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Abstract: We studied the pair production of charged scalar particles of a five-dimensional near extremal Reissner-
Nordström-Anti de Sitter (RN-AdS5)  black hole.  The pair production rate and the absorption cross section ratio in
full spacetime are obtained and are shown to have a concise relation with their counterparts in the near horizon re-
gion. In addition, the holographic descriptions of the pair production, both in the IR CFT in the near horizon region
and the UV CFT at the asymptotic spatial boundary of the RN-AdS5 black hole, are analyzed in the AdS2/CFT1 and
AdS5/CFT4 correspondences, respectively. This work gives a complete description of scalar pair production in a near
extremal RN-AdS5 black hole.
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I.  INTRODUCTION

The Schwinger pair production of charged particles is
an important QED phenomenon that is related to the va-
cuum instability and persistence in the presence of strong
external  electromagnetic  fields  [1].  Another  important
spontaneous pair  production  phenomenon  is  the  Hawk-
ing radiation from black holes, which can be viewed as a
tunneling  process  through  the  black  hole  horizon  [2].  A
charged  black  hole  thus  provides  a  natural  lab  in  which
both the Schwinger pair production and the Hawking ra-
diation  can  occur  and  mix  with  each  other.  Usually  the
equation of motions (EoMs) of quantum fields in a gener-
al black hole background is difficult to solve analytically
in  full  spacetime.  However,  when  the  symmetry  of  the
spacetime  geometry  is  enhanced  under  some  conditions,
the  problem  becomes  manageable;  for  this  reason,  in  a
series  of  recent  studies,  the  spontaneous  pair  production
of  charged  particles  has  been  systematically  studied  in
near  extremal  charged  black  holes,  including  the  RN

black  hole  [3-5]  and  the  Kerr-Newman (KN)  black  hole
[6, 7], in which the near horizon geometry is enhanced in-
to AdS2 or warped AdS3 in the near extremal limit. Ow-
ing  to  the  enhanced  near  horizon  symmetry,  the  explicit
forms of the pair production rate and other 2-point correl-
ation functions have been obtained and their holographic
descriptions  have  been  found  based  on  the  RN/CFT  [8-
13]  and  KN/CFTs  dualities  [14-16].  In  addition  to
charged black hole backgrounds, pair production has also
been investigated in pure AdS or dS spacetime, see, e.g.,
[17-20],  whereas  in  the  absence  of  a  gravitational  field,
the  pure  Schwinger  effect  has  been  efficiently  analyzed
by using the phase-integral method [21-24].

However, previous studies mainly focused on analyz-
ing spontaneous  pair  production  in  the  near  horizon  re-
gion of black holes in an asymptotically flat spacetime. A
charged  black  hole  in  AdS  spacetime  has  an  additional
AdS  symmetry  at  the  asymptotical  boundary.  From  the
holographic  point  of  view,  the  CFT  description  of  pair
production has been revealed only in the near horizon re-
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gion in terms of AdS2/CFT1 (or warped AdS3/CFT2). Al-
though particle pairs produced in the near horizon region
of  black holes  indeed provide  important  contributions  to
those  in  full  spacetime,  an  understanding  of  the  whole
picture is still lacking. In the present paper, we extend the
study of pair production to a full near extremal RN-AdS5
black  hole  background,  which  possesses  an  AdS5 geo-
metry  at  the  asymptotic  spatial  boundary  as  well  as  an
AdS2 structure in the near horizon region. It is shown that
the radial  equation  of  the  charged  scalar  field  propagat-
ing in this spacetime can be transformed into a Heun-like
differential  equation  and  thus  be  solved  by  matching  its
solutions in the near and far spacetime regions, using the
low temperature limit.  Consequently,  analytical  forms of
the full solutions for the pair production rate, the absorp-
tion cross  section  ratio,  and  the  retarded  Green's  func-
tions are obtained, and they are shown to have concise re-
lations with their counterparts calculated in the near hori-
zon  region.  Based  on  these  concise  relations,  numerical
analysis can easily be performed, and the pair production
rate in full spacetime is shown to be smaller than that in
the near  horizon region,  which is  consistent  with  the  as-
sumption  that  pair  production  mainly  comes  from  the
black hole near horizon region.

A  near  extremal  RN-AdS5 black  hole  is  also  a  very
useful background for studying holographic dualities. As
the  near  horizon  AdS2 (or  warped  AdS3)  spacetime  is
dual  to  a  1D  CFT  (or  chiral  CFT2),  while  asymptotical
AdS5 spacetime is dual to another 4D CFT, the former is
called  IR  CFT,  while  the  latter  is  called  UV  CFT,  and
they  are  connected  with  each  other  via  the  holographic
renormalization group  (RG)  flow  along  the  radial  direc-
tion [25-27]. For example, it  has been shown that a near
extremal RN-AdS black hole acts as a holographic model
in describing typical properties of a (non)Fermi liquid at
the  quantum critical  point  [28-31].  It  is  thus  natural  and
interesting to  find  holographic  descriptions  of  pair  pro-
duction in an RN-AdS5 black hole both in the IR CFT1 in
the near  horizon region and the  UV CFT4 at the  asymp-
totical AdS5 boundary. We show that the picture in the IR
CFT1 is very similar to those in the near extremal RN and
KN black holes, and that the pair production rate and the
absorption  cross  section  ratio  calculated  from  the  AdS2
spacetime  can  be  matched  with  those  from  the  dual  IR
CFT. Regarding the UV 4D CFT, a direct comparison of
calculations between the bulk and the boundary in terms
of the AdS5/CFT4 is not  made due to a  lack of  informa-
tion  on  the  dual  finite  temperature  CFT4 side.  However,
from the bulk gravity side, the condition for pair produc-
tion  in  the  full  near  extremal  RN-AdS5 spacetime  is  the
violation of the Breitenlohner-Freedman (BF) bound [32,
33]  in  AdS5 spacetime.  This,  on  the  dual  4D  CFT  side,
corresponds to a complex conformal weight for the scal-
ar operator dual to the bulk charged scalar field, which in-
deed  indicates  instabilities  for  the  scalar  operator  on  the

boundary  and  is  consistent  with  the  situation  in  the  IR
CFT. Furthermore,  we determined an interesting relation
between  the  full  pair  production  rate  and  the  absorption
cross  section  ratio  via  changing the  roles  of  sources  and
operators  simultaneously  both  in  the  IR  and  the  UV
CFTs.

AdSd+1

AdSd+1

The rest of the paper is organized as follows. In Sec.
II, we provide a brief review of the bulk theory and con-
sider the near horizon geometry of an RN-  black
hole  and  the  EoMs  of  the  probe  charged  scalar  field.  In
Sec. III,  spontaneous pair production in the near horizon
region  of  near  extremal  RN-  black holes  is  dis-
cussed,  and  the  2-point  functions  of  the  charged  scalar
field (such as the retarded Green's function), pair produc-
tion rate, and absorption cross section ratio are calculated.
In Sec. IV, the full analytical solution for the radial equa-
tion of the charged scalar field in RN-AdS5 black holes is
obtained by  applying  the  matching  technique.  Con-
sequently, the full analytical forms of the pair production
rate,  absorption  cross  section  ratio,  and  retarded  Green's
function are found,  and the connections with their  coun-
terparts  in  the  near  horizon  region  of  the  black  hole  are
discussed. Then, in Sec. V, the dual CFTs descriptions of
spontaneous pair production are both analyzed in terms of
the  AdS2/CFT1 correspondence  in  the  IR  region  and  the
AdS5/CFT4 correspondence  in  the  UV  region,  and  their
connections are also revealed. Finally, the conclusion and
physical implications are provided in Sec. VI. 

II.  BULK THEORY
 

AdSd+1A.    RN-  black hole
d+1

c = h̄ = 1
The  dimensional  Einstein-Maxwell  theory  has

an action (in units of ) as 

I =
∫

dd+1x
√−g

[
1

16πGd+1

(
R+

d(d−1)
L2

)
− 1

g2
s

FµνFµν

]
,

(1)

AdSd+1 gs

U(1)

where L is  the  curvature  radius  of  the  asymptotical
 spacetime,  and  is  the  dimensionless  coupling

constant  of  the  gauge field.  The  dynamical  equa-
tions 

Rµν−
1
2

gµνR−
d(d−1)

2L2 gµν=
8πGd+1

g2
s

(
4FµλFν

λ−gµνFαβFαβ
)
,

∂µ
(√−gFµν

)
= 0,

(2)

AdSd+1

admit  the  Reissner-Nordström-Anti  de  Sitter  (RN-
)  black  brane  (or  the  planar  black  hole)  solution

[34] 
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ds2 =
L2

r2 f (r)
dr2+

r2

L2

(
− f (r)dt2+dx2

i

)
,

A = µ
(
1− rd−2

o

rd−2

)
dt, (3)

with 

f (r) =1− Gd+1L2M
rd +

Gd+1L2Q2

r2d−2 ,

µ =

√
d−1

2(d−2)
gsQ
rd−2

o
, (4)

ro f (ro) = 0 µ

[µ] = length−(d−1)/2

ro
d = 4

ro
r∗ f (ro) = 0

M =
rd

o

Gd+1L2 +
Q2

rd−2
o

where  is  the radius of the outer horizon ( ), 
is  the  chemical  potential  with  dimension

, M is the mass, and Q is the charge of
the black brane. We may find an explicit expression of 
for  from a solution of the cubic equation, which is
complicated,  but  has a  general  expression  in  the  ex-
tremal case,  i.e.,  in IIB. The condition  gives

 (which is  the  Smarr-like  relation  re-

lated  to  the  first  law  of thermodynamics  of  the  black
brane); temperature T and “surface” entropy density s of
the black brane are, respectively, 

T =
ro d

4πL2

(
1− d−2

d
Gd+1L2Q2

r2d−2
o

)
,

s =
1

4Gd+1

( ro

L

)d−1
. (5)

Moreover,  the  first  law  of  thermodynamics  of  the  dual
boundary d-dimensional quantum field is 

δϵ = Tδs+µδρc, (6)

where the “surface” energy and charge densities are,  re-
spectively, 

ϵ =
d−1

16πLd−1 M,

ρc =

√
2(d−1)(d−2)

8πgsLd−1 Q. (7)

Then, it is straightforward to check the Euler relation (
d

d−1

)
ϵ = ϵ + p = T s+µρc, (8)

p =
ϵ

d−1
where  the  pressure  is ,  which  shows  that  the
dual d-dimensional quantum  field  theory  on  the  asymp-
totic boundary is conformal, as expected. 

B.    Near-horizon near-extremal geometry

r2d−2
∗ ≡ d−2

d
Gd+1L2Q2

To make the following analysis convenient, let us in-
troduce the length scale ;  then, the
temperature can be rewritten as 

T =
rod

4πL2

(
1− r2d−2

∗
r2d−2

o

)
. (9)

r∗
f (r∗) , 0

r∗ < ro

ro = r∗ M = M0 ≡
2(d−1)

d−2
rd
∗

Gd+1L2

ε→ 0

Note  that  may  be  treated  as  the  “effective”  radius  of
the  inner  black  hole  horizon  though  in  general
and . The extremal condition for a degenerate hori-

zon  at  is .  The  near ex-

tremal limit of the near horizon is obtained by taking the
limit  of the transformations 

M−M0 =
d(d−1)rd−2

∗
Gd+1L2 ε2ρ2

o,

ro− r∗ = ερo, r− ro = ε(ρ−ρ0), t =
τ

ε
, (10)

ρo ρ ∈ [ρ0,∞)where in general  is finite and .
f (r) r = roExpanding  around , we have 

f (r) ≃ d(d−1)
r2

o
(ρ2−ρ2

o)ε2+O
(
ε3

)
, (11)

the near horizon geometry is given by 

ds2 = −ρ
2−ρ2

o

ℓ2 dτ2+
ℓ2dρ2

ρ2−ρ2
o
+

r2
o

L2 dx2
i ,

A =
(d−2)µ

ro
(ρ−ρo)dτ, (12)

ℓ2 ≡ L2

d(d−1)

ρo→ 0

where  is  defined  as  the  square  of  the
curvature radius of the effective AdS2 geometry. The lim-
it  yields the extremal limit.

ξ = ℓ2/ρ |ξ| ⩽ ξo =

ℓ2/ρo

The  solution  in  Eq.  (12)  can  also  be  written  in  the
Poincaré  coordinates  in  terms  of ,  (

), 

ds2 =
ℓ2

ξ2

−
(
1− ξ

2

ξ2
o

)
dτ2+

dξ2

1− ξ
2

ξ2
o

+
r2

o

L2 dx2
i ,

A =
(d−2)µℓ2

ro

(
1
ξ
− 1
ξo

)
dτ. (13)

AdS2×Rd−1

S L(2,R)R

The above geometry is a black brane with both local
and  asymptotical  topology  (AdS2 has  the

 symmetry).  The  horizons  of  the  new  black
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ξ = ±ξo

Tn =
1

2πξo
z ≡ ξ/ξo |z| ⩽ 1 η = τ/ξo

brane  are  located  at ,  and  its  temperature  is
.  Note  that  if  we  adopt  the  new  coordinates

 with  and , the metric becomes 

ds2 =
ℓ2

z2

(
−(1− z2)dη2+

dz2

1− z2

)
+

r2
o

L2 dx2
i , (14)

η T̃n =
1

2π

and the temperature associated with the inverse period of

 is normalized to .
 

C.    Charged scalar field probe
ΦThe action of a bulk probe charged scalar field  with

mass m and charge q is 

S =
∫

dd+1x
√−g

(
−1

2
D∗αΦ

∗DαΦ− 1
2

m2Φ∗Φ

)
, (15)

Dα ≡ ∇α− iqAα ∇αwhere  with  being the covariant deriv-
ative in curved spacetime. The corresponding Klein-Gor-
don (KG) equation is 

(∇α− iqAα)(∇α− iqAα)Φ = m2Φ. (16)

Moreover, the radial flux of the probe field is 

F = i
√−ggrr(ΦD∗rΦ

∗−Φ∗DrΦ). (17)

AdSd+1 Φ(t, x⃗,r) =
ϕ(r)e−iωt+i⃗k·x⃗
In  the  RN-  background  (3),  assuming 

, the KG Eq. (16) has the radial form
 

(L
r

)d−1
∂r

(
rd+1

Ld+1 f (r)∂r

)
ϕ(r)

+

(
L2(ω+qAt)2

r2 f (r)
−m2− L2

r2 k⃗2
)
ϕ(r) = 0. (18)

The  solutions  to  Eq.  (18)  cannot  be  directly  found  in
terms of special functions in the full spacetime region. In
what  follows,  we solve it  in  different  regions  and match
these solutions to obtain the full solution. 

III.  PAIR PRODUCTION IN THE INNER ADS2
 

A.    Near-horizon solutions
Firstly, we analyze the near horizon, near extreme re-

gion  (13)  and  solve  the  KG  Eq.  (16)  by  expanding  the
scalar field as 

Φ(τ, x⃗, ξ) = ϕ(ξ)e−iwτ+i⃗k·x⃗. (19)

Then, the KG equation reduces to 1)
 

ξ2
(
1− ξ

2

ξ2
o

)
ϕ′′(ξ)− 2ξ3

ξ2
o
ϕ′(ξ)+ ξ2 (w+qAτ)2

1− ξ
2

ξ2
o

ϕ(ξ) = m2
effℓ

2ϕ(ξ),

(20)

m2
eff =

m2+
L2k⃗2

r2
o

where  the  effective  mass  square  is  defined  as 

,  or the KG equation can be expressed in the z
coordinate as
 

z2(1− z2)ϕ′′(z)−2z3ϕ′(z)+
z2

1− z2

(wξo+qeffℓ
1− z

z

)2

−m2
effℓ

2 1− z2

z2

]
ϕ(z) = 0, (21)

qeff ≡

(d−2)
µℓ

ro
q

z = 0,z = ±1 z =∞

where  the  effective  charge  of  the  probe  field  is 

.  The  singularities  of  Eq.  (21)  are  located  at
 and .

z→ 0 ϕ(z) ∼ zᾱ
To  find  the  solutions,  we  determine  the  indices  at

each singular point. For , setting , the lead-
ing terms in Eq. (21) are
 

z2ϕ′′(z)+ (q2
eff −m2

eff)ℓ2ϕ(z) = 0, (22)

which gives
 

ᾱ =
1
2
± 1

2

√
1+4(m2

eff −q2
eff)ℓ2

≡1
2
± 1

2

√
1+4m̃2

effℓ
2 ≡ 1

2
± ν. (23)

z→−1 ϕ(z) ∼ (1+ z)β̄For , setting , Eq. (21) reduces to
 

2(1+ z)ϕ′′(z)+2ϕ′(z)+
(wξo−2qeffℓ)2

2(1+ z)
ϕ(z) = 0, (24)

and the index is
 

β̄ = ±i
(wξo

2
−qeffℓ

)
= ±i

(
w

4πTn
−qeffℓ

)
. (25)

z→ 1 ϕ(z) ∼ (1− z)γ̄Finally, for , setting , Eq. (21) reduces
to
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2(1− z)ϕ′′(z)−2ϕ′(z)+
(wξo)2

2(1− z)
ϕ(z) = 0, (26)

from which 

γ̄ = ±i
wξo

2
= ±i

w
4πTn

= ±i
ω/ε

4π/(2πξo)
= ±i

ω

2ερo/ℓ2 = ±i
ω

4πT
(27)

z = 1 γ̄ =

−i
wξo

2
= −i

w
4πTn

is obtained. Further, imposing the ingoing boundary con-
dition  at  the  black  brane  horizon  requires 

.

Also, note that Eq. (21) can be rewritten in a more ex-
plicit form as

ϕ′′(z)+
(

1
z+1

+
1

z−1

)
ϕ′(z)+

 m̃2
effℓ

2

z
+

1
2

(wξo−2qeffℓ)2

z+1
+

1
2

w2ξ2
o

z−1

 ϕ(z)
z(z+1)(z−1)

= 0, (28)

a1 a2 a3which becomes the Fuchs equation with three canonical singularities ,  and , as follows:
 

ϕ′′(z)+
(

1− ᾱ1− ᾱ2

z−a1
+

1− β̄1− β̄2

z−a2
+

1− γ̄1− γ̄2

z−a3

)
ϕ′(z)+

(
ᾱ1ᾱ2(a1−a2)(a1−a3)

z−a1
+
β̄1β̄2(a2−a3)(a2−a1)

z−a2

+
γ̄1γ̄2(a3−a1)(a3−a2)

z−a3

)
ϕ(z)

(z−a1)(z−a2)(z−a3)
= 0, (29)

a1 = 0 a2 = −1 a3 = 1where , , and  and
 

ᾱ1 =
1
2
± ν, ᾱ2 =

1
2
∓ ν, β̄1 = −β̄2 = ±i

wξo−2qeffℓ

2
,

γ̄1 = −γ̄2 = ±i
wξo

2
,

(30)

ᾱ1+ ᾱ2+ β̄1+ β̄2+ γ̄1+ γ̄2 = 1and  is  satisfied.  The  Fuchs
Eq. (29)  can be  transformed into  the  standard  hypergeo-
metric function
 

ζ(1− ζ)ψ′′(ζ)+
[
γ̃− (1+ α̃+ β̃)ζ

]
ψ′(ζ)− α̃β̃ψ(ζ) = 0, (31)

via the conformal coordinate transformation 

ζ =
(a2−a3)(z−a1)
(a2−a1)(z−a3)

, ϕ(z) =
(

z−a1

z−a3

)ᾱ1
(

z−a2

z−a3

)β̄1

ψ(ζ),

(32)

α̃ = ᾱ1+ β̄1+ γ̄1, β̃ = ᾱ1+ β̄1+ γ̄2 γ̃ = 1+ ᾱ1− ᾱ2
i = 1, 2

ᾱi β̄i γ̄i

where  and .
(Note  that  one  can  freely  choose  the  indices  for

,  and .)
ζ = 2z/(z−1) α̃ =

1
2
± ν+

iwξo− iqeffℓ, β̃ =
1
2
± ν− iqeffℓ, γ̃ = 1±2ν

For  Eq.  (28),  we  have ,

.  Therefore,
the explicit solutions in the near horizon near extreme re-
gion are

ϕ(z) =c1

( z
z−1

) 1
2
+ν

(
z+1
z−1

)i wξo
2
−iqeffℓ

2F1

(
1
2
+ ν+ iwξo− iqeffℓ,

1
2
+ ν− iqeffℓ;1+2ν;

2z
z−1

)
+ c2

( z
z−1

) 1
2
−ν ( z+1

z−1

)i wξo
2
−iqeffℓ

2F1

(
1
2
− ν+ iwξo− iqeffℓ,

1
2
− ν− iqeffℓ;1−2ν;

2z
z−1

)
.

(33)

 

B.    2-point correlators from AdS2

z = 1At  the  horizon  of  the  AdS2 black  brane, ,  Eq.
(33) is expanded as follows: 

ϕ(z) = c(in)
H (1− z)−i w

4πTn + c(out)
H (1− z)i w

4πTn , (34)

where

c(in)
H = c1(−)−

1
2
−ν−i w

2πTn
+iqeffℓ 2−

1
2
−ν+i w

4πTn

Γ (1+2ν)Γ
(
i

w
2πTn

)
Γ

(
1
2
+ ν+ iqeffℓ

)
Γ

(
1
2
+ ν+ i

w
2πTn

− iqeffℓ

)
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+c2(−)−
1
2
+ν−i w

2πTn
+iqeffℓ 2−

1
2
+ν+i w

4πTn

Γ (1−2ν)Γ
(
i

w
2πTn

)
Γ

(
1
2
− ν+ iqeffℓ

)
Γ

(
1
2
− ν+ i

w
2πTn

− iqeffℓ

) , (35)

and
 

c(out)
H =c1(−)−

1
2
−ν−i w

2πTn
+iqeffℓ 2−

1
2
−ν−i w

4πTn

Γ (1+2ν)Γ
(
−i

w
2πTn

)
Γ

(
1
2
+ ν− iqeffℓ

)
Γ

(
1
2
+ ν− i

w
2πTn

+ iqeffℓ

)

+ c2(−)−
1
2
+ν−i w

2πTn
+iqeffℓ 2−

1
2
+ν−i w

4πTn

Γ (1−2ν)Γ
(
−i

w
2πTn

)
Γ

(
1
2
− ν− iqeffℓ

)
Γ

(
1
2
− ν− i

w
2πTn

+ iqeffℓ

) . (36)

z→ 0In contrast,  at  the AdS2 boundary, , the asymp-
totic expansion of Eq. (33) is 

ϕ(z) =c2(−)
1
2
−ν+i w

4πTn
−iqeffℓz

1
2
−ν+ c1(−)

1
2
+ν+i w

4πTn
−iqeffℓz

1
2
+ν

=A(w, k⃗)z
1
2
−ν+B(w, k⃗)z

1
2
+ν, (37)

A
B Ô(w, k⃗)

ν

ν ≡ i|ν| ϕ(z) = c(out)
B z

1
2
−i|ν|+ c(in)

B z
1
2
+i|ν|

ν

where  is  the  source  of  the  charged  scalar  field  in  the
bulk AdS2, while  is the response or the operator 
(in the momentum space) of the boundary CFT1 (i.e., the
IR CFT) dual to the charged scalar field in the bulk AdS2
background. Note that in order to obtain the propagating
modes,  should be purely imaginary, which can be set as

,  i.e., .  It  was  shown in
[3]  that  the  condition  of  an  imaginary  is  equivalent  to
the violation of the BF bound in AdS2 spacetime, namely 

m̃2
eff < −

1
4ℓ2 , (38)

which corresponds to a complex conformal weight of the
scalar operator in the dual IR CFT. 

1.    Pair production rate and absorption cross
section ratio

|b|2The  Schwinger  pair  production  rate  and the  ab-

σabssorption  cross  section  ratio  can  be  calculated  from
the radial flux by imposing different boundary conditions 

F = i
( ro

L

)d−1
(1− z2)(Φ∂zΦ

∗−Φ∗∂zΦ), (39)

which gives 

F (in)
B =2|ν|

( ro

L

)d−1
|c(in)

B |
2,

F (out)
B =−2|ν|

( ro

L

)d−1
|c(out)

B |2,

F (in)
H =

w
2πTn

( ro

L

)d−1
|c(in)

H |
2,

F (out)
H =− w

2πTn

( ro

L

)d−1
|c(out)

H |2, (40)

F (in)
B F (out)

B
F (in)

H F (out)
H

where  and  are  the  ingoing  and  outgoing
fluxes  at  the  AdS2 boundary,  while  and  are
the ingoing and outgoing fluxes at  the AdS2 black brane
horizon, respectively. ∣∣∣bAdS2

∣∣∣2

F (in)
B = 0 c(in)

B = 0⇒ c1 = 0

The  Schwinger  pair  production  rate  can  be
computed either  by  choosing  the  inner  boundary  condi-
tion  or  the  outer  boundary  condition,  which  gives  the
same result [3], e.g., by adopting the outer boundary con-
dition, i.e., , ( ),

∣∣∣bAdS2
∣∣∣2 = F (out)

B

F (in)
H

=
4πTn|ν|

w

∣∣∣∣∣∣∣c
(out)
B

c(in)
H

∣∣∣∣∣∣∣
2

=
8πTn|ν|

w

∣∣∣∣∣∣∣∣∣∣∣∣
Γ

(
1
2
− i|ν|+ iqeffℓ

)
Γ

(
1
2
− i|ν|+ i

w
2πTn

− iqeffℓ

)
Γ (1−2i|ν|)Γ

(
i

w
2πTn

)
∣∣∣∣∣∣∣∣∣∣∣∣
2

=

2sinh(2π|ν|) sinh
(

w
2Tn

)
coshπ (|ν| −qeffℓ)coshπ

(
|ν| − w

2πTn
+qeffℓ

) . (41)
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Similarly, by adopting the outer boundary condition, the absorption cross section ratio is computed as
 

σAdS2

abs =
F (out)

B

F (out)
H

=
4πTn|ν|

w

∣∣∣∣∣∣∣c
(out)
B

c(out)
H

∣∣∣∣∣∣∣
2

=
8πTn|ν|

w

∣∣∣∣∣∣∣∣∣∣∣∣
Γ

(
1
2
− i|ν| − iqeffℓ

)
Γ

(
1
2
− i|ν| − i

w
2πTn

+ iqeffℓ

)
Γ (1−2i|ν|)Γ

(
−i

w
2πTn

)
∣∣∣∣∣∣∣∣∣∣∣∣
2

=

2sinh(2π|ν|) sinh
(

w
2Tn

)
coshπ (|ν|+qeffℓ)coshπ

(
|ν|+ w

2πTn
−qeffℓ

) . (42)

The pair production rate and the absorption cross section
ratio are connected by the simple relation
 

∣∣∣bAdS2
∣∣∣2 = −σabs(|ν| → −|ν|). (43)

It was shown that the abovementioned relation also holds
for  a  charged  scalar  field  [11]  and  for  a  charged  spinor
field  [4],  both  in  a  four-dimensional  near  extremal  RN
black hole.
 

2.    Retarded Green's function

The two-point retarded Green's function of the bound-
ary operator dual to the bulk charged scalar field is com-
puted through 

GAdS2

R (w, k⃗) ≡⟨ÔÔ⟩R

=−2F |z→0 ∼
B(w, k⃗)

A(w, k⃗)
+ contact terms (44)

F (out)
H = 0by  taking  the  inner  boundary  condition,  i.e., ,

which gives

c2

c1
= (−)1−2ν 2−2ν

Γ (1+2ν)Γ
(

1
2
− ν− iqeffℓ

)
Γ

(
1
2
− ν− i

w
2πTn

+ iqeffℓ

)
Γ (1−2ν)Γ

(
1
2
+ ν− iqeffℓ

)
Γ

(
1
2
+ ν− i

w
2πTn

+ iqeffℓ

) . (45)

Thus, the two-point retarded Green's function is
 

GAdS2

R (w, k⃗) ∼ B(ω, k⃗)

A(ω, k⃗)
= (−)2ν c1

c2
= (−)4ν−1 22ν

Γ (1−2ν)Γ
(

1
2
+ ν− iqeffℓ

)
Γ

(
1
2
+ ν− i

w
2πTn

+ iqeffℓ

)
Γ (1+2ν)Γ

(
1
2
− ν− iqeffℓ

)
Γ

(
1
2
− ν− i

w
2πTn

+ iqeffℓ

) . (46)

F (in)
B = 0 F (out)

H = 0

hR =
1
2
+ ν

In  addition,  the  corresponding  boundary  condition
(  and ) is  used  to  obtain  the  quasinor-
mal modes of the charged scalar field in AdS2 spacetime,
which  correspond  to  the  poles  of  the  retarded  Green's
function  of  dual  operators  (with  complex  conformal

weight ) in the IR CFT, namely
 

1
2
+ ν− i

w
2πTn

+ iqeffℓ = −N⇒ w

=2πTn (qeffℓ− iN − ihR) , N = 0,1, · · · . (47)

Eq. (47) gives the quasinormal modes of the charged

scalar field perturbation.
 

AdS5

IV.  PAIR PRODUCTION IN THE
ASYMPTOTICAL 

In this section, we describe our study of the pair pro-
duction  for  the  whole  spacetime  of  RN-AdS5. Like  be-
fore,  we  need  to  solve  the  corresponding  radial  Klein
equation for the scalar field.

d = 4

ϱ =
r2

M′
M′ =

To  find  the  solution  in  the  full  region,  we  focus  on
 and the near extremal cases. By introducing the co-

ordinate  transformation  (and  denoting 
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Gd+1L2M ϱo =
r2

o

M′
ϱ∗ =

r2
∗

M′
,  and ), the radial Eq. (18) can be expressed as

ϕ′′(ϱ)+
(

1
ϱ−ϱ1

+
1

ϱ−ϱ2
+

1
ϱ−ϱo

)
ϕ′ (ϱ)+

(
ϱ(ω̃ϱ− q̃µϱo)2

(ϱ−ϱ1)2(ϱ−ϱ2)2(ϱ−ϱo)2 −
m̃2ϱ+ k̃2

(ϱ−ϱ1) (ϱ−ϱ2) (ϱ−ϱo)

)
ϕ (ϱ) = 0, (48)

ω̃ =
L2(ω+qµ)

2
√

M′
q̃ =

L2q

2
√

M′

m̃ =
Lm
2

k̃ =
L2

∣∣∣∣⃗k∣∣∣∣
2
√

M′

where  the  parameters  are , ,

,  and
 

ϱ1 = −
1
2
ϱo−

1
2

√
ϱo

2+8
ϱ∗3

ϱo
,

ϱ2 = −
1
2
ϱo +

1
2

√
ϱo

2+8
ϱ∗3

ϱo
. (49)

Further, defining another coordinate
 

y ≡ ϱ−ϱo

ϱo
, a ≡ ϱ2−ϱo

ϱo
, b ≡ ϱ1−ϱo

ϱo
, (50)

the metric of the RN-AdS5 black hole becomes
 

ds2 =
L2dy2

4(1+ y)2 f (y)
+

r2
o

L2 (1+ y)
(
− f (y)dt2+dx2

i

)
,

A =
µy

1+ y
dt, (51)

where
 

f (y) =1− M′

r4
o

(1+ y)−2+
Q′2

r6
o

(1+ y)−3,

Q′2 =Gd+1L2Q2. (52)

Moreover, Eq. (48) transforms into
 

ϕ′′(y)+
(

1
y
+

1
y−a

+
1

y−b

)
ϕ′ (y)

+

(
(ω̃(y+1)− q̃µ)2(y+1)

y2(y−a)2(y−b)2

− m̃2(y+1)ϱo+ k̃2

y (y−a) (y−b)

)
ϕ (y)
ϱo
= 0. (53)

ϕ(y)
0 ∞

α1,2 β1,2 γ1,2 δ1,2

To solve , first, we determine its exponents at the
corresponding  singularities , a, b, and ,  which  are

, , , and , respectively,
 

α1,2 = ±i
(ω̃− q̃µ)
ab
√
ϱo
= ± iω

4πT
,

β1,2 = ±i
(ω̃(1+b)− q̃µ)

√
1+b

(a−b)b
√
ϱo

,

γ1,2 = ±i
(ω̃(1+a)− q̃µ)

√
1+a

(b−a)a
√
ϱo

, (54)

+

−
ϕ (y)

where the index “1” corresponds to the “ ” sign, and the
index “2” corresponds to the “ ” sign. Then, decompos-
ing  as 

ϕ (y) =
(

y
y−b

)α1
(

y−a
y−b

)γ1

R(y), (55)

we obtain 

R′′(y)+
(

1
y
+

1
y−a

+
1

y−b
− 2bα1

y(y−b)
+

2(a−b)γ1

(y−a)(y−b)

)
R′ (y)

+V2R(y) = 0,
(56)

where 

V2 ≡ −
(2+3a−a2y)ω̃2−4(a+1) ω̃q̃µ+ (a+2) q̃2µ2

ϱoa2y (y−a) (y−b)2 −M1,

(57)

and 

M1 =
(b−a)γ1

y (y−a) (y−b)
+

2b (a−b)α1γ1

y (y−a) (y−b)2 +
m̃2(y+1)ϱo+ k̃2

ϱoy (y−a) (y−b)

+
bα1

y (y−a) (y−b)
.

(58)
 

A.    Solutions in the near and far regions
We divide the regions into a near region 

y =
ϱ−ϱo

ϱo
≪ 1, (59)

and a far region 
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y =
ϱ−ϱo

ϱo
≫−a, (60)

and an overlapping region, in which
 

−a≪ 1. (61)

−a≪ 1The physical  reasoning  of  relies on  the  observa-
tion that the temperature of a black hole is
 

T =
ro

πL2

(
1− ϱ∗

3

ϱo
3

)
, (62)

−a→ 0 T → 0which gives  for , as
 

−a =
3
2
− 1

2

√
9− 8πL2T

ro
. (63)

We want  to  point  out  that  the  matching  condition  in
Eq. (61)  indicates  that  the near  extremal  condition is  es-
sential for  matching the  solutions  in  the  near  and far  re-
gions. It  is  not  necessary  for  the  frequency  to  be  infin-
itely small;  however, the frequency should definitely not
be  very  large  compared  with  the  temperature T; other-
wise, the  backreaction  to  the  background  geometry  can-
not be ignored.

y≪ 1
Now  we  find  the  approximate  solutions  in  different

regions. First, by using the near region condition ( ),
Eq. (53) reduces to
 

ϕ′′(y)+
(

1
y
+

1
y−a

)
ϕ′ (y)

+

(
− (aα1− iqeffℓy)2

y2(y−a)2 +
m̃2ϱo+ k̃2

ϱoby(y−a)

)
ϕ(y) = 0. (64)

Obviously Eq. (64) can be solved by the hypergeometric
function as
 

ϕ (y) =(y−a)α1−iqeffℓ
(
c3yα1

2F1

(
α,β;γ;

y
a

)
+ c4y−α1

2F1

(
1−γ+α,1−γ+β;2−γ;

y
a

) )
, (65)

α =
1
2
+ ν+2α1− iqeffℓ β =

1
2
− ν+2α1− iqeffℓ

γ = 1+2α1 ℓ = L/
√

12

y≫−a

where , ,  and
,  and  is  the  radius  of  the  effective

AdS2 geometry  in  the  near  horizon  region  of  the  RN-
AdS5 black hole.  Second,  in  the far  region,  by using the
condition ( ), Eq. (56) can turn into
 

R′′(y)+
(

2
y
+

1
y−b

− 4bα1

y(y−b)
+

2ibqeffℓ

y(y−b)

)
R′ (y)+V3R(y) = 0,

(66)
where
 

V3 ≡
ω̃2

ϱoy(y−b)2 +
4b2α1 (α1− iqeffℓ)

y2(y−b)2

− b (2α1− iqeffℓ)
y2(y−b)

− m̃2(y+1)ϱo+ k̃2

ϱoy2(y−b)
, (67)

γ1 ≈ α1+
iq̃µ

b
√
ϱo
= α1− iqeffℓ

|a| ≪ 1

(where  the  relation  when

 is  used).  Similarly,  Eq.  (66)  has  a  solution  in
terms of the hypergeometric function as
 

ϕ (y) =
( y
b
−1

)λ(
c5yν−

1
2 2F1

(
α′,β′;γ′;

y
b

)
+ c6y−ν−

1
2 2F1

(
1−γ′+α′,1−γ′+β′;2−γ′; y

b

) )
(68)

α′ =
1
2
+ ν+∆+λ β′ =

1
2
+ ν−∆+λ γ′ = 1+2ν

∆ =
√

1+ m̃2 λ =

√
(iqeffℓ)2− ω̃2

ϱob

in  which , , ,

, and .
 

B.    Near-far matching
In the overlapping region, one has the inequalities

 

−a≪ y≪ 1 < −b (69)

1 < −b −b =
3
2
+

1
2

√
9− 8πL2T

ro
→ 3 T → 0∣∣∣∣∣ay

∣∣∣∣∣→ 0
∣∣∣∣∣ yb

∣∣∣∣∣→ 0

(  since ,  as ),

which means  and , which transforms Eqs.

(65)  and  (68)  into  the  following  forms:  the  near  region-
solution
 

ϕ(y) =
(
(−1)−αc3

Γ (γ)Γ (β−α)
Γ (β)Γ (γ−α)

+(−1)−1+γ−αc4
Γ (2−γ)Γ (β−α)
Γ (1−γ+β)Γ (1−α)

)
y−

1
2
−ν

+

(
(−1)−βc3

Γ (γ)Γ (α−β)
Γ (α)Γ (γ−β)

+ (−1)−1+γ−βc4
Γ (2−γ)Γ (α−β)
Γ (1−γ+α)Γ (1−β)

)
y−

1
2
+ν (70)

and the far region solution
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ϕ(y)→ (−1)λc5y−
1
2
+ν+ (−1)λc6y−

1
2
−ν. (71)

Comparing these two identities, one finds the connec-
tion relations 

c5 =(−1)−λ
(
(−1)−βc3

Γ (γ)Γ (α−β)
Γ (α)Γ (γ−β)

+(−1)−1+γ−βc4
Γ (2−γ)Γ (α−β)
Γ (1−γ+α)Γ (1−β)

)
, (72)

 

c6 =(−1)−λ
(
(−1)−αc3

Γ (γ)Γ (β−α)
Γ (β)Γ (γ−α)

+(−1)−1+γ−αc4
Γ (2−γ)Γ (β−α)
Γ (1−γ+β)Γ (1−α)

)
. (73)

 

B.    2-point correlators from AdS5
 

1.    Pair production and absorption cross section

D
Now we  denote  the  radial  flux  of  the  charged  scalar

field in metric (51) as : 

D = 2ir4
o(1+ y)3 f (y)

L5

(
ϕ(y)∂yϕ

∗(y)−ϕ∗(y)∂yϕ(y)
)
. (74)

y→ 0In the near horizon limit, i.e., ,  Eq. (65) reduces
to 

ϕ(y) = c3yα1 (y−a)α1−iqeffℓ + c4y−α1 (y−a)α1−iqeffℓ, (75)

ϕ(y) y→∞

where the first part is the outgoing mode, and the second
part is the ingoing mode. Further, the asymptotic form of

 at the boundary ( ) of the AdS5 spacetime res-
ults in the form 

ϕ(y) = A(ω̃, k̃)y−1+∆+B(ω̃, k̃)y−1−∆, (76)

A(ω̃, k̃)
B(ω̃, k̃)

∆ ∆ = i |∆|

where  is the source of the charged scalar field in
the  bulk  RN-AdS5 black  hole,  while  is the  re-
sponse (the operator) of the boundary CFT4 (i.e., the UV
CFT)  dual  to  the  charged  scalar  field  in  the  bulk.  As  in
the  case  of  the  AdS2 spacetime,  the  condition  for  the
propagating modes requires an imaginary , i.e., ,

which means 

m2 ⩽ − 4
L2 , (77)

namely, the violation of the BF bound in AdS5 spacetime.
Therefore,  the  corresponding  outgoing  and  ingoing

fluxes at  the  horizon  and  the  boundary  of  the  near  ex-
tremal RN-AdS5 black brane are 

D(out)
H =

4πωTro
2

abL
|c3|2 =

2r3
oω

L3 |c3|2,

D(in)
H = −

4πωTro
2

abL
|c4|2 = −

2r3
oω

L3 |c4|2,

D(out)
B =

4|∆|ro
4

L5

∣∣∣A(ω̃, k̃)
∣∣∣2 ,

D(in)
B = −

4|∆|ro
4

L5

∣∣∣B(ω̃, k̃)
∣∣∣2 . (78)

σAdS5

abs∣∣∣bAdS5

∣∣∣2
D(out)

H = 0
c3 = 0

The  absorption  cross  section  ratio  and  the
Schwinger pair production rate  can be calculated
by  choosing  the  inner  boundary  condition  and
( ) and are given by 

σAdS5

abs =

∣∣∣∣∣∣∣D
(in)
H

D(in)
B

∣∣∣∣∣∣∣ = 2T L2 |ν|sinh(2π |∆|)

ro

∣∣∣∣∣H (ν;∆;λ)
(
GAdS2

R

)−1
+H (−ν;∆;λ)

∣∣∣∣∣2σabs,

(79)

and 

∣∣∣bAdS5
∣∣∣2=∣∣∣∣∣∣∣ D

(in)
H

D(out)
B

∣∣∣∣∣∣∣= 2T L2 |ν|sinh(2π |∆|)

ro

∣∣∣∣H (−ν;−∆;λ)GAdS2

R +H (ν;−∆;λ)
∣∣∣∣2
∣∣∣bAdS2

∣∣∣2,
(80)

H (x;y;z)where  denotes a function 

H (x;y;z) ≡ (−1)2x2x Γ (1+2x)

Γ

(
1
2
+ x− y+ z

)
Γ

(
1
2
+ x− y− z

) , (81)

and

GAdS2

R = (−1)4ν−122ν Γ (1−2ν)
Γ (1+2ν)

Γ

(
1
2
+ ν− iqeffℓ

)
Γ

(
1
2
− ν− iqeffℓ

) Γ
(

1
2
+ ν− i

ω

2πT
+ iqeffℓ

)
Γ

(
1
2
− ν− i

ω

2πT
+iqeffℓ

) , (82)
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σabs
∣∣∣bAdS2

∣∣∣2
which is exactly the retarded Green's function in Eq. (46)
of the IR CFT in the near horizon, near extremal region.
Furthermore,  and  are  exactly  the absorption
cross  section  ratio  and  the  mean  number  of  produced
pairs  of  the  corresponding  IR  CFT  obtained  from  Eqs.
(42) and (41). We find a relationship ∣∣∣bAdS5

∣∣∣2 = −σAdS5

abs (|ν| → −|ν| , |∆| → −|∆|) , (83)

|ν| |∆|
which is similar to Eq. (43) except for a combined change
in signs in both  and .

With Eq. (80) at hand we can easily investigate the re-
lationship between the pair production rate in the near ho-
rizon  and  that  for  the  whole  spacetime  of  RN-AdS5.  As
shown in Fig. 1, we can see that the mean number of pro-
duced pairs for the whole spacetime is less than that from
near horizon region. Moreover, with increasing charge of
the scalar field, the corresponding ratio becomes smaller,
which is consistent with previous assumptions stating that

the  Schwinger  effect  mainly  occurs  in  the  near  horizon
region.
 

2.    Retarded Green's function

c3 = 0
To calculate  the  retarded  Green's  function,  an  ingo-

ing boundary condition is required, namely . Then,
from Eqs. (72) and (73), the connection relations are
 

c5 = (−1)−1+γ−β−λc4
Γ (2−γ)Γ (α−β)
Γ (1−γ+α)Γ (1−β)

, (84)

 

c6 = (−1)−1+γ−α−λc4
Γ (2−γ)Γ (β−α)
Γ (1−γ+β)Γ (1−α)

. (85)

y→∞
Substituting  Eqs.  (84)  and  (85)  into  Eq.  (68)  and  taking

, namely the boundary of the AdS5 spacetime, one
obtains

A(ω̃, k̃) = (−1)iqeffℓ−2λ−1+∆ c4

(
Γ (2−γ)Γ (α−β)
Γ (1−γ+α)Γ (1−β)

Γ (γ′)Γ (α′−β′)
Γ (α′)Γ (γ′−β′) +

Γ (2−γ)Γ (β−α)
Γ (1−γ+β)Γ (1−α)

Γ (2−γ′)Γ (α′−β′)
Γ (1−γ′+α′)Γ (1−β′)

)
,

B(ω̃, k̃) = (−1)iqeffℓ−2λ−1−∆ c4

(
Γ (2−γ)Γ (α−β)
Γ (1−γ+α)Γ (1−β)

Γ (γ′)Γ (β′−α′)
Γ (β′)Γ (γ′−α′) +

Γ (2−γ)Γ (β−α)
Γ (1−γ+β)Γ (1−α)

Γ (2−γ′)Γ (β′−α′)
Γ (1−γ′+β′)Γ (1−α′)

)
. (86)

Therefore, the retarded Green's function of the boundary CFT4 is given by
 

GAdS5

R ∼ B(ω̃, k̃)
A(ω̃, k̃)

= (−1)−2∆

Γ (α−β)
Γ (1−γ+α)Γ (1−β)

Γ (γ′)Γ (β′−α′)
Γ (β′)Γ (γ′−α′) +

Γ (β−α)
Γ (1−γ+β)Γ (1−α)

Γ (2−γ′)Γ (β′−α′)
Γ (1−γ′+β′)Γ (1−α′)

Γ (α−β)
Γ (1−γ+α)Γ (1−β)

Γ (γ′)Γ (α′−β′)
Γ (α′)Γ (γ′−β′) +

Γ (β−α)
Γ (1−γ+β)Γ (1−α)

Γ (2−γ′)Γ (α′−β′)
Γ (1−γ′+α′)Γ (1−β′)

, (87)

which is further simplified into
 

GAdS5

R ∼ (−1)−2∆ Γ (−2∆)
Γ (2∆)

H (ν;∆;λ)+H (−ν;∆;λ)GAdS2

R

H (ν;−∆;λ)+H (−ν;−∆;λ)GAdS2

R

. (88)

ωL2/ro qeffℓ T L2/ro = 0.001 ν = 0.1i ∆ = 0.1i T L2/ro = 0.001 ν = 0.01i ∆ = 0.01i

T L2/ro = 0.01 ν = 0.1i ∆ = 0.1i

Fig. 1.    (color online) Ratio of mean number of produced pairs for the whole spacetime to that in the near horizon region as a function
of  for  different  values  of  with , ,  and (left); , ,  and (middle);

, , and (right).
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V.  CFTS DESCRIPTIONS IN IR AND
UV REGIONS

From  the  AdS/CFT  correspondence,  the  IR  CFT1 in
the near horizon, near extremal limit and the UV CFT4 at
the asymptotic boundary of the RN-AdS5 black hole can
be  connected  by  the  holographic  RG flow [26, 27].  The
CFT description of the Schwinger pair  production in the
IR region of charged black holes has been systematically
studied in a series of previous works [3, 4, 6, 7]. Herein,
we address the dual  CFTs descriptions in the UV region
and compare them with those in the IR region.

O

The IR CFT1 of the RN-AdS black hole is very simil-
ar  to  that  of  the  RN black  hole  in  an  asymptotically  flat
spacetime,  as  CFT1 can  be  viewed  as  a  chiral  part  of
CFT2, which  has  the  universal  structures  in  its  correla-
tion functions.  For  instance,  the  absorption cross  section
of a scalar operator  in 2D CFT has the universal form 

σ ∼ (2πTL)2hL−1

Γ(2hL)
(2πTR)2hR−1

Γ(2hR)
sinh

(
ωL−qLΩL

2TL
+
ωR−qRΩR

2TR

)
×

∣∣∣∣∣∣Γ
(
hL+ i

ωL−qLΩL

2πTL

)∣∣∣∣∣∣2
∣∣∣∣∣∣Γ

(
hR+ i

ωR−qRΩR

2πTR

)∣∣∣∣∣∣2 ,
(89)

(hL,hR) (ωL,ωR) (qL,qR)

O (TL,TR)
(ΩL,ΩR)

δS BH = δS CFT

where , ,  and  are  the  left-  and
right-hand  conformal  weights,  excited  energies,  charges
associated  with  operator ,  respectively,  while 
and  are the  temperatures  and  chemical  poten-
tials  of  the  corresponding  left-  and  right-hand  sectors  of
the  2D  CFT.  Further  identifying  the  variations  in  the
black hole area entropy with those of the CFT microscop-
ic entropy, namely , one derives 

δM
TH
− ΩHδQ

TH
=
ωL−qLΩL

TL
+
ωR−qRΩR

TR
, (90)

δM = ξow δQ = q TH = T̃n

ΩH = 2µℓ2/ro w/Tn−2πqeffℓ

O ϕ

hL = hR =
1
2
+ i|ν|

(TL,TR)

where the left hand side of Eq. (90) is calculated with co-
ordinate (14),  for which , , ,  and

,  and  thus,  it  is  equal  to .
Moreover,  the violation of the BF bound in AdS2 makes
the conformal weights of the scalar operator  dual to  a
complex, which can be chosen as ,  even
without  further  knowledge  about  the  central  charge  and

 of  the  IR  CFT  dual  to  the  near  extremal  RN-
AdS5 black  hole.  One  can  also  see  that  the  absorption
cross  section  ratio  (42)  in  the  AdS2 spacetime  has  the
form  of  Eq.  (89)  up  to  some  coefficients,  depending  on
the mass and charge of the scalar field.

In  contrast,  the  absorption cross  section and retarded
Green's functions in a general 4D finite temperature CFT
cannot  be  as  easily  calculated  in  momentum space  as  in
the  2D  CFT.  Thus,  it  is  not  straightforward  to  compare

σAdS5

abs∣∣∣bAdS5

∣∣∣2

∆̄ = 2+2i|∆|
Ō

hL,R =
1
2
+

i|ν| → 1
2
− i|ν| ∆̄ = 2+2i|∆| → 2−2i|∆|

σAdS5

abs∣∣∣bAdS5

∣∣∣2
hL,R

∆̄

the calculations between the bulk gravity and the bound-
ary  CFT  sides.  Nevertheless,  from  Eqs.  (79)  and  (80),
both  the  absorption  cross  section  ratio  and  the
Schwinger mean number of produced pairs  calcu-
lated  from  the  bulk  near  extremal  RN-AdS5 black  hole
have a  simple  proportional  relation  with  their  counter-
parts  in the near horizon region.  Moreover,  the violation
of  the  BF  bound  (77)  in  AdS5 spacetime  indicates  the
complex conformal weights  of the scalar op-
erator  in  the  UV  4D  CFT  at  the  asymptotic  spatial
boundary  of  the  RN-AdS5 black hole,  which  also  indic-
ates that,  to  have  pair  production  in  the  full  bulk  space-
time, the corresponding operators in the UV CFT should
be  unstable.  Interestingly,  Eq.  (83)  shows  that  under  the
interchange between the roles of source and operator both
in the IR and UV CFTs at the same time, namely 

 and , the full absorp-
tion cross section ratio  and the Schwinger pair pro-
duction rate  are interchanged with each other only
up  to  a  minus  sign.  Note  that  both  the  charge  and  the
mass  of  the  scalar  particle  contribute  to  the  conformal
weights  of  the  scalar  operator  in  the  dual  IR  CFT;
however,  only  the  mass  contributes  to  the  conformal
weight  of the scalar operator in the dual UV CFT. Ac-
tually, it  can  be  seen  from  the  expressions  of  the  con-
formal weights that the non-zero charge and mass for the
scalar  field are crucial  for the violation of the BF bound
in the  corresponding  AdS spacetimes  and  hence  guaran-
tee  the  existence  of  the  Schwinger  pair  production.
However,  when  the  charge  of  the  particle  is  zero,  there
will  be no Schwinger  effect,  except  for  an exponentially
suppressed  Hawking  radiation  in  near  extremal  black
holes. 

VI.  SUMMARY AND DISCUSSION

In this  paper,  we  describe  our  study  of  the  spontan-
eous  scalar  pair  production  in  a  near  extremal  RN-AdS5
black hole that possesses an AdS2 structure in the IR re-
gion and an AdS5 geometry in the UV region.

We  firstly  calculated  the  mean  number  of  produced
pairs (see Eq. (41)) in the near horizon region, which has
an AdS2 structure. The retarded Green's function (see Eq.
(46))  has  also  been  obtained  for  this  region.  Then,  we
solved  the  equation  for  the  whole  spacetime  of  the  near
extremal  RN-AdS5 black  hole  by  using  the  matching
technique.  The  matching  condition  we  chose  is  the  low
temperature limit, i.e., the near extremal limit of the black
hole.  Therefore,  the  greybody  factor  in  Eq.  (79)  and  the
mean number of produced pairs in Eq. (80) for the whole
spacetime are not merely valid for the low frequency lim-
it, and one can easily apply our calculation to the RN-dS
black hole,  which was recently described in the low fre-
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quency  limit  [35]. Moreover,  the  retarded  Green's  func-
tion  for  an  RN-AdS black  hole  has  been  calculated  (see
Eq. (88)), which again is valid at finite frequency, and its
corresponding value has only been investigated in the low
frequency  limit  [31]  before.  Interestingly,  we  found  that
there exists a very explicit relationship between the mean
number  of  produced  pairs  (see  also  Eq.  (80))  for  the
whole  spacetime  and  that  in  the  near  horizon  region,
which  enables  us  to  easily  compare  the  pair  production
rates of these two regions.  We showed that,  for an near-
extremal RN-AdS5 black hole, the dominant contribution
to  the  pair  production  rate  mainly  comes  from  the  near
horizon region, as expected.

Moreover, the  CFT  descriptions  of  the  pair  produc-
tion  are  investigated  both  from  the  AdS2/CFT1 corres-

pondence in the IR and the AdS5/CFT4 duality in the UV
regions,  and  consistent  results  and  new  connections
between the pair production rate and the absorption cross
section  ratio  are  found,  although  the  related  information
computed from the finite temperature 4D CFT is incom-
plete. This work has successfully generalized the study of
pair production  in  charged black holes  to  the  full  space-
time and  provided  new  insights  for  a  complete  under-
standing of  the  pair  production  process  in  curved  space-
time. 
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