

n
+ c2

0c2m2+
(n−1)c3

0c3m2

r+

+
(n−1)(n−2)c4

0c4m2

r2
+

 . (10)

P = − Λ
8π
=

n(n+1)
16πl2

The cosmological constant was seen as a fixed constant in
the past. In this paper, it is regarded as a variable related

to pressure, ,  and its  conjugate quant-
ity  is  a  thermodynamic  volume V.  The  entropy,volume,
and electric potential at the event horizon are given by

S =
Ωnrn

+

4
, V =

Ωnrn+1
+

n+1
,

Φe =
16πQ

(n−1)Ωnrn−1
+

, (11)

c1 c2 c3 c4

respectively.  Because  of  the  appearance  of  pressure,  the
mass is no longer interpreted as the internal energy but as
an enthalpy. , , , and  are seen as extensive para-
meters for the mass. Their conjugate quantities are

Φ1 =
Ωnc0m2rn

+

16π
,

Φ2 =
nΩnc2

0m2rn−1
+

16π
,

Φ3 =
n(n−1)Ωnc3

0m2rn−2
+

16π
,

Φ4 =
n(n−1)(n−2)Ωnc4

0m2rn−3
+

16π
, (12)

respectively. It is easy to verify that these thermodynam-
ic quantities obey the first law of thermodynamics,

dM = TdS +VdP+ΦedQ+
4∑

i=1

Φidci. (13)

VdPWhen  the  cosmological  constant  is  fixed,  the  term 
disappears, and the mass is interpreted as the internal en-
ergy.  When  a  perturbative  correction  is  introduced,  the
related  thermodynamic  quantities  are  shifted,  which  is
discussed in the next section.

III.  EXTREMALITY RELATIONS IN MASSIVE
GRAVITY

ci

ϵ

In  this  section,  we  derive  the  extremality  relations
between  the  mass  and  entropy,  charge,  pressure,  and
parameters  by adding a rescaled cosmological constant
to  the  action  as  a  perturbative  correction.  The  rescaled
parameter  is .  Here,  the  black  hole  is  designated  as  an
extremal one.

We first introduce the correction

∆S = 1
16π

∫
dxn+2 √−g

n(n+1)ϵ
l2

, (14)

S+∆S
ϵ = 0

to the action (4). The corrected action is . The ac-
tion (4) is recovered when . A black hole solution is
obtained from the corrected action and takes the form of
Eqs. (6) and (8), but there is a shift. With the correction,
the  Hawking  temperature  is  also  shifted,  and  it  is  given
by

T =
1

4πr+

 (n+1)r2
+ϵ

l2
+

(n+1)r2
+

l2
+

(16πQ)2

2nΩ2
nr2(n−1)
+

+ c0c1m2r+

+ (n−1)c2
0c2m2+ (n−1)k+

(n−1)(n−2)c3
0c3m2

r+

+
(n−1)(n−2)(n−3)c4

0c4m2

r2
+

 .
(15)

The corrected mass is
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M =
nΩnrn−1

+

16π

 r2
+ϵ

l2
+ k+

r2
+

l2
+

(16πQ)2

2n(n−1)Ω2
nr2(n−1)
+

+
c0c1m2r+

n
+c2

0c2m2+
(n−1)c3

0c3m2

r+
+

(n−1)(n−2)c4
0c4m2

r2
+

 , (16)

r+, ϵ Q, l, c1, c2, c3
c4

r+ = r+(ϵ)

Mext = Mext(ϵ)
Mext(ϵ)

which  is  a  function  of  parameters , ,
and . Our interest is focused on the thermodynamic ex-
tremality  relation.  The  Hawking  temperature  (15)  in  the
extremal case is zero, which leads to a solution .
Inserting  this  solution  into  the  above  equation  yields  an
expression  regarding  the  mass, .  Carrying
out the differential on , we have(

∂Mext

∂ϵ

)
Q,l,c1,c2,c3,c4

=
nΩnrn+1

+

16πl2
. (17)

ϵ
r+

Q, l, c1, c2, c3, c4 r+
ϵ ϵ

Because the expression of the differential expressed by 
is  very  complex,  we  adopted  the  expression  of in  the
above derivation. In fact, this relation can also be derived
by  the  following  calculation.  For  convenience,  we  use c
to denote all  parameters ,  except for 
and .  From  Eq.  (16),  the  differential  of M to  is ob-
tained as follows:(

∂M
∂ϵ

)
c
=

(
∂M
∂r+

)
c,ϵ

(
∂r+
∂ϵ

)
c
+

(
∂M
∂ϵ

)
c,r+

=

(
∂M
∂S

)
c,ϵ

(
∂S
∂r+

)
c,ϵ

(
∂r+
∂ϵ

)
c
+

(
∂M
∂ϵ

)
c,r+

=
1
4

TΩnrn−1
+

(
∂r+
∂ϵ

)
c
+

(
∂M
∂ϵ

)
c,r+

. (18)

M = Mext

In the extremal case,  the first  term in the last  line of  the
above equation disappears, and the mass can be rewritten
as . Therefore, Eq. (17) is readily recovered.

c1 c2 c3

c4

The  entropy S,  pressure P,  charge Q, , , ,  and
 are  usually  regarded  as  a  complete  set  of  extensive

parameters  for  the  mass.  Their  conjugate  quantities  can
be derived from the mass and take the same form as those
given  in  section  II,  except  for  the  temperature  and
volume.  We first  verify  the  extremality  relation between
the mass and entropy.

ϵThe  expression  for  is  obtained  from  Eq.  (16)  and
takes the form

ϵ =

 16πM
nΩnrn+1

+

− k
r2
+

− (16πQ)2

2n(n−1)Ω2
nr2n
+

− c0c1m2

nr+
−

c2
0c2m2

r2
+

−
(n−1)c3

0c3m2

r3
+

−
(n−1)(n−2)c4

0c4m2

r4
+

 l2−1.

(19)

(11)

ϵ(S )
∂r+
∂S
=

4
nΩnrn−1

+

Using the relation between the entropy and horizon radi-
us  given  in  Eq. ,  the  above  equation  is  a  function

,  and .  Carrying  out  the  differential

calculation on this function yields

(
∂ϵ

∂S

)
M,Q,l,c1,c2,c3,c4

=
4l2

nΩnrn−1
+

[
− (n+1)16πM

nΩnrn+2
+

+
2k
r3
+

+
(16πQ)2

(n−1)Ω2
nr2n+1
+

+
c0c1m2

nr2
+

+
2c2

0c2m2

r3
+

+
3(n−1)c3

0c3m2

r4
+

+
4(n−1)(n−2)c4

0c4m2

r5
+

 . (20)

To evaluate the value, we insert the expression of the mass into the above equation and obtain

(
∂ϵ

∂S

)
M,Q,l,c1,c2,c3,c4

=
4l2

nΩnrn−1
+

− (n−1)k
r3
+

− (n+1)(1+ ϵ)
r+l2

+
(16πQ)2

2nΩ2
nr2(n+1)
+

− c0c1m2

r2
+

−
(n−1)c2

0c2m2

r3
+

−
(n−1)(n−2)c3

0c3m2

r4
+

−
(n−1)(n−2)(n−3)c4

0c4m2

r5
+

 . (21)

Combining the  inverse  of  the  above differential  with
the  expression  of  the  temperature  given  in  Eq.  (15),  we
have

T
(
∂S
∂ϵ

)
M,Q,l,c1,c2,c3,c4

= −nΩnrn+1
+

16πl2
. (22)

Compared with relation (17), it is easy to see that

(
∂Mext

∂ϵ

)
Q,l,c1,c2,c3,c4

= lim
M→Mext

−T
(
∂S
∂ϵ

)
M,Q,l,c1,c2,c3,c4

, (23)

c1 c2 c3 c4 ϵwhere S is  a  function  of M, Q, l, , , , ,  and .

Deyou Chen, Jun Tao, Peng Wang Chin. Phys. C 45, 025108 (2021)

025108-4



Therefore,  the  Goon-Penco  relation  is  verified  in  the
higher-dimensional black hole.

c1 c2 c3 c4

l2

P =
n(n+1)
16πl2

∂P
∂l2
= − 16πl4

n(n+1)
ϵ

In this paper, the cosmological constant is regarded as
a  variable  related  to  pressure.  The  entropy,  pressure,
charge, , , , and  are usually regarded as extens-
ive parameters  for  the  mass.  Because  the  entropy  satis-
fies  the  thermodynamic extremality  relation,  it  is  natural
to ask whether other extensive quantities also satisfy cor-
responding relations. The goal of the following investiga-
tion is to determine these relations. Let us first derive the
extremality  relation  between the  mass  and  pressure.  The
pressure  can  be  expressed  by  the  constant  as

.  Then, .  Using Eqs.  (16) and
(19), we get the differential of  with respect to the pres-
sure, (

∂ϵ

∂P

)
M,r+,Q,c1,c2,c3,c4

=
−16πl2(1+ ϵ)

n(n+1)
. (24)

ϵThe perturbation parameter  exists in the above differen-
tial relation as an explicit function. The reason for this is
that  the  perturbation  correction  is  introduced  by  adding
the rescaled cosmological constant to the action, and this
constant is related to the pressure. Because of the shift in
the mass, the thermodynamic volume is also shifted, and
its  expression  is  different  from  that  given  given  in  Eq.
(11). The volume is

V =
ϵ +1
n+1

Ωnrn+1
+ . (25)

ϵUsing Eq. (25) and the inverse of the differential of  to P
yields

V
(
∂P
∂ϵ

)
M,r+,Q,c1,c2,c3,c4

= −nΩnrn+1
+

16πl2
. (26)

Comparing  the  above  equation  with  Eq.  (17),  we  obtain
the extremality relation between the mass and pressure,

(
∂Mext

∂ϵ

)
Q,l,c1,c2,c3,c4

= lim
M→Mext

−V
(
∂P
∂ϵ

)
M,r+,Q,c1,c2,c3,c4

, (27)

r+ c1 c2 c3 c4 ϵwhere P is  a  function of M, , Q, , , , ,  and .
This relation is an extension of the Goon-Penco relation.

ϵ

We  continue  to  investigate  the  extremality  relation
between the mass and charge.  The calculation process is
similar.  From Eq.  (19),  the  differential  of  with  respect
to Q takes the form(

∂ϵ

∂Q

)
M,r+,l,c1,c2,c3,c4

= − (16π)2Ql2

n(n−1)Ω2
nr2n
+

. (28)

Φe =
16πQ

(n−1)Ωnrn−1
+

Multiplying  the  electric  potential  by

the inverse of the above differential yields

Φe

(
∂Q
∂ϵ

)
M,r+,l,c1,c2,c3,c4

= −nΩnrn+1
+

16πl2
. (29)

Obviously, there is a minus sign difference between Eqs.
(17) and (29). Therefore,

(
∂Mext

∂ϵ

)
Q,l,c1,c2,c3,c4

= lim
M→Mext

−Φe

(
∂Q
∂ϵ

)
M,r+,l,c1,c2,c3,c4

, (30)

r+ c1 c2 c3 c4

ϵ

which  is  the  extremality  relation  between  the  mass  and
charge.  Now, Q is  a  function  of M, , l, , , , ,
and .  This  relation  is  also  an  extension  of  the  Goon-
Penco relation.

c1 c2 c3 c4

For  the  extremality  relations  between  the  mass  and
parameters , , , and , the calculations are parallel.
Their differential relations are

(
∂ϵ

∂c1

)
M,r+,Q,l,c2,c3,c4

= −c0m2l2

nr+
, (31)

(
∂ϵ

∂c2

)
M,r+,Q,l,c1,c3,c4

= −
c2

0m2l2

r2
+

, (32)

(
∂ϵ

∂c3

)
M,r+,Q,l,c1,c2,c4

= −
(n−1)c3

0m2l2

r3
+

, (33)

(
∂ϵ

∂c4

)
M,r+,Q,l,c1,c2,c3

= − (n−1)(n−2)c0m2l2

r4
+

. (34)

c1 c2 c3 c4The conjugate quantities of , , , and  are

Φ1 =
Ωnc0m2rn

+

16π
,

Φ2 =
nΩnc2

0m2rn−1
+

16π
,

Φ3 =
n(n−1)Ωnc3

0m2rn−2
+

16π
,

Φ4 =
n(n−1)(n−2)Ωnc4

0m2rn−3
+

16π
,

respectively.  Using  these  quantities,  it  is  not  difficult  to
obtain
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(
Φ1
∂c1

∂ϵ

)
M,r+,Q,l,c2,c3,c4

=

(
Φ2
∂c2

∂ϵ

)
M,r+,Q,l,c1,c3,c4

=

(
Φ3
∂c3

∂ϵ

)
M,r+,Q,l,c1,c2,c4

=

(
Φ4
∂c4

∂ϵ

)
M,r+,Q,l,c1,c2,c3

= −nΩnrn+1
+

16πl2
. (35)

ci

Thus, the extremality relations between the mass and ex-
tensive parameters  are(
∂Mext

∂ϵ

)
Q,l,c1,c2,c3,c4

= lim
M→Mext

−Φi

(
∂ci

∂ϵ

)
M,r+,Q,l,c j,ck ,cu

, (36)

i, j,k,u = 1,2,3,4 i , j , k , u

ci

where ,  and .  Therefore,  the
Goon-Penco relation is extended to the case of the extens-
ive parameters  of the higher-dimensional black hole.

ci

In the  above  investigation,  the  thermodynamic  ex-
tremality relations  between  the  mass  and  entropy,  pres-
sure,  charge,  and  parameters  were obtained  by  accur-
ate  calculations.  They  are  expressed  as  Eqs.  (22),  (27),
(30), and (36), respectively. The values of these relations
are equal.  In  fact,  these  relations  can  be  derived  uni-
formly using the triple product identity(

∂M
∂Xi

)
ϵ,T

(
∂Xi

∂ϵ

)
M,T

(
∂ϵ

∂M

)
T,Xi

= −1, (37)

which yields(
∂M
∂ϵ

)
T,Xi

= −
(
∂M
∂Xi

)
ϵ,T

(
∂Xi

∂ϵ

)
M,T
= −Φi

(
∂Xi

∂ϵ

)
M,T
. (38)

(
∂M
∂Xi

)
ϵ,T

Φi

Xi Xi

c1 c2 c3 c4

T → 0 M→ Mext

In  the  above  derivation,  were  identified  as  ,

which  are  the  conjugate  quantities  of .  Here,  are
chosen as S, Q, P, , , , and . M and T are the cor-
rected mass  and  temperature  given  in  (16)  and  (15),  re-
spectively.  In  the  extremal  case,  and .
The above relation becomes

(
∂Mext

∂ϵ

)
M,Xi

= lim
M→Mext

−Φi

(
∂Xi

∂ϵ

)
M,X j

, (39)

Xi , X j X j c1 c2 c3
c4 Xi

Xi ci

V =
ϵ +1
n+1

Ωnrn+1
+

where , and  are parameters S, Q, P, , , ,
or , except for . This relation implies that the univer-
sal extremality relation exists in black holes. The relation
(39)  is  easily  reduced  to  (22),  (27),  (30),  and  (36)  when

 are  the  entropy,  charge,  parameters ,  and  pressure,
respectively. In the calculation, because of the shift in the
mass,  the  expression  of  the  volume  is
different from that given in Eq. (11). In [26], the authors
derived the extremality relation between the mass and an-
gular momentum  in  BTZ  and  Kerr  anti-de  Sitter  space-
times and  suggested  that  a  general  formula  of  the  ex-
tremality  relation  existed  in  black  holes.  Our  result
provides verification of this conjecture.

IV.  CONCLUSION

ci

In  this  paper,  we  extended  the  work  of  Goon  and
Penco to massive gravity and investigated the thermody-
namic extremality relations in a higher-dimensional black
hole.  The  extremality  relations  between  the  mass  and
pressure,  entropy,  charge,  and  parameters  were de-
rived by  accurate  calculations.  The  values  of  these  ex-
tremality  relations  are  equal,  which  may  be  due  to  the
first law of  thermodynamics.  In  the  calculation,  the  cos-
mological  constant  was  treated  as  a  variable  related  to
pressure.  A  perturbative  correction  was  introduced  by
adding  the  rescaled  cosmological  constant  to  the  action,
but this addition does not affect the form of the extremal-
ity relation between the mass and pressure.
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