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Abstract: We investigate the chiral phase structure of quark matter with spheroidal momentum-space anisotropy

specified by one anisotropy parameter ¢ in the 2+1 flavor quark-meson model. We find that the chiral phase dia-

gram and the location of the critical endpoint (CEP) are significantly affected by the value of £. With an increase in

&, the CEP is shifted to lower temperatures and higher quark chemical potentials. In addition, the temperature of the

CEP is more sensitive to the anisotropy parameter than the corresponding quark chemical potential, which is the op-

posite to that from the finite system volume effect. The effects of the momentum anisotropy on the thermodynamic

properties and scalar (pseudoscalar) meson masses are also studied at the vanishing quark chemical potential. The

numerical results reveal that an increase in & can hinder the restoration of chiral symmetry. We also find that shear

viscosity and electrical conductivity decrease as ¢ increases. However, the bulk viscosity exhibits a significant non-
trivial behavior with £ in the entire temperature domain of interest.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a fundamental
theory for describing the strong interaction, and its phase
structure has become an important subject of consider-
able interest in recent decades. The first-principle results
from lattice QCD simulation [1, 2] have indicated that
with increasing temperature 7', the transition from ordin-
ary nuclear matter to chiral symmetric quark-gluon
plasma (QGP) is a smooth crossover at low or zero chem-
ical potential . At a high chemical potential, lattice QCD
simulation, as a reliable tool for obtaining the chiral prop-
erties of QCD matter, confronts a great challenge due to
the fermion sign problem [3]. However, strategies (for re-
views see, e.g., Refs. [4-6]) such as Taylor series expan-
sion [7-9], imaginary chemical potential, reweighting
techniques [10, 11], and the complex Langevin method
[12, 13] have been developed to attempt to tackle this
problem. In this context, some alternative theoretical
tools, such as QCD low-energy effective models (e.g., the
Nambu-Jona-Lasinio model [14-16], the Polyakov-loop
extended NJL (PNJL) model [17-19], the quark-meson

model or linear sigma model [20-24], the Polyakov
quark-meson (PQM) model [25-28]), the Dyson-
Schwinger equation approach [29, 30], and the function-
al renormalization group approach [31-34], which are not
restricted by the chemical potential, have been proposed
to explore the QCD phase structure at high chemical po-
tentials better. Further, the results obtained from the ef-
fective model calculations [35, 36] demonstrate that the
chiral phase transition of the strongly interacting matter is
a first-order transition at high density, and a second-or-
der critical endpoint (CEP) can exist between the cros-
sover line and the first-order phase transtion line in the
(i, T)-plane. Apart from the phase transition, other im-
portant information, such as the thermodynamic proper-
ties, in-medium properties of mesons [36, 37], and trans-
port properties [38-40], for the strongly interacting mat-
ter has also been extensively studied in these QCD effect-
ive models.

To take into account the intricacy of the realistic
quark matter produced in relativistic heavy-ion collisions
(HICs) at the RHIC and the LHC, different improved ver-
sions of the QCD effective models have been proposed
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by including the effects of the finite volume of the sys-
tem [41-56], the non-extensive effects in terms of long-
distance correlation [57, 58], the presence of magnetic
fields [59-68], and the effect of electric fields [69-73] to
better explore the chiral/confinement properties of the
strongly interacting matter at finite temperatures or quark
chemical potentials. Conventionally, in the literature, all
the effective models or improved effective models have
been based on an ideal assumption that the constituents of
quark matter are completely isotropic in the momentum-
space in the absence of magnetic fields. However, due to
the asymmetric geometry of the fireball created in HICs,
the system evolves with different pressure gradients along
different directions. As a result, the expansion and cool-
ing rate along the beam direction (denoted as the longit-
udinal direction) is greater than that in the radial direc-
tion [74], and this momentum anisotropy can survive at
all stages of the HICs; consequently, the parton-level mo-
mentum distribution functions may become anisotropic.
Thus, it is essential to consider the momentum-space an-
isotropy induced by the rapid longitudinal asymptotic ex-
pansion in the phenomenological investigation of differ-
ent observables. Thus far, extensive investigations have
been performed to explore the effects of momentum an-
isotropy on the parton self-energy [74-77], photon and
dilepton production [78-81], dissociation of quarkonium
[82-84], heavy-quark potential [85, 86], various transport
coefficients [87-90], and jet quenching parameter [91],
which are sensitive to the evolution of the QGP. The as-
sociated results have indicated that the momentum-space
anisotropy has a significant effect on the observables of
the QGP. However, to the best of our knowledge, thus
far, there has not been a study of momentum anisotropy
in the framework of effective QCD models or research re-
garding the effect of momentum-space anisotropy on the
chiral phase transition. Inspired by this fact, one major
goal of the present study is to reveal how the momentum
anisotropy qualitatively affects the chiral phase structure
as well as transport properties in strongly interacting mat-
ter.

The present paper is a first attempt to study the effect
of the momentum-space anisotropy induced by the rapid
longitudinal expansion of the fireball created in HICs on
the QCD chiral phase transition. We adopt the 2+1 flavor
quark-meson model, which has been successful in de-
scribing the mechanism of spontaneous chiral symmetry
breaking, to approximate quark matter. The effect of mo-
mentum anisotropy enters in the quark-meson model by
substituting the isotropic (local equilibrium) distribution
function in the total thermodynamic potential with the an-
isotropic one. This introduces an additional degree of
freedom, viz., the direction of anisotropy. The anisotrop-
ic parameter, &, representing the degree of momentum an-
isotropy or the tendency of the system to stay away from
the isotropic state, is also considered to be an argument in

the isotropic distribution function. Based on this mo-
mentum anisotropy-dependent quark-meson model, we
first explore how the momentum anisotropy affects the
chiral phase diagram and the location of the CEP. Next,
we investigate the thermodynamic properties and thermal
properties of various scalar (pseudoscalar) meson masses
for the vanishing chemical potential in both isotropic and
anisotropic quark matter. Finally, transport coefficients,
such as the shear viscosity, electrical conductivity, and
bulk viscosity, which are crucial for understanding the
dynamical evolution of QCD matter, are also estimated in
(an-)isotropic quark matter. Note that we restrict
ourselves, here, to the anisotropic system close to the iso-
tropic local equilibrium state; consequently, the calcula-
tions of thermodynamic quantities, meson masses, and
transport coefficients in the anisotropic system are meth-
odologically similar to those in the isotropic system. In
particular, for a small & limit, the anisotropic distribution
can just linearly expand to the linear order of &¢. Using
this linear approximation of the anisotropic distribution,
the mathematical expression of the transport coefficients,
which are obtained by solving the relativistic Boltzmann
equation under the relaxation time approximation, can be
explicitly separated into an equilibrium part and an aniso-
tropic correction part [87-90]. For ¢ — 0, the analytic ex-
pressions can be reduced to the standard expressions in
the local equilibrium medium, which will be discussed in
Sec. IV.

The remainder of this paper is organized as follows.
In Sec. II, we give a brief overview of the three-flavor
quark-meson model. In Sec. III, the modification of the
thermodynamic potential within momentum-space aniso-
tropy is presented. In Sec. IV, we discuss the chiral phase
transition, thermodynamic properties, meson masses, and
transport coefficients in both isotropic and anisotropic
quark matter. In Sec. V, we summarize the main results
and present an outlook.

IO. THE QUARK-MESON MODEL

The quark-meson model, as a successful QCD-like ef-
fective model, can capture an important feature of QCD,
namely, chiral symmetry breaking and restoration at a
high temperature/density. The Lagrangian of the three-
flavor quark-meson model presently used in this study is
taken from Ref. [23]:

Lom =Py, D" — g¢5)¥ + L, (1

where ¥ =u,d,s is the quark field with three flavors
(Ny = 3) and three color degrees of freedom (N, = 3). The
first term on the right hand side of Eq. (1) represents the
interaction between the quark field and the scalar (o) and
pseudoscalar () fields with a flavor-blind Yukawa coup-
ling, g, of the quarks to the mesons. The meson matrix is
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given as
¢s5 = Ty(0y +iysma), (2)

where T, =1,/2, with a=0,---,8, are the nine generat-
ors of the U(3) symmetry; A, is the Gell-Mann matrix

with j, = %1; and o, and m, denote the scalar meson

nonet and the pseudoscalar meson nonet, respectively.
The second term in Eq. (1) is the purely mesonic con-

tribution, Ly, which describes the chiral symmetry

breaking pattern in strong interaction. It is given by [23]

Ly =Tr(0,¢' "¢ —m*¢"¢) — 1 [Tr(¢'¢)]*
— L Ti(¢' §)? + c[Det(¢) + Det(p")]
+Tr[H(¢ +¢")], 3)

with ¢ =T,¢,=T,(0,+in,) representing a complex
(3x3)-matrix. Explicit chiral symmetry breaking is ex-
pressed by the last term of Eq. (3), where H =T,h, is a
(3x3)-matrix with nine external fields, #,. Explicit
U(1)4 symmetry is given by the 't Hooft determinant term
with anomaly term c¢; m? is the tree-level mass of the
fields in the absence of symmetry breaking; A; and A, are
the two possible quartic coupling constants.

Under the mean-field approximation [36], the total
thermodynamic potential density of the quark-meson
model at finite temperature 7 and quark chemical poten-
tial u is given by

QT pup) = Qqg(T,pp) + U0, 0y). “)

The first term on the right hand side of Eq. (4), Q3, de-
notes the fermionic part of the thermodynamic potential
[36]:

dp
Qq(T.uy) =2Ne f%ST f W[ln(l—fif@#ﬁp))
+In(1 —f;),f(T,uf,p))], )

with the isotropic equilibrium distribution function of the
(antiquark) quark for the f-th flavor

L.y Totg-p) = (6)

explEfFus/T]1+1°

Here, Ef = ‘/p2+m§ is the single-particle energy with
flavor-dependent constituent quark mass my. The ¥ sign
corresponds to quarks and antiquarks, respectively. In the
present work, a uniform quark chemical potential,
U= [y, = g = Wy, 1s assumed. Further, the breaking of the

S U(2) isospin symmetry is not considered; consequently,
the up and down quarks have approximately the same
masses, i.e., m, ~ my. In the quark-meson model, the con-
stituent quark masses are given as

ms = goy/ \/Z (7N

where [ denotes light quarks (I = u,d); and o, and o de-
note the non-strange and strange chiral condensates, re-
spectively. The Yukawa coupling, g, is fixed to repro-
duce a light constituent quark mass of m; ~ 300 MeV. The
second term, U(oy,07), viz, the purely mesonic potential,
is given as [20, 23, 28]

m = goy/2,

m? (0)25"‘03) colo,
X7y
U= —/lex—hy(Ty + —

2 22
A 0')2(0'% A1 + /12)0'i (A4 + /12)0'6
e 2 + T 3

where model parameters m?, h,, hy, A1, A2, and ¢, as re-
ported in Ref. [36], are listed in Table 1. Finally, the be-
havior of o, and o, as functions of temperature and
quark chemical potential can be obtained by minimizing
the total thermodynamic potential density, i.e.,

Q40

ao—x 00—)' O,=0,,0,=0y

=0, 9)

with o, = 7,0, = & being the global minimum.

Table 1. Parameters used in our work, taken from Ref. [36].

m?* /MeV?
(342.252)?

hy/MeV3
(120.73)

hy/MeV? A A2
(336.41) 1.4 46.68

c/MeV
4807.84

III. THERMODYNAMIC POTENTIAL WITH
MOMENTUM ANISOTROPY

Due to the rapid longitudinal expansion of the parton-
ic matter created in the HICs, an anisotropic deformation
of the argument of the isotropic (equilibrium) parton dis-
tribution functions is generally used to simulate the mo-
mentum anisotropy of QGP [74-90]. A special and widely
used spherical momentum deformation introduced by Ro-
matschke and Strickland [74], which is characterized by
the removal and addition of particles along a single mo-
mentum anisotropy direction, is applied in this study. Ac-
cordingly, the local distribution function of f-th flavor
quarks (antiquarks) in an anisotropic system can be ob-
tained from the isotropic (local equilibrium) distribution
function by rescaling one preferred direction in the mo-
mentum space, which is given as

1
O (Turp)= . 1
fanlso( /Jf p) e( \/IWHI’)/T +1 ( O)
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Here, the anisotropy parameter, &, presenting the degree
of momentum-space anisotropy, can generally be defined

as
)
2p?)

é 1, (11)

where p; and pr are the components of momentum, par-
allel and perpendicular to the direction of anisotropy, n,
respectively; p = (psinfcos¢, psinfsing, pcosd), where
we use the notation |p|=p for convenience;
n = (sin,0,cos@); and « is the angle between p and n.
Accordingly, (p-n)* = p*(sinfcos ¢sina + cosfcos a)?
= p*c(h,¢,a). Note that £ >0 corresponds to a contrac-
tion of the particle distribution in the direction of aniso-
tropy, whereas —1 < ¢ <0 represents a stretching of the
particle distribution in the direction of anisotropy.

If the system is close to the ideal massless parton gas
and ¢ is small, £ is also related to the ratio of shear vis-
cosity to entropy density n/s, as well as proper time 7 of
the medium. The relation for one-dimensional Bjorken
expansion in the Navier-Stokes limit is given as [92]

_ 107
T Trs’

3 (12)

This implies that the non-vanishing shear viscosity, com-
bined with a finite momentum relaxation rate in an ex-
panding system, can also contribute to the momentum-
space anisotropy. At the RHIC energy with a critical tem-
perature of T, ~ 160 MeV, 1t = 6 fm/c, and n/s = 1/4n, we
can obtain & ~ 0.3.

In this work, we assume that the system has a small
deviation from the momentum-space isotropy; therefore,
the value of ¢ is small (|¢| < 1), and Eq. (10) can be ex-
panded up to linear order in &:

0 70 &p-n)? (E;—u)/T £02
(P)~fq,f_ e fq,f

aniso 2EfT
0 f(l"”)z 0 0
—Jag.f 2EfT fq,f(l_fq,f)- (13)

By replacing the isotropic distribution functions in Eq. (5)
with Eq. (13), we finally obtain the £-dependent thermo-
dynamic potential density of the fermionic part:

B Td’p
2c(0
A )

2c(0
+]n(]_fg,f+§%}ﬁmfg,f(l_f;,f))}' (14)

Similar to the studies on the finite-size effect [41] and the
non-extensive effect [57], we also treat anisotropy para-
meter ¢ as a thermodynamic argument in the same foot-
ing as T and u and do not have any modifications to the
usual quark-meson model parameters due to the presence
of momentum anisotropy. Replacing the fermionic ther-
modynamic potential in Eq. (9) with Eq. (14), we can fi-
nally obtain the £-dependent chiral condensates at a fi-
nite temperature and quark chemical potential.

IV. RESULTS AND DISCUSSION

A. Phase transition and phase diagram

In the 2+1 flavor quark-meson model, the chiral con-
densates of both light quarks and strange quarks can be
regarded as order parameters to analyze the feature of the
chiral phase transition. The anisotropy parameters we use
here are artificially taken as &£=-0.4, 0, 0.2, 0.4, even
though the value of ¢ in realistic HICs always remains
positive in sign. In Fig. 1, temperature T dependences of
non-strange chiral condensate o, and strange chiral con-
densate o, for both isotropic and anisotropic quark mat-
ter for a vanishing quark chemical potential are plotted.
For T=0MeV, 0~ 924 MeV, o) 945 MeV. As can

100

80 -
= 60
c
—
&
L 40r
o
20-
0,
100 -
80+
= e0f
]
<
s 40
S
20+
07 I I I I I 1
0 50 100 150 200 250 300
T (MeV)
Fig. 1.  (color online) Temperature dependences of non-

strange chiral condensate o, (upper panel) and strange chiral
condensate o, (lower panel) at the vanishing quark chemical
potential for both isotropic (¢ = 0 (blue dashed lines)) and an-
isotropic (¢ = —0.4 (orange dotted-dashed lines), 0.2 (red solid
lines), and 0.4 (green wide dashed lines)) quark matter in the
quark-meson model. The values of o, and o in the vacuum
are approximately 92.4 MeV and 94.5 MeV, respectively.
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be seen, o, and o, in both isotropic and anisotropic
quark matter decrease continuously with increasing tem-
perature. This means that at the vanishing quark chemic-
al potential, the restoration of the chiral symmetry for
(an-)isotropic quark matter is always a crossover phase
transition. Further, the restoration of the chiral symmetry
in the strange sector is always slower than that in the non-
strange sector. As ¢ increases, the values of o and o, in-
crease, and their melting behaviors become smoother.
This demonstrates that an increase in the anisotropy para-
meter tends to delay the chiral symmetry restoration.

To obtain the chiral critical temperature, we intro-
duce the susceptibilities of light quarks y; and strange
quarks y,, which are defined as

00 doy

- =— 15

XI=—

The thermal behaviors of both y; and y, are presented in
Fig. 2. We can see that y; and y, have peaks at particular
temperatures. The peak position of y; determines the crit-
ical temperature, TY, for the chiral transition in the non-
strange sector. Unlike y;, xs has two peaks in the entire
temperature domain of interest. The temperature coordin-
ate of the first peak of y, is almost the same as that of y/,
and the location of the second broad peak of y, determ-
ines the critical temperature, 7Y, for the chiral transition
of the strange sector. The chiral critical temperature, T/,
at the vanishing quark chemical potential is the origin of
the crossover phase transition in the QCD chiral phase
diagram. Furthermore, these chiral critical temperatures
are sensitive to the variation of £. As & increases, T
shifts toward higher temperatures, and the height of y;
decreases. The exact values of both 7Y and T? for differ-
ent anisotropy parameters are listed in Table 2.
Compared with the case of ¢ =0, chiral critical temperat-
ures T and TY decrease by approximately 6% for
&=-0.4. For the cases of ¢ =0.2 and 0.4, both T} and T
increase by approximately 4% and 9%, respectively.
Next, we extend our exploration to the finite quark
chemical potential to analyze the effect of momentum an-
isotropy on the structure of the QCD phase diagram. In
Fig. 3, the temperature dependence of non-strange chiral
condensate o, for both isotropic and anisotropic quark
matter at different quark chemical potentials (viz.,
1 =150, 200, and 250 MeV) is plotted. At u=150MeV,
the chiral symmetry restoration with different values of ¢
still occurs as the crossover phase transition. For
1 =200MeV, the value of o, in the anisotropic quark
matter with &£ = —0.4 decreases from 60 to 23 MeV, and
the associated susceptibility presents a divergent behavi-
or at T =90 MeV, which signals the appearance of a first-
order phase transition. For u =250 MeV, the discontinu-
ity of o, (i.e., the first-order phase transition) also occurs
at £=-04,0, and 0.2, whereas at £=0.4, the phase

8 : ]

s e - £=-04]

6 W mmmes £€=0 1
=3 —— =02 |
£=04

2 4
U ‘ ‘ ‘ ‘ ‘ ———
100 120 140 160 180 200 220 240

T (MeV)

300 350 400

0.0 : ‘ ‘
100 150 200 250

T (MeV)
Fig. 2. (color online) Temperature dependence of the sus-
ceptibilities in non-strange sector y; (upper panel) and strange
sector y, (lower panel) at =0 GeV for both isotropic (¢ =0
(blue dashed line)) and anisotropic (¢ = -0.4 (orange dotted-
dashed line), 0.2 (red solid line), and 0.4 (green wide dashed
line)) quark matter in the quark-meson model.

Table 2.
non-strange condensate and strange condensate, respectively,

Chiral critical temperatures, 7¥ and TY, for the

at the vanishing quark chemical potential for different aniso-
tropy parameters.

3 -0.4 0 0.2 0.4
TX /MeV 137 146 152 159
TY /MeV 233 248 258 270

transition is still a smooth crossover. Thus, for the aniso-
tropic matter with £ =0.4, a first-order phase transition
occurs at the higher quark chemical potential. Accord-
ingly, the chiral phase transition diagram can be studied
by outlining the location of T for a wide range of quark
chemical potentials. The first-order phase transition has
to end, and then it changes into a crossover at the QCD
critical endpoint (CEP), at which the phase transition is of
the second order. In Fig. 4, the 2+1 flavor chiral phase
diagram in the (u, T)-plane for the quark-meson model
within the effect of momentum-space anisotropy is
presented. Along the first-order phase transition line
(crossover phase transition line), the chiral critical tem-
perature increases from zero up to the CEP temperature
(from the Tcgp up to TY(u=0)), whereas the critical
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Fig. 3. (color online) Temperature dependences of the non-

strange chiral condensate at p=150MeV (upper panel),
41 =200MeV (middle panel), and =250 MeV (lower panel) in
quark matter with different anisotropy parameters, i.e.,
&= -04 (orange dotted-dashed lines), 0.0 (blue dash lines),
0.2 (red solid lines), and 0.4 (green wide dashed lines).

150222220 0=--21C

< 100 N

3

& T T T T T crossover

50+ ®  CEP
1st order
0 50 100 150 200 250 300
w (MeV)
Fig. 4. (color online) Chiral phase diagram for different an-

isotropy parameters in the quark-meson model. The solid lines
represent the first-order phase transition curves, the dashed
lines denote the crossover transition curves, and the solid dots
represent the position CEP (ucgp, Tcep)-

quark chemical potential decreases from u (7T =0) to
ucep (from ucgp to zero). We observe that the phase
boundary in the (i, T)-plane of the quark-meson model
phase diagram is shifted to higher values of u and T, with

the increasing anisotropy parameter. We can also clearly
see that the position of the CEP significantly depends on
the variation of the momentum anisotropy parameter. As
& increases, the location of the CEP shifts to a higher u
and a smaller 7 domain, which is similar to that in the
study of the non-extensive effect in the linear sigma mod-
el [58]. A similar phenomenon is also observed in the lit-
erature for the analysis of the finite size effects on chiral
phase transitions [50-53, 56]. In Ref. [50], when the sys-
tem size is reduced to 4 fm, the CEP in the quark-meson
model vanishes, and the whole chiral phase boundary be-
comes a crossover curve. Based on this result, we deduce
that as & increases further, the CEP may disappear. In this
work, for £=-04, 0, 0.2, 0.4, the location of the CEP is
at  (Tcgp, llCEP) = (100, 174) MGV, (91,222) MCV,
(84,247) MeV and (79,270) MeV, respectively. The value
of ucgp from ¢ =-04 to £ =0.4 increases by approxim-
ately 50%, whereas the value of Tcgp increases by ap-
proximately 20%. This means that the influence of mo-
mentum-space anisotropy on the quark chemical poten-
tial coordinate of the CEP is more prominent than that on
the temperature of the CEP. An opposite trend can be ob-
served in the study of the finite volume effect [50], where
the temperature coordinate of the CEP in the quark-
meson model appears to be affected more strongly by the
finite volume than the quark chemical potential coordin-
ate of the CEP.

B. QCD thermodynamic quantities

Let us now study the influence of anisotropy paramet-
er ¢ on the thermodynamics at the vanishing quark chem-
ical potential. The T- and &-dependent pressure, P(T,¢),
which is derived from the thermodynamic potential, is
given as

P(T’g) = _Q(T’é_‘)’ (16)

with vacuum normalization P(0,¢) = 0. Entropy density s
and energy density € are defined as

(1, = -0 a7
and
&(T.8) = -P(T.§)+Ts(T,$), (18)
respectively.

In Fig. 5, the variations in scaled pressure P/T*,
scaled entropy density s/T3, and scaled energy density
€/T* with respect to temperature in the quark-meson
model for both isotropic and anisotropic quark matter are
presented. It can be seen that the thermal behaviors of
P/T*, s/T3, and €/T* for the anisotropic quark matter are
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4+ IR
15+
3,
- 10t
g
q,
5,
1,
=04
0 e, § 0
50 100 150 200 250 300 350

T(MeV)
Fig. 5.

50 100 150 200 250 300 350
T(MeV)

50 100 150 200 250 300 350
T(MeV)

(color online) Temperature dependences of scaled pressure P/T*(left panel), scaled entropy density s/73(middle panel), and

scaled energy density e/T* (right panel) for 4 =0MeV in quark matter with different anisotropy parameters, i.e., £ = 0.4 (orange dot-
ted-dashed lines), 0.0 (blue dash lines), 0.2 (red solid lines), and 0.4 (green wide dashed lines).

in agreement with those for the isotropic system. Spe-
cifically, with increasing temperature, P/T*, s/T3, and
€/T* first rise rapidly and then tend toward a saturation
value. At a high enough temperature, the limit values of
P/T*, s/T3, and €/T* for the case of ¢ = —0.4 stabilize at
approximately 4.0, 16.5, and 12.5, respectively, even th-
ough all these values are lower than their respective QCD

. P 2
Stefan-Boltzmann (SB) limit values: 5B (N2 - 1) T

) T4 T
2 SSB 4PSB €SB 3F’SB
NN = ~52, 2B _ ~20.8, =8 _ ~15.6.
TR0 » T3 T T4~ T4

From Fig. 5, we can also see that the limit values of these
thermodynamics at a high enough temperature are still
decreasing functions of &, which is opposite to their qual-
itative behaviors with non-extensive parameter ¢. In Ref.
[57], at a high temperature, the limit values of these
scaled thermodynamics increase as ¢ increases.
Moreover, their features with ¢ are significantly different
from those with the finite volume effect. For example,
Refs. [42, 53] indicate that with increasing temperature,
P/T* first decreases with increasing volume and then
quickly saturates to the infinite volume value; in other
words, these thermodynamics are insensitive to volume
changes in the high temperature domain.

The speed of sound squared, c¢?, as an important
quantity in the HICs, is also studied in the present work.
It is defined by

oP OP| |0e s
2 T = — = — /— = — 1
CS( ,f) (96 \% 8T \% 8T \% CV’ ( 9)
with the specific heat at constant volume V
coro=2| - 128 20)
STl T artly

As shown in the upper panel of Fig. 6, the scaled specific
heat, Cy/T?, first rises rapidly with increasing temperat-
ure, reaches the maximum near chiral critical temperat-

ure TY, and then decreases and eventually remains con-
stant. Similar to P/T*, s/T3, and €/T*, the limit value of
Cy/T? at high temperatures also decreases as & increases.
The peak of Cy/T? decreases as & increases; in other
words, as ¢ increases, the critical behavior of Cy /T3 is
smoothed out. From the lower panel of Fig. 6, we can ob-
serve that the thermal behavior of the speed of sound
squared, ¢2, for £ =-0.4 exhibits a sharp drop near the
corresponding chiral critical temperature 77 ; then, it in-

1401

Cy/T?
g

030
025}
a5 0.20]
0.15)

0.10 /

0.05%

50 100 150 200 250 300

Fig. 6.
specific heat Cy/T> (upper panel) and squared speed of sound
2 (lower panel) at 4 =0 MeV for isotropic (¢ = 0 (blue dashed
lines)) and anisotropic (¢ = —0.4 (orange dotted-dashed lines),
0.2 (red solid lines), and 0.4 (green wide dashed lines)) quark
matter in the quark-meson model.

(color online) Temperature dependences of scaled
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creases rapidly up to the ideal gas value of 1/3.
Moreover, as ¢ increases, the dip structure of ¢? is gradu-
ally weakened, and the location of its minimum shifts to
higher temperatures, which is qualitatively similar to
Cy/T?. At high temperatures, we can see that ¢? is nearly
unaffected by £ because the reduction in entropy density
and the increment in the inverse specific heat almost can-
cel each other out. The literature on studies of the finite-
size effect [41, 42] and the non-extensive effect [S57] in
the PNJL model has also indicated that as system size L
(non-extensive parameter ¢) decreases (increases), the
critical behavior of ¢? gradually dilutes and even van-
ishes. Therefore, these results for thermodynamics again
emphasize that an increase in ¢ can hinder the restoration
of chiral symmetry.

C. Meson mass

In this part, we study the chiral structures of scalar
(JP =0") and pseudoscalar (J” = 0~) meson masses at the
vanishing quark chemical potential. A detailed procedure
for calculating the meson mass at a finite temperature and

quark chemical potential in the quark-meson model can
be found in Ref. [36]. Here, we just sketch the outline of
the related computation. In quantum field theory, scalar
and pseudoscalar meson masses can generally be ob-
tained from the second derivative of the temperature- and
quark chemical potential-dependent thermodynamic po-
tential density, Q(7T,uy), with respect to the correspond-
ing scalar fields as,=0, and pseudoscalar fields
apy =m4(a =0,...,8), which can be expressed as [36]

629 (T,/lf)

aa'i,aaai,b

%ab = 2n

2 2
_ (M T
m _(mi,ab) +(mi,ab> ’

min

where the i = S (P) subscript denotes the scalar (pseudo-
scalar) mesons. The first term on the right-hand side of
Eq. (21) denotes the vacuum mass squared matrices cal-
culated from the second derivative of purely mesonic po-
tential. The second term represents the modification of
the mass squared matrices due to fermionic thermal cor-
rection at a finite temperature and quark chemical poten-
tial, which in an anisotropic system can be written as

2 2
oml Y = 0Qyq(T, 5, €) _ON. Z f dp p* P "Myafp qf( fof)
babl T Say g 0ayy 4n2 Ey ||Jo |7 e 2E2 2E,T s
2 £0 0
&’ o T oy o 5 |27 T Thy 0 ~
x|1- GET 1= f0+ — Z )| e D m? 7, = Y E T, -2 (=12 ) +a—a}- (22)
The squared constituent quark mass derivative with re- = (mM My2 4 ( 5mp44)2 (28)
spect to meson field dm? /3%(1 =m? ,and that with re-
fa m2 =m?, COS> Op + m> g 5in° 0
spect to meson fields 62m2/(0a,,,,8a/,,b) = m? ?ap for differ- w ~"Poo P Mpgs P
ent flavors are listed in Table 3 of Ref. [36]. When ¢=0, +2m g sinfp cos Op, (29)
Eq. (22) can be reduced to the result for an isotropic sys-
tem. Theregfter, the squared masses of four scalar meson m}z7 =% $in? Op + mPsgg OS2 Op
states are given as [23, 36, 37] ’ ’
- 2”‘%,08 sin@p cosOp, (30)
= (i) +(6m | ), (23)
where the mixing angles, 6sp), read as
mg = (m¥)? +(6m} )7, (24) 2m2
tan26; =| —————|, i-S.P. 30D
2 _ 2 2 2 .2 M0 = Miss
My =HLg o, COS O + My gg SIN O
2 .
+2m g sinfs cosfs, (25)  and m? ) g08 = (M50 /58/08)> + (M 00 55/05)" - The detailed
descriptions of the vacuum contributions [(mM)Z, (mM)?,
2 _ 2 .2 2 2
My, =g o0 SIN” O + Mg g5 COS™ O ()2, (mi)? and (my) gq/05) ] from the purely mesonic
- 2m§’08 sinfs cosfs. (26) potential in Egs. (23)-(30) can be found in Refs. [36, 37].
The left panels and right panels of Fig. 7 display the
The four pseudoscalar meson masses are T-dependent masses of the pseudoscalar (7, K, 1, 17) and
scalar (fy, o, ag, k) mesons for both isotropic and aniso-
tropic quark matter in the quark-meson model, respect-
= (m¥)? + (omb, )2, @n el d P

ively. We can see that for a fixed anisotropy parameter,
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the masses of pseudoscalar meson sectors n, K, and 7 re-
main constant up to near the chiral critical temperature of
non-strange condensate, T, whereas the masses of 7’
and scalar meson sectors o, ap, k remain constant at a
low temperature and then decrease before reaching T7.
For pseudoscalar meson sector fy, its mass also remains
constant at a low temperature but decreases before reach-
ing the chiral critical temperature of strange condensate,
TY. For pseudoscalar meson sectors 7, K, and 7, their
masses always decrease with increasing & at T > 140
MeV. However, for n” and pseudoscalar meson sectors
(n, K, 1’, 1), the dependence of their masses on aniso-
tropy parameter ¢ is nonmonotonic in the entire temperat-
ure domain of interest. More precisely, with an increase
in &, the masses of ' o, ag, k first increase in the low
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‘ ‘ ‘ ‘ ‘ —
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1000 -
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800 -
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Fig. 7.

temperature domain (100 MeV < T < 160 MeV) and then
decrease in the higher temperature domain
(T > 160 MeV). For fy, its mass increases with increas-
ing £ at T <270MeV (viz., TY (¢ =0.4)) and decreases
thereafter. As a whole, near above T or T, all mesons
have unphysical degrees of freedom, and their masses be-
come degenerate, which signals the restoration of chiral
symmetry. In Fig. 7, we can also see that with an in-
crease in &, the temperature coordinate at which meson
masses begin to degenerate can be shifted to higher tem-
peratures. This again demonstrates that an increase in the
momentum-space anisotropy parameter can hinder the
restoration of chiral symmetry. The qualitative behaviors
of these meson masses with ¢ are different from the res-
ults for analyzing the finite size dependence of meson

1200
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%
= 1000
=
900 | ]
50 100 150 200 250 300
T(MeV)
1200
1000 |
—~ 800f
Z
Z 600 [
=
400 [
200 f
50 100 150 200 250 300
T(MeV)
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= 1000}
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900
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800
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(color online) Temperature dependences of pseudoscalar mesons =, K, 7/, n (left panels) and scalar mesons fp, o, ao, « (right

panels) at u=0MeV for both isotropic (¢ =0 (blue dashed lines)) and anisotropic (¢ = —0.4 (orange dotted-dashed lines), 0.2 (red solid
lines), and 0.4 (green wide dashed lines)) quark matter in the quark-meson model.
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masses within the PNJL model [42, 46], where K, n, and
n’ have a significant volume dependence in the lower
temperature domain (7 < 100 MeV).

D. Transport coefficient

Studying transport properties is essential for a deep
understanding of the dynamical evolution of strongly in-
teracting matter. In this part, we discuss the influence of
momentum-space anisotropy on transport coefficients,

&dy

d o d
15Tf PE Jras 0= £29] - Z9OT2f P [rqffof(l qf)x( —2f0 4
£

dquzr dp p*
: 0 0
AT f Ez[ wrly (1= fop]a

‘>Z

S
1l
\M

Here, dy is the degeneracy factor for f-flavor quarks.
The quark electric charge, gy, is given explicitly by
qu=—qa=2e/3 and qus=-q;5;=-e/3. The electron
charge reads e = (4na,)'/?> with fine structure constant
ay =~ 1/137. Different from the formula for bulk viscosity

2
c?)pz] in

dm f
f+c myT —— ar ] to
incorporate the in-medium effect. In the treatment of re-
laxation time 7, ;, we roughly take a constant value of
745 = 1 fm for the computation. In the weakly anisotrop-
ic system, the former terms in Eqgs. (32)-(34) are signific-
antly larger than the latter terms in magnitude due to the
difference in momentum power of the respective integ-
rands. Therefore, the transport coefficients are still
mainly dominated by the first term of the related quantit-
ative expressions.

The variation of shear viscosity  with temperature at
the vanishing quark chemical potential for both isotropic
and anisotropic quark matter is shown in Fig. 8. We see
that 7 in the (an-)isotropic quark matter rises monotonic-
ally with increasing temperature because the 7 depend-
ence of 7 mainly comes from quark distribution function
f[?, ; in the associated integrand. The qualitative behavior

in Ref. [89], we replace the original term [(% -

. . 1
the integrand with [(§ —c?) p*-c

qjédy
1872

such as shear viscosity 5, electrical conductivity o, and
bulk viscosity ¢ in quark matter. Due to the effect of mo-
mentum-space anisotropy encoded in the parton distribu-
tion functions, the general expressions of these transport
coefficients, which are obtained by solving the relativist-
ic Boltzmann equation in relaxation time approximation,
require some modifications [87-90]. Therefore, using the
results in Refs. [88, 89], the formulas of &-dependent
transport coefficients at zero quark chemical potential are

given as
T
E—f)} (32)

(§_ S)pz—czm§+c med ] [qufof( qf)]

d T
(275323[f0f( +f‘?f)( zf;’”E_f)]’ G
2
[ Trass (-2 (1-2,)
(34)

of  with & can also be understand well from the associ-
ated expression. In the vicinity of chiral critical temperat-
ure T¥, n slightly decreases as & increases due to the de-
creasing behavior of Boltzmann factor e "/T with &. In
the higher temperature domain (7 > 160 MeV), the de-
creasing feature of 7 is negligible due to the unsensitivity
of the constituent quark masses to £. However, the abso-
lute value of the second term in Eq. (32) significantly in-
creases with an increase in £. As a result,  decreases as &
increases. This is similar to the result in Ref. [89], where
n for the QGP is calculated in the quasiparticle model.

1.5x10%}

2 1.0x108}
&
=
<

5.0x107}

Fig. 8. (color online) Temperature dependence of shear vis-
cosity n at =0 MeV in quark matter with £ =-0.4 (orange
dotted-dashed line), 0.0 (blue dashed line), 0.2 (red solid line),
and 0.4 (green wide dashed line).
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For electrical conductivity o, its thermal behavior is
similar to that of 7, and the quantitative difference
between 1 and o; mainly comes from the different mo-
mentum power of the respective integrands. Similar to the
shear viscosity, the ¢ dependence of o is also determ-
ined by the second term in the associated expression. In
Fig. 9, we observe that o decreases as ¢ increases,
which is also qualitatively consistent with the results of
o for the QGP in the quasiparticle model [87, 90]. The
dependence of 1 and o; on momentum-space anisotropy
is different from that on finite system size L in the frame-
work of the (P)NJL model. In Ref. [41], both n and o
first increase as L decreases in the low temperature do-
main, whereas the size effect nearly vanishes in the high
temperature domain. Furthermore, the results in Ref. [57]
also indicate that both 1 and o in the PNJL model in-
crease as non-extensive parameter ¢ increases for
T > 150 MeV.

Next, we discuss the temperature dependence of bulk
viscosity ¢ at zero quark chemical potential for both iso-
tropic and anisotropic quark matter. As shown in Fig. 10,
for a fixed anisotropy parameter, ¢ has peaks in the vicin-
ity of both T} and T¥, which is significantly different

100 150 200 250 300
T(MeV)
Fig. 9. (color online) Temperature dependence of electrical
conductivity o at =0 MeV in quark matter with ¢£=-0.4

(orange dotted-dashed line), 0.0 (blue dashed line), 0.2 (red
solid line), and 0.4 (green wide dashed line).

3.0x107F

2.5x107F
& 2.0x107F
€]
= 1.5x107F
o

1.0 x107F

5.0x10°F

0
0 50 100 150 200 250 300 350
T(MeV)
Fig. 10. (color online) Temperature dependence of bulk vis-
cosity ¢ at u=0MeV in quark matter with &=-04 (orange
dotted-dashed line), 0.0 (blue dashed line), 0.2 (red solid line),
and 0.4 (green wide dashed line).

from the thermal behavior of  and o. We also note that
the thermal profile of ¢ is similar to dm,/dT or y,, which
may be attributed to the fact that the qualitative behavior
of ¢ is mainly governed by dm;/dT rather than the quark
distribution function in the associated integrand of Eq.
(34). Due to the decreasing feature of the peak of dm,/dT
with increasing &, the double-peak structure of ¢ is
weakened as ¢ increases, and the positions of the peaks
shift to higher temperatures, as shown in Fig. 10. The di-
luting effect of ¢ on the critical behavior of ¢ is similar to
that in studies of the finite volume effect and the non-ex-
tensive effect. In Ref. [41], the double-peak structure of ¢
even converts to one broadened peak structure when the
system size is reduced to 2 fm. In Ref. [57], as non-ex-
tensive parameter ¢ increases to 1.1, the two peaks of ¢
begin to merge into a broad peak.

V. SUMMARY AND CONCLUSION

In this work, an anisotropy parameter, &, which re-
flects the degree of momentum-space anisotropy arising
from different expansion rates of the fireball generated in
HICs along the longitudinal and radial direction was in-
troduced, for the first time, in the 2+1 flavor quark-meson
model by replacing the isotropic distribution function in
the thermodynamic potential of the quark-meson model
with the anisotropic one. The effect of & on the chiral
properties, thermodynamics, meson masses, and trans-
port properties in quark matter were investigated. We
found that the chiral phase transition of quark matter with
different anisotropy parameters is always a crossover at
the vanishing quark chemical potential. At the finite
quark chemical potential, the temperature of the CEP is
affected more significantly by the anisotropy parameter
than its quark chemical potential, which is opposite to
that in the study of the finite volume effect. We also
demonstrate that at a high temperature, the limit values of
various scaled thermodynamic parameters (P/T*, s/T3,
€/T*, Cy/T?) are quite sensitive to &. As & increases,
their limit values decrease, which is different from the fi-
nite size effect, but rather similar to the non-extensive ef-
fect. Further, the critical behavior of Cy/T? and ¢ can be
smoothed out with increasing &. For scalar and pseudo-
scalar mesons, the temperature at which their masses be-
gin to degenerate is enhanced as ¢ increases, which im-
plies that an increase in ¢ can hinder the restoration of
chiral symmetry. Finally, the transport coefficients, such
as shear viscosity 5, electrical conductivity o, and bulk
viscosity ¢ for both isotropic and anisotropic quark mat-
ter, were also calculated. Our results show that n and o
rise with increasing temperature, whereas the thermal be-
havior of ¢ exhibits a noticeable double-peak structure. It
was found that  and o decrease monotonically as & in-
creases, whereas the qualitative behavior of ¢ with & was
similar to y(¢). With increasing &, the double-peak struc-
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ture of £ can be weakened, and the positions of the peaks
shift to higher temperatures.

In the present study, we only focused on the chiral as-
pect of the QCD phase diagram. The exploration of the
confinement phase transition in anisotropic quark matter
can also be addressed via the Polyakov-loop potential. In
the Polyakov-loop improved quark-meson model, the
chiral phase transition and the location of the CEP are af-
fected further. For the calculation of the transport coefti-
cients in this study, the quark relaxation time was as-
sumed to be a constant. However, in a realistic interac-
tion scenario, the relaxation time may also vary with the
momentum anisotropy. These issues comprise our future

research directions. Moreover, note that a spheroidal mo-
mentum-space anisotropy specified by one anisotropy
parameter in one preferred propagation direction was
considered in this work; however, the introduction of ad-
ditional anisotropy parameters is necessary to provide a
better characterization of the QGP properties. The chiral
and confinement phase transitions in quark matter with
ellipsoidal momentum-anisotropy [76, 77], characterized
by two independent anisotropy parameters, can also be
modeled using the PNJL model or PQM model. Re-
search on these directions is in progress, and we expect to
report our results soon.
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