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Abstract: The global S U(3) color symmetry and its physical consequences are discussed. The Nother current is ac-

tually governed by the conserved matter current of color charges if the color field generated by this charge is prop-

erly polarized. The color field strength of a charge can have a uniform part due to the nontrivial QCD vacuum field

and the nonzero gluon condensate, which implies that the self-energy of a system with a net color charge is infinite

and, therefore, cannot exist as a free state. This is precisely what color confinement means. Accordingly, the Cornell
type potential with the feature of Casimir scaling is derived for a color singlet system composed of a static color
charge and an anti-charge. The uniform color field also implies that a hadron has a minimal size and minimal energy.
Furthermore, the global S U(3) color symmetry requires that the minimal irreducible color singlet systems can only

be 94, qqq, g8, 288, 998, 9998, 43q8, etc., therefore a multi-quark system can only exist as a molecular configura-

tion if there are no other binding mechanisms.
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The color S U(3) symmetry was initially introduced as
a global symmetry to solve the spin-statistics problem of
baryon wave functions but caused a new problem,
namely, mesons should have color octet partners, which
contradicts experiments. Furthermore, free quarks have
never been observed in experiments. This motivates the
color confinement conjecture that quarks can exist only in
color singlet systems, namely, color singlet hadrons.
After the global SU(3) color symmetry is gauged, the
S U(3) gauge field theory is obtained — the quantum chro-
modynamics (QCD), which is very successful in explain-
ing high energy processes and is believed to be the funda-
mental theory for the strong interaction. Unfortunately,
confinement has not been directly derived from the first
principles of QCD since QCD was established in the
1970s. There may be some important aspects that are ig-
nored in the conventional treatment of QCD.

Let us write the expression for the Lagrangian dens-
ity of QCD of one flavor quark with mass m

1 _
-EQCD = _ETrFva#V + W(ID—m)lﬁ» (1)

where Ip means y*D,, D, =0, —igA, is the covariant de-
rivative in the presence of gauge field A, = Ajr?, with g

being the strong coupling, and Fy, = F};,* is the strength
tensor of the gauge field with Fj, =3,A7-d,A5+
gf“cALAS (f*> denotes the structure constants of the
SU(3) group; they are totally antisymmetric with respect
to the interchange of color indexes a,b,c). Evidently,
Locp is invariant under the following global transforma-
tion:

A— UAU',F - UFU" ¢ —» Uy, g —» gU",  (2)

where U € SU(3) is an element of S U(3). In other words,
the global S U(3) symmetry does exist for QCD. Accord-
ing to Nother's theorem, this continuous global sym-
metry should result in a conservation law 4, =0,
where j** is the corresponding Néther current:

JH = AT f (3)
with ¥ = g1“y*y being the rnattqr cqrrent .Of quarks. In
fact, the current conservation relation is equivalent to the
equation of motion of the gauge fields:

(D PP = G F 4 + g fUFPMAL = —g [y, (4)

One can observe this by applying 9, on the two sides
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of the above equation. These are well-known results.
Conventionally, the Nother current and its physical con-
sequence have been rarely discussed in formal terms giv-
en that j** depends explicitly on gauge field Ajj, which is
gauge dependent.

However, this is not the whole story because the non-
Abelian characteristic of S U(3) depicted by the antisym-
metric structure constants, f%*°, has more implications.
Imagine that a quark current of ao type, namely 3", is
put into the vacuum. If the color field it generates through
the field equation expressed by Eq. (4) has the following

property:
AL ) = Va(0)6s,, Q)

then the first term of the total Nother current in Eq. (3)
vanishes owing to the asymmetric f%°, resulting in j** =
Jy e, which is free from gauge dependence. Under this
condition, it is easy to prove that the corresponding
Nother charge, 0 = [d*xj*0 =62 [d*xj%", is conserved,
namely,

d
Sore [awvp=o [exviz=0  ©

if the boundary condition ¥(x = co,#) =0 is assumed. Al-
ternatively, we can treat the condition expressed by Eq.
(5) as an implicit constraint so that the Nother current is
physically meaningful. The direct consequence of this
constraint is that the color current of matter fields, f;’}‘ , 18
conserved.

With the constraint expressed by Eq. (5), the equa-
tion of motion given by Eq. (4) can be simplified as

S ==gjyy"s @)

where f,, =9,V,—9,V,. The Bianchi identity also gives

Oufoy =0 with fo = =€,p6/°°. These equations are very
similar to Maxwell's equations of QED. The solution of
Eq. (7) can be written as

f#v = fl,yv"'fo,yw (8

where fi,, is a special solution of Eq. (4), and fo,, is the
general solution of the homogeneous equation 4, f** = 0.
If we are constricted to the static case, then f;,, can take
the following form:

fO,,uv & ga—(nl,ynl,v - n2,,un1,v), 9
where o is a constant of dimension two, n’l‘ and n} are
two constant Lorentz unit vectors, and the gauge coup-
ling appearing here is just a convention. Given that we do
not know how the color charge is quantified at present,
we use the proportional sign in the above and following
relations. Consequently, the scalar product of f,, can be

expressed in terms of n; ; as

oty <2820 [ning — (- mo)?|. (10)
When | and ) are light-like, for instance, nj=
n} =0, and satisfy n; -n, = 1, we have fy, f)" « -2g%0>.

To determine the solution of Eq. (9), we would like to
consider the proper boundary conditions. Evidently, the
discussion above also applies to QED. In the static case,
the electromagnetic field strength, F’&'ED(X) behaves as
F,(x) ~ 1/[x[> when [x] — oo, such that it is natural to set
o =0 for QED. However, for a non-Abelian gauge field
theory such as QCD, the vacuum is highly nontrivial and
there is no ab initio requirement that F,,(x) vanishes at
an infinite point. Therefore, o can take a non-zero value.
In fact, the highly nontrivial QCD vacuum is reflected by
the topology, the trace anomaly, and the non-zero con-
densates of quarks and gluons; an example of this is the
gluon condensate {a,F ) £ 0, which permits the
possibility of a non-zero o.

By contrast, one can find that F, o« fy,, >, is a non-
trivial solution of the vacuum field equatiofi (D, Ful =
0 and is uniform in both the space-time and the color
space. The vacuum expectation value of the scalar
product of this field is (TrF?) o —8g%c?, which means
that o has a direct connection with the gluon condensate.
Thus, field fo,,, generated by color current j}'*, can be
considered to be vacuum field F,,, uniformly polarized to
the ag type through fy ., o« 2TrF,,1%.

Now, let us consider the free energy of a color charge.
In the rest frame of a color charge of type ao, 7| and n}
can be chosen to be n; =(1,e;) and n; =(1,e,), respect-
ively, where e, are arbitrary spatial unit vectors with
e; L ep. According to Eq. (9), we have the corresponding
uniform chromo-electric and chromo-magnetic field
strengths:

E; o go(e; —ey), By ocgo(erxey), (1)

which obey the normal parity transformation property and
satisfy E’ - By’ = 0 (no CP violation). Their distribution is
illustrated in Fig. 1. These expressions are in exact agree-
ment with the conservation of color charge in that for an
arbitrary closed spatial surface T surrounding the color
charge, the total flux of the polarized vacuum field out-
ward is zero. We use E{" and B{" to denote the field
strength given by the solution f;,, in Eq. (8). Thus, the
energy of the color field generated by the color charge is

1
Efc f Exz |EG +ED B +BYY. (12)

which is, by definition, the free energy of the color
charge. Note that E{" and B{" behave as O(1/ x?) when

. .3
x| > co. The leading term of E; is Egzcer, where
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Fig. 1.
uniform color fields E) and By’ generated by charge 7%(R).
The arrowed straight lines illustrate the uniform E® oriented

(color online) Schematic plot of the distribution of

in the e; —e, direction, whereas the 'x's denote the uniform
Bgo oriented in the e; xe; direction. Indexes i,j stand for the
components of the color charge in the R representation. The
dashed circle T illustrates an arbitrary closed surface sur-
rounding the charge. It is easy to see that the total field flux

outward from T vanishes.

V — oo is the total spatial volume (It is understood that
E and B} are properly regularized in the ultraviolet re-
gion.). In other words, the free energy of an isolated col-
or charge is infinitely large. Lattice QCD confirms this
through the observation that the vacuum expectation
value of the Polyakov loop, L, is zero in the confinement
phase, that is, (L) ~e %7 =0, where T is the temporal
extension of the lattice. Therefore, isolated color charges,
such as quarks and color octet mesons, do not exist. This
is exactly the color confinement argument. The above
discussion can be simply extended to the color field gen-
erated by current ¥, whose strength is
Fyv o (fl,uv + fO,,uv) Z .

Next, we elaborate on the discussion presented above.
First, the color charge providing color current j}#* can be
point-like or be a spatially extended object composed of
several subsystems of irreducible representations (irreps)
R{,R,,.... According to the representation theory of the
SU(3) group,

Ri®R,®--- > R|®R,®R;&---, (13)

and the representation of the color charge can be any one
of the irreps R!. The global color symmetry and the con-
servation law expressed by Eq. (6) require that the whole
system keep its color state of R!, regardless of how com-
plicated the microscopic internal structure is. Except for
the color singlet, the vacuum will be polarized with re-
spect to the current of R] such that the free energy of the
color charge becomes infinite. Second, a color singlet
system does not provide a color current and, therefore,

does not interact with the vacuum color field. It can move
freely in the unpolarized color vacuum.

Given that color charges exist only in color singlets,
we now consider the simplest case for a color singlet sys-
tem, that is, to be composed of a color charge in the R
representation and an anti-color charge in conjugate rep-
resentation R* of R, with the dimension of the representa-
tion denoted by dg. We can treat this system as the R*
charge scatters against R charge through the color field
generated by the R charge, as shown in Fig. 2. If the ini-
tial and final states of the R charge have color indexes
i,j, respectively, with i,j=1,2,...,dg, then the color
charge of R is g>.(Tg);i, where T} is the representation
matrix of the genérators of S U(3) in the R irreps. Simil-

arly, the color charge of R* is gZ(TI‘;)nm, with m,n =1,
b
2,...,dg being the indexes of the initial and final states of

the R* charge. Withrespect to the relation Tg. = —(T})"
and T§ = T,‘;’T, the color singlet requires that their interac-
tion should be proportional to

0; Oin 1
(T%) (T —= —L = —— 3 (T8) ;i(TD)i; = —Ca(R),
azl’ R’J R \/d_R \/d_R dR ; R’J R/l

(14)

where C,(R) is the eigenvalue of the second order
Casimir operator of the S U(3) group in the R irreps, and
the minus sign implies that the interaction between the R
and R* charges is attractive. In QED, the equation of mo-
tion of an electric charge ¢ in an external field Fiy, is

d .
ﬂ=qF6VEDMV, where p“=(E,pxn) is the energy--

dr
¥y
s n
Him
Y dlR)
R
1
(T2 o_""'”' B J.,'-
Z L7 \\ \/ Jatr)
;
Fig. 2. (color online) Interaction of the color charges of rep-

resentations R and R* in a color singlet. Imagine that R and R*
are produced at origin O; then, R* moves to r. The initial and
final color states of R(R*) are labeled as i, j(m,n), respectively.
Thus, the color wave functions of the initial and final states of

singlet RR* are Oim Oin respectively. If we choose
& Vd(R) VAR’ P v

e; = e, and e, = ey, then the uniform chromo-electric field does
work, AE = -C>(R)g?cr, regardless of the path, C, along which
R* moves from O to r.
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momentum vector of the charge, py, is the kinetic mo-

mentum, and u* = = is its velocity vector. Similarly,
T

the motion of equation of the R* charge in the field of the
R charge can be written as

dp* o« —gCo R + f1)dx,. (15)

In the rest frame of the R charge with the R charge loc-
ated at the origin, we can take u = (1,v). If we ignore f;"
temporarily, according to Egs. (9) and (11), we obtain

dE = —Cy(R)g*o (e —ey) - dr. (16)

Based on the discussion above, e; and e, are originally
arbitrary spatial unit vectors. As shown in Fig. 2, if we
imagine that the R* charge moves from the origin to point
r, then e, is a special direction. Thus, we can choose
e; =e, and e; = ey, with ey L e,. If R* moves from origin
O to r through an arbitrary path C, then the energy
change is

r

AE = —C2(R)g20'fdr’ -(e,—eg) = —C2(R)g20'r, (17)
0.Cc

where r = |r|, and the proportional relation is replaced by
the equal relation, with o > 0 being a parameter to be de-
termined. This means that the chromo-electric field does
negative work. The conservation of energy requires that
the (kinetic) energy loss be reserved in other types of en-
ergy. Given that AFE is independent of path C, we can in-
terpret this energy type as potential energy V(r). Now,
taking into account the Coulomb potential energy gener-
ated by the point-like color charge R, the total potential is

V(r) = vo—cz(m% + GRS, (18)

2
where a; = i— This is exactly the Cornell potential. It is

very interestigg to observe that the potential has a prop-
erty of 'Casimir scaling' wherein the coefficients of the
Coulomb part and the linear part are proportional to
C2(R). The Cornell potential and the Casimir scaling have
been observed for a long time in lattice QCD calcula-
tions [1]. Here, we report their first decent derivation.

The effect of the chromo-magnetic field on color
charge R* is very similar to a uniform magnetic field on
an electric charge. According to Eq. (11), the chromo-
magnetic field is oriented perpendicularly to the (e,,ey)
plane such that it does not do work to charge R*. With the
presence of the chromo-magnetic field, kinetic mo-
mentum pyi, is related to canonical momentum p and the
vector potential as

Pkin =P +8C2(R)V, (19)

where V is the spatial component of V. According to Eq.
9) and f,, =9,V,-9,V,, we obtain

1
V.= Ega' [m “(x—xp)nz, —na - (x—xo)nlgﬂ]. (20)

If charge R* is at r, where x* = (0,r) and x{ =(0,0), we
obtain

1 1
V= Eg(ryex - EgO'xey, 2D

where e, and e, are the orientation vectors of the x-axis
and y-axis in the (e, ey) plane, respectively. Thus, the
Pxinxy and p., are related as

1
Dkinx = Px + §g2C2(R)o-y

1
Pkiny = Py~ §g2C2(R)0'x. (22)

Considering the quantum effects, the momentum and the
coordinate are operators and satisfy the canonical com-
mutation relation [x;,p;] =i. When the kinetic mo-
mentum is much smaller than the potential in magnitudes,
that is, |pkin| < |1gC2(R)V], we have

[x,y] =~ (23)

i—9
Cr(R)g*or

which means that the coordinates in the (e,,ey) plane are
non-commutative and have the following uncertainty re-
lation:

AxAy ~ 24)

Cy(R)g%o

The uncertainty relation implies that a hadron has a min-

imal projected area of in the (e,,eg) plane and,

2
Cr(R)g*o
therefore, presents a minimal size. According to lattice

QCD and phenomenological results of the string tension
of the Q0 system,
4, 2
0qq = 3870 ~0.2(GeVY’, (25)

and the minimal size of a hadron can be estimated as

2
M~ (A2 +(Ay)? > V2AxAy ~ ——

00

~0.89 fm. (26)

This minimal size subsequently yields an estimate of the
minimal energy of a hadron. Considering a color singlet
qq system of a spatial volume V and referring to Eq. (18),
the mean charge of the (anti) quark can be taken as
VC(F), where C,(F)=4/3.1If the Coulomb part is ig-
nored again, the color field strength around the (anti)
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quark is
E —2 o(ej—ey), B —2 o(eyxep) 27
0=8 1—e), Bp=g 2 Xep),
V3 V3
such that the minimal energy in the volume is
3 2, p2
Enmin = f &5 (65 + BY) ~ —5 == (28)

14

which gives Ey, ~ 550 MeV if a; ~0.3. This is a very
rough but somewhat reasonable estimate.

The global SU(3) color symmetry has further implic-
ations. As isolated color charges do not exist, it is reason-
able to assume that the whole universe is in a color sing-
let. Therefore, when an objective color charge of irrep R
is considered, one must keep in mind that it is not isol-
ated but coexists with a system, namely, the residual
world of conjugate irrep R*. This is somewhat a type of
color interference or color entanglement. The global sym-
metry requires that however complicated the residual
world may be, its effects on objective charge R are equi-
valent to that of charge R*. The logic is illustrated in Fig.
3. The fundamental degrees of freedom of QCD are
quarks, antiquarks, and gluons, which are the 3, 3*, and 8
irreps of the color SU(3) group, respectively, as ex-
pressed by the Young diagrams in the first row of Fig. 3.
For a color singlet gggg system (diagram (@) in the
second row), the remaining part of the system (red
blocks), except for an objective quark (blue block), acts
as a 3* charge composed of an antiquark and a singlet ¢g
block, as described by diagram (b). Diagram (c¢) shows
that the color singlet gg can escape from the system
freely, and the residual ¢ and g compose a color singlet
qg meson. This discussion can be extended to any color
singlet system made up of many colored objects that can
be reduced iteratively following the above logic. In this
sense, the possible irreducible color singlet configura-
tions are ¢g (meson), gqq (baryon), ggGg (anti-baryon),
qgg (hybrid meson), ggqg (hybrid baryon), gg, ggg (glue-
balls), etc., as shown in the third row of Fig. 3. If we treat
the components of the above list of irreducible color sing-
lets as constituent (anti) quarks and gluons, then their
number might be good quantum numbers in the picture of
the global color symmetry. Overall, if there are no other
mechanisms, compact multiquark configurations are dis-
favored, except for hadronic molecules bound by the re-
sidual strong interaction between color singlet objects.

To summarize, the global SU(3) color symmetry has
physical significance. If the color field generated by a
color current of type ao satisfies Af =V,d; , then the
Nother current is gauge independent and is actually gov-

qq meson qqq baryon  gg glueball ggg glueball gqgg hybrid

Fig. 3.
q(3), an antiquark g(3*), and a gluon g(8). Second row: dia-

(color online) First row: Young diagrams for a quark

gram (a) represents a ggqg color singlet system. Diagram (b)
implies that for an objective quark (the blue block), the re-
maining parts act as a 3* charge composed of an antiquark and
a color singlet ¢5. Diagram (c) shows that the color singlet gg
escapes from the system such that the objective quark feels
only the field generated by the antiquark and results in a gg
meson. The third row shows some of the minimal irreducible
color singlets composed of (anti)quarks and gluons according
to the meaning of the global S U(3) color symmetry.

erned by the matter current of this charge, which is con-
served in the conventional meaning. There does exist a
solution to the equation of motion of the color field un-
der this constraint, whose strength has a uniform part ow-
ing to the nontrivial QCD vacuum and the nonzero gluon
condensate. Consequently, a system with a net color
charge has an infinitely large free energy and, therefore,
cannot exist freely, as required by the color confinement
argument. Following this logic, the potential between a
static color charge and an anti color charge is derived to
be exactly the Cornell type and satisfies the Casimir scal-
ing observed by lattice QCD. For a color singlet system,
such as a hadron, the uniform chromo-magnetic field also
implies that the system has a minimal size and minimal
energy. Furthermore, as quarks and gluons are funda-
mental degrees of freedom of QCD, the global S U(3) col-
or symmetry requires that the possible irreducible color
singlet systems can only be ¢4, 999, 8g, 888, 938 9998
etc., such that a bound multi-quark system beyond the
above configurations can only exist as a hadron molecule
if there are no other binding mechanisms.
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