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I. INTRODUCTION

The nucleon effective mass, which characterizes the
momentum or energy dependence of a single nucleon po-
tential in a nuclear medium, is crucial in nuclear physics
and astrophysics [1-5]. While various types of nucleon ef-
fective masses have been defined in nonrelativistic and
relativistic approaches [2-7], in this study, we focus on
the total effective mass normally used in the nonrelativ-
istic approach. In asymmetric nuclear matter, effective
masses of neutrons and protons, i.e., m;, and m},, respect-
ively, may be different owing to the momentum depend-
ence of the symmetry potential. The difference
my,_, =m, —m,, is the so-called isospin splitting of nucle-
on effective mass, which plays an important role in many
physical phenomena and questions in nuclear physics, as-
trophysics, and cosmology [4, 5]. For example, m,,_, af-
fects the isospin dynamics in heavy-ion collisions [8-15],
thermodynamic properties of asymmetric nuclear matter
[16-18], and cooling of neutron stars [19].

Owing to the limited isospin asymmetry in normal
nuclei, the accurate determination of mj,_, is difficult.
Even the sign of m,_, remains a debated issue. For ex-
ample, m,_, >0 in neutron- rlch matter at the nuclear sat-
uration denslty po=~0.16 fm” is favored by optical model
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analyses of nucleon-nucleus scattering data [20, 21],
Skyrme energy density functional (EDF) [22] and trans-
port model [23] analyses of nuclear giant resonances,
Brueckner-Hartree-Fock calculations [24-27], chiral ef-
fective theory [28-30], and an analysis of various con-
straints on the magnitude and density slope of symmetry
energy [31]; in contrast, transport model analyses on
single and/or double n/p ratio in heavy-ion collisions [32,
33] (see Ref. [34]) and an energy density functional study
on nuclear electric dipole polarizability [35] lead to op-
posite conclusions.

Understanding these contradictive results and eventu-
ally determining the isospin splitting of nucleon effective
mass require not only the improvement of both theoretic-
al models/calculations and experimental measurements
but also more sophisticated analysis approaches to quanti-
fying the model uncertainties based on given experiment-
al measurements. The latter is a quite general issue in
nuclear theory: owing to the lack of a well-settled ab ini-
tio starting point, a considerable number of effective the-
ories or models have been developed with parameters de-
termined by fitting empirical knowledge or experimental
data [36]. Over the past decade, various statistical ap-
proaches, e.g., covariance analysis [37, 38], Bayesian
analysis [39-46], and bootstrap method [47, 48], were in-

* Supported in part by the National Natural Science Foundation of China (11905302, 11625521) and National SKA Program of China (2020SKA0120300)

" E-mail: zhangzh275@mail.sysu.edu.cn, Corresponding author
* E-mail: lwchen@sjtu.edu.cn, Corresponding author

©2021 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese

Academy of Sciences and IOP Publishing Ltd

064104-1



Zhen Zhang, Xue-Bin Feng, Lie-Wen Chen

Chin. Phys. C 45, 064104 (2021)

troduced in nuclear physics studies to quantify uncertain-
ties and evaluate correlations of model parameters.
Among them, the Bayesian inference method has been
accepted as a powerful statistical approach and is extens-
ively used in various areas of nuclear physics. For a re-
cent review on Bayesian analysis and its application to
nuclear structure study, please refer to Ref. [46].

In a previous study of ours [22], we extracted the
isospin splitting of nucleon effective mass from the isov-
ector giant dipole resonance (IVGDR(? and isocalar giant
quadrupole resonance (ISGQR) of *®*pp based on ran-
dom phase approximation (RPA) calculations using a
number of representative Skyrme interactions. However,
some factors in the analysis, e.g., the choice of Skyrme
interactions and the previously assumed linear relations
l/EéQR—m?O, could affect the conclusions, and the statist-
ical meaning of the obtained uncertainties are therefore
unclear. In the present study, within the framework of
Skyrme energy density functional theory and random
phase approximation approach, we employed the
Bayesian inference method to extract the isospin splitting
of nucleon effective mass from the electric dipole polariz-
ability [49, 50], the constrained energy in IVGDR [51],
and the ISGQR peak energy [52] in **Pb. The binding

energy [53], charge radius [54], constrained energy of
isocalar giant monopole resonance (ISGMR) [55], and
neutron 3py/2 —3p32 energy splitting [56] of *®pb were
also included in the analysis to guarantee that the energy
density functional can always reasonably describe the
ground state and collective excitation state of **pb. The
isoscalar and isovector effective masses and the neutron-
proton effective mass splitting at saturation density, to-
gether with the symmetry energy at the subsaturation
density p* = 0.05 fm™>, were extracted from the Bayesian
analysis.

The paper is organized as follows. In Sec. II, we in-
troduce the theoretical models and statistical approaches
used in this study. In the next section, we present the res-
ults for the uncertainties of model parameters, the isospin
splitting of nucleon effective mass at pg, and the sym-
metry energy at p* = 0.05 fm~>. Finally, we draw conclu-
sions in Sec. [V.

II. MODEL AND METHOD

A. Nucleon effective mass in Skyrme energy density
functional

As in Ref. [22], we studied the nucleon effective mass
within the standard Skyrme energy density functional
based on the conventional Skyrme interaction:

v(ry,ry) =to(1+x0Py)o(r1 —rp)

1
+5h(1+ x1P)K26(r) —r2) +c.c.]

+1(1 +.X2Po—)k, -o(ry — r2)k

1
+ =il (M2 oty - )
+iWy (o +0'2)'[k’><6(r1 —-r)k]. (1)

ri+rp

Here, o; is the Pauli spin operator, P, = (1+0-0%)/2 is
the spin-exchange operator, k = —i(V; —V,)/2 is the relat-
ive momentum operator, and k’ is the conjugate operator
of k acting on the left.

Within the framework of Skyrme energy density
functional, the nine parameters o —t3, xo—x3, and a of
the Skyrme interaction can be expressed in terms of nine
macroscopic quantities (pseudo-observables): the nuclear
saturation density pg, the energy per particle of symmet-
ric nuclear matter Ey(og), the incompressibility Ky, the
isocalar effective mass mj, at po, the isovector effective
mass m, at po, the gradient coefficient Gg,the sym-
metry-gradient coefficient Gy, and the magnitude
Esym(po) and density slope L of the nuclear symmetry en-
ergy at pp [57-59]. The detailed analytical expressions
can be found in Refs. [57, 58]. Given that these nine mac-
roscopic quantities have clear physical meaning and
available empirical ranges, we used them as model para-
meters in the Bayesian analysis. Consequently, our mod-
el has the following 10 parameters:

p :{pO’ EO(pO)a KOa Esym(ﬂo), L,
GS’ GV7 W07 m;’07 mi()} (2)

In terms of the Skyrme parameters #y ~ t3 and xo ~ x3,
the nucleon effective mass in asymmetric nuclear matter
with density p and isospin asymmetry & canbe ex-

pressed as [60]
1 1
(1+§x1)p—(5 +x1)pq}
1 ! ! 3
( +§x2)P+(§ +x2)Pq]- 3)

The well-known isocalar and isovector effective
masses, i.e., m; and m,, which are respectively defined as
the proton (neutron) effective mass in symmetric nuclear
matter and pure neutron (proton) matter, are then ex-
pressed as [60]

n? ?
— =+t
2my(p,6) 2m 4

+1t
e

> B”o3 1
= —+ —np+—h4x+5)p, 4
2m(p) 2m+ 16 it 16 2(4x +5)p “)
> o1 1
=—+ -t 2 —t 2)p. 5
2m0) 2m+8 101 + )P+8 2(x2+2)p (%)

Once given m} and m}, the isospin splitting of nucleon
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effective mass can be obtained as [61]

* * * * * 2n—1
m, —m m m,—m
* ,6 = 14 :2_s s V5
g0 mzl( )
=ZAm;n_l(p)52"—l, (6)
n=1

with the isospin splitting coefficients Amj, (o) ex-
pressed as

* m* 2n-1
Ami, (o) = 2—(——1) : 7)
m

mv

In the following, we use Am] to indicate the linear
isospin splitting coefficient at the saturation density py.

B. Nuclear giant resonances

Nuclear giant resonances are usually studied using the
random phase approximation (RPA) approach [62]. For a
given excitation operator Fyy, the strength function is
calculated as

S(E)= > [WIFI0)PS(E - E), ®)

with E, denoting the energy of the RPA excitation state
[v); the moments my of strength function (sum rules) are
usually evaluated as follows:

m = [AEES @)= Y OIFAOPE.  ©)

For the ISGMR, IVGDR, and ISGQR studied here, the
excitation operators are defined as follows:

A
FlS = er (10)
V4 N
v N z
F{\]\//[:ZZrlylM(rl ZrlylM(rl (11)
=1 z=l
A
P = iYom(F), (12)
i=1

where Z, N, and A4 are proton, neutron, and mass number,
respectively; r; is the nucleon's radial coordinate; Y m(7)
and Y,u(#;) are the corresponding spherical harmonic
functions.

Particularly, in linear response theory, the inverse en-

ergy weighted sum rule can also be extracted from the
constrained Hartree-Fock (CHF) approach [63, 64]:

1 A2 H|A
ey = - 5% : (13)
A=0

where [1) is the ground-state for the nuclear system
Hamilton H constrained by the field AF;.

The energy of isoscalar giant monopole resonance
(GMR), i.e., the breathing mode, is an important probe of
the incompressibility in nuclear matter. It can be evalu-
ated according to the constrained approximation [65] as

m(GMR)
EGuR = 4| 14
GMR m_1(GMR) (14)
where the energy weighted sum rule m; of ISGMR is re-
lated to the ground-state rms radius (%) by [66]

2
mi(GMR) = 2%A<r2). (15)

Therefore, we calculated Egmr by using the CHF meth-
od for computational efficiency.

Concerning the isovector giant dipole resonance, we
considered two observables, namely the electric dipole
polarizability «ap and the constramed energy
Ecpr = Vmi/m_;. Note that ap in *®*Pb probes the sym-
metry energy at approximately po/3 [61] and is therefore
sensitive to both the magnitude and density slope of the
symmetry energy at saturation density [67]. It is related to
the inverse energy-weighted sum rule in the IVGDR
through

ap = %”ezm_] (GDR). (16)

Meanwhile, the energy weighted sum rule m; of IVGDR
is related to the isovector effective mass at saturation
density m via [22, 62]

9 B NZ 9W* NZ 1
GDR)= — — —= A 17
m(GDR) = o A U0~ o - an

where « is the well-known Thomas-Reiche-Kuhn sum
rule enhancement. One then has approximately

1
2
EGpr m ap’ (18)
v,0

which suggests that Egpg is negatively correlated with
respect to n; .
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It is well known that the excitation energy of isocalar
giant quadruple resonance is sensitive to the isoscalar ef-
fective mass at saturation density. For example, in the
harmonic oscillator model, the ISGQR energy is [52, 66]

2m
E(;QR = —*Fla)() (l 9)
ms,O

with 7wy denoting the frequency of the harmonic oscillat-
or. In the present study, we set Eggr as the peak energy
of the response function obtained from RPA calculations.
To obtain a continuous response function, the discrete
RPA results were smeared out with Lorentzian functions.
The width of Lorentzian functions was set to be 3 MeV to
'renggfc)lsce an experimental width of ~3 MeV for ISGQR
in .

C. Bayesian analysis

Bayesian analysis has been widely accepted as a
powerful statistical approach to quantifying the uncertain-
ties and evaluating the correlations of model parameters
as well as making predictions with a certain confidence
level according to experimental measurements and empir-
ical knowledge [39-46]. In this study, we employed the
MADALI package [68] to conduct Bayesian analysis based
on Gaussian process emulators. For further details on this
statistical approach, please refer to, e.g., Ref. [40].

According to Bayes' theorem, the posterior probabil-
ity distribution of model parameters p (which we are
seeking for), with given experimental measurements O°*?
for a set of observables O can be evaluated as

eXp
P(p|M,OexP) - P(M’O |P)P(p) , (20)

f POMO™ | p)P(p)dp

where M is the given model, P(p) is the prior probability
of model parameters p before being confronted with the
experimental measurements O™P, and P(M,0%|p) de-
notes the likelihood or the conditional probability of ob-
serving O®Pwith given model M predictions at p. The
posterior univariate distribution of a single model para-
meter p; is given by

f P(PIM.O™)] [ p;

J#

[ remomna] T,
J

P(piIM,O) = ; 21

and the correlated bivariate distribution of two paramet-
ers p; and p; is given by

[ ramona] ] m

k#i,j

f P(IM.O™)] | e
k

P[(Pispj)|M’OeXp] = (22)

From the univariate distribution, the mean value of p;
can be calculated as

(pi) = f PiP(pilM,0°P)dp;. (23)

The confidence interval of p; at a confidence level 1 -«
is normally obtained as the interval between the (50a)™
and (100—-50a)™ percentile of the posterior univariate
distribution. Particularly, the median value U, of p; is
defined as the 50" percentile, i.e.,

UI’:
f P(pilM,O0%P)dp; = 0.5. (24)

e

Concerning the prior distribution, we assumed that
the ten parameters are uniformly distributed in the empir-
ical ranges listed in Table 1. It can be concluded from Eq.
(20) that the posterior distribution is determined by the
combination of the prior distribution and the likelihood
function, which depends on the experimental measure-
ment for an observable. Therefore, the prior distribution
is critical in the Bayesian analysis and can significantly
affect the extracted constraints. Nevertheless, in the
present study, owing to the relatively poor knowledge on
m’;, and m;  in the Skyrme EDF, we assumed large pri-
or ranges for m’, and m’ . Consequently, the constraints
on nucleon effective masses were mainly due to the giant
resonance observables. Narrowing the prior ranges for all
the parameters by 20% slightly reduced the posterior un-
certainties of the iospin splitting of nucleon effective
mass by a small percentage.

Table 1. Prior ranges of the ten parameters used.
Quantity lower limit upper limit
po/fm™3 0.155 0.165
Ey/MeV -16.5 -15.5
Ko/MeV 210.0 250.0
Esym(po)/MeV 29.0 35.0
L/MeV 20.0 120.0
Gs/(MeV -fm’) 110.0 170.0
Gy/(MeV - fm°) =70.0 70.0
Wo/(MeV -fm®) 110.0 140.0
o /m 0.7 1.0
my o /m 0.6 0.9
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The likelihood function was set to be the commonly
used Gaussian form

exp [0i(p)- O]

PIM,OS™ | p)ocexp{ Z 27 . (25
where O;(p) is the model prediction for an observable at
given points p, O7" is the corresponding experimental
measurement, and o; is the uncertainty or the width of
likelihood function. For a given parameter set p, we cal-
culated the following seven observables in **Pb from
Hartree-Fock, CHF, and RPA calculations: the electric di-
pole polarizability ap [49, 50], the IVGDR constrained
energy Egpr [51], the ISGQR peak energy Egor [52],
the binding energy Ejp [53], the charge radius r¢ [54], the
breathing mode energy Egumr [55], and the neutron
3pi12—3p3p2 energy level splitting €, [56]. The experi-
mental values for these seven observables together with
the assigned uncertainties are listed in Table 2. Regard-

Table 2. Experimental values and uncertainties used for the
binding energy Ej [53], charge radius r¢ [54], breathing mode
energy Egmr [55], neutron 3p;; —3ps;2 energy level splitting
es [56], electric dipole polarizability ap [49, 50], IVGDR
constrained energy [51], and ISGQR peak energy [52] in
208Pb.

ing ap and Egur, 0 were set to be their experimental
uncertainties given in Refs. [49] and [55]; for proper de-
termination of Ep, rc, €4, and Egpr, we assigned them
artificial 1o errors of 0.5 MeV, 0.01 fm, 0.09 MeV, and
0.1 MeV, respectively; concerning the experimental value
and uncertainty of Egor, we used the weighted average
of experimental measurements, i.e., 10.9+0.1 MeV, re-
ported in Ref. [52]. Note that decreasing the artificial er-
rors of Eg, rc, €5, and Egpr by half slightly reduced the
posterior uncertainty of Am] by approximately 7% and
did not affect the constraint on the symmetry energy at
subsaturation density p* = 0.05 fm~>.

According to the prior distribution and defined likeli-
hood function, the Markov chain Monte Carlo (MCMC)
process using Metropolis-Hastings algorithm was per-
formed to evaluate the posterior distributions of model
parameters. For the 10-dimensional parameter space in
this study, a great deal of MCMC steps would be needed
to extract posterior distributions. Thus, theoretical calcu-
lations for all the MCMC steps are infeasible. Instead, in
this study, we first sampled a number of parameter sets in
the designed parameter space, and trained Gaussian pro-
cess (GP) emulators [69] using the model predictions
with the sampled parameter sets. The obtained GPs
provided fast interpolators and were used to evaluate the
likelihood function in each MCMC step.

III. RESULTS AND DISCUSSIONS

value o
Eg/MeV 136343 05 We first generated 2500 parameter sets using the
maximin Latin cube sampling method [70]. Twenty-four
r/fim 23012 0.01 of them were located near the edge of the allowed para-
Ecyir/MeV 13.5 0.1 meter space and led to numerical instability in Hartree-
€5/MeV 0.89 0.09 Fock (HF) or RPA calculations. Therefore, we discarded
ap/fm’ 19.6 0.6 these twenty-four parameter sets and used the remaining
Ecop/MeV 13.46 01 247§ paramet.eli sets in HF, CHF, .and RPA calculations to
obtain the training data for Gaussian emulators.
Ecor/MeV 109 01 Results from these 2476 training points pointed out
Table 3. Best value, mean, median, and confidence intervals of the model parameters from MCMC sampling.
best mean median 68.3% C.I. 90% C.I. 95.4% C.I.
po/fm™ 0.1597 0.1612 0.1613 0.1589 ~ 0.1635 0.1577 ~ 0.1644 0.1570 ~ 0.1647
Eo/MeV —16.04 —-16.10 —-16.10 -16.34 ~ -15.87 -16.44 ~ -15.78 -16.47 ~ -15.74
Ko/MeV 224.6 2235 2234 219.4 ~227.6 216.9 ~230.3 215.6 ~231.8
Esym(p0)/MeV 34.4 32.7 33.0 309 ~34.4 29.9 ~ 34.8 29.5 ~34.9
L(po)/MeV 48.8 40.3 40.4 27.9~51.9 22.8 ~58.1 21.4~61.1
Gs /(MeV - fm®) 125.7 135.5 135.1 1182~ 152.5 112.7 ~ 160.3 1112~ 163.5
Gy /(MeV - fm®) 65.0 -16 -3.1 -50.9 ~49.5 —64.1 ~63.9 —67.3~67.3
Wo/(MeV - fm’) 111.6 118.4 117.0 112.0 ~ 125.1 110.6 ~ 131.4 110.3 ~ 134.7
m:’o/m 0.88 0.87 0.87 0.84 ~0.89 0.83 ~0.91 0.82 ~0.92
m, o/m 0.78 0.78 0.78 0.75 ~ 0.81 0.73 ~0.84 0.72 ~0.85

064104-5



Zhen Zhang, Xue-Bin Feng, Lie-Wen Chen

Chin. Phys. C 45, 064104 (2021)

g -0054 0052  0.146

0.166 -0.662 0.072 0.266
E, = 0.025 -0.009  -0.040 0.767 0.024 -0.123  -0.063
-0.246 0.883 0.094

Fum(po) | 0291 0253 0093 0178 -0.024 -0.156 -0.101

Il 0.889 -0.807 0.024 -0.233  -0.194 0.059 -0.189

Gg | 0.180 -0.186  -0.199 0.463 -0.323 -0.236

K, -0.063 0.062 0.089 0.174

Gy | 0.072 -0.050 0.066 -0.025  -0.066 0.045 0.048

0.067 0.719
mi,  0.127 -0.122  EEVRePE] 0.254 0.262 -0.204

mi, -0.019 F=0.474 0.118 -0.025 0.016 0.032 0.067

W, = -0.019 0.019 0.094 -0.074  -0.168

ap Ecpr Ecqr Ep rc Ecmr €ls

Fig. 1. (color online) Visualization of the Pearson correla-
tion coefficients among model parameters and observables
from the training data. The numerical values of correlation
coefficients are annotated and color-coded: darker red indic-
ates greater positive values and darker blue indicates greater
negative values.

possible correlations between observables and model
parameters. Fig. 1 shows the Pearson correlation coeffi-
cients among model parameters and the seven selected
observables obtained from the training data. In Fig. 1,
darker red indicates larger positive values, that is,
stronger positive correlation, whereas darker blue indic-
ates greater negative values, that is, stronger negative cor-
relation. One can expect that parameters strongly correl-
ated with the chosen observables are more likely to be
constrained. Particularly, note that the correlations among
observables in nuclear giant resonances and model para-
meters are clearly consistent with the empirical know-
ledge introduced in Section II B: ap is positively (negat-
ively) correlated with L [Egym(po)] because it is mostly
sensitive to the symmetry energy at p* =0.05 fm™> [61];
Ecgpr is negatively correlated with both m* 0 and L but
positively with Egm(po), which can be understood from
Eq. (18) and the dependence of ap on L and Esym(pO);
Egqr presents a strong negative correlation with m* 50 [see
Eq. (19)]; Egmr is mostly sensitive to the 1nc0mpress1b11—
ity, denoted as Ky. Meanwhile, Gy is weakly correlated
with all observables; therefore, it could not be well con-
strained in the present analysis.

Based on the training data, Gaussian process emulat-
ors were tuned to quickly predict the model output for the

MCMC process. With the help of GPs, we first ran 10°
burn-in MCMC steps to allow the chain to reach equilib-
rium, and then generated 107 points in the parameter
space via MCMC sampling. The posterior distributions of
model parameters were then extracted from the 107
samples; they are shown in Fig. 2. The lower-left panels
show bivariate scatter histograms of the MCMC samples;
the diagonal ones present the univariate posterior distri-
bution of the model parameters; the solid, dashed, and
dotted lines in the upper-right panels enclose 68.3%,
90%, and 95.4% confidence regions, respectively. Fig. 2
intuitively presents the uncertainties and correlations of
the model parameters imposed by the experimental meas-
urements for the chosen observables. Remarkably, Kj,

my,, and m;, are well constrained by the giant mono-
pole, dipole, and quadruple resonances, respectively. An-
other interesting feature is the strong positive correlation
between Egm(oo) and L, which can be understood by the
fact that ap is positively correlated with L but negatively
correlated with Egn(po) (see Fig. 1). Similarly, the Ep
datum leads to a negative Ey-Gs correlation, whereas the
rc datum results in a positive pg-Gs correlation. There-
fore, the combination of Ep and r¢ leads to a negative
po-Eq correlation.

To quantify the posterior distribution from Bayesian
analysis, we listed in Table 3 the statistical quantities es-
timated from the MCMC samples, including the mean
value, median value, and confidence intervals at 68.3%,
90%, and 95.4% confidence levels. The best value, i.e.,
the parameter set that gives the largest likelihood func-
tion, was also listed for reference. In particular, we ob-

tained m’ /m=0.87700% and m; /m=0.78*002 at 68%
0.04

confidence level, and m} /m=0.87";, and m; /m=
0.78%0.9¢ at 90% conﬁdence level. These results are con-
sistent with m* 50 =0.91+0.05 and m O/m 0.8+0.03 ex-
tracted from the GDR and GQR in Ref. [22] using the
conventional method. Note that, compared with a previ-
ous study of ours [22] in which a conventional analysis
was carried out based only on 50 representative Skyrme
EDFs, in the present study, we extracted the posterior dis-
tributions of model parameters from a very large number
of parameter sets from MCMC sampling. Therefore, the
uncertainties of model parameters were better evaluated,
and the constraints obtained in the present study should
be more reliable. The 90% confidence interval obtained
for m ; is also in very good agreement with the result of
0. 79*8 82 from a recent Bayesian analysis of giant dipole
resonance in ~ Pb [45]. Note that, compared with the
present study, the Bayesian analysis in Ref. [45] em-
ployed the same GDR data, but the MCMC process was
based on fully self-consistent RPA calculations. There-
fore, the consistence between the two results further con-
firms the reliability of Gaussian emulators as a fast sur-
rogate of real model calculations.
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Fig. 2.

(color online) Univariate and bivariate posterior distributions of the ten model parameters. The solid, dashed, and dotted lines

in the upper-right panels enclose 68.3%, 90%, and 95.4% confidence regions, respectively; the diagonal plots show Gaussian kernel

density estimations of the posterior marginal distribution for the respective parameters; the lower-left panels show scatter histograms of

MCMC samples. The ranges of variations of the ten parameters are the prior ranges listed in Table 1.

Fig. 3 further shows the posterior bivariate and uni-
variate distributions of the symmetry energy at
p*=0.05fm™> and the linear isospin splitting coefficient
Am} at po. Given the approximate relations
Eqym(p*) o 1/ap and EéDROC(aDm:,O)_l’ the GDR data
lead to positive correlation between Egm(o") and mj .
Therefore, Fig. 3 exhibits a negative Egym(p*)-Am correl-
ation [see Eq. (7)]. The confidence intervals of Egm(p*)
and Amj can be extracted from their univariate distribu-
tions shown in Figs. 3(b) and (c). Specifically, we ob-
tained Egym(p*) =16.7708 MeV and Amj=0.20*70 at
68.3% confidence level, and Egm(p*) = 16.7"]3 MeV and

Am; =0.20%013 at 90% confidence level. For the higher

order terms, we found, for example, that Am} is less than
0.01 at 90% confidence level and therefore can be neg-
lected.

Within the uncertainties, the present constraint on
Am} is consistent with the constraints m,_,/m = (0.32+
0.15)6 [21] and mj_,/m=(0.41£0.15)6 [20] extracted
from a global optical model analysis of nucleon-nucleus
scattering data, and also agrees with Am} =0.27 obtained
by analyzing various constraints on the magnitude and
density slope of the symmetry energy [31]. It is also con-
sistent with the constraints from analyses of isovector
GDR and isocalar GQR with RPA calculations using
Skyrme interactions [22] and the transport model using
an improved isospin- and momentum-dependent interac-
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Fig. 3. (color online) Posterior bivariate (a) and univariate

[(b) and (c)] distributions of Egym(e*) at p* =0.05 fm™>, and lin-
ear isospin splitting coefficient Am] at pg. The shaded regions
in window (a) indicate the 68.3%, 90%, and 95.4% confid-
ence regions.

tion [23]. In addition, the present constraint

Egm(p*)=16.7"]3 MeV is consistent with the result
15.91+£0.99 MeV obtained in Ref. [61], in which the used
experimental value of ap in *®pb contains a non-negli-
gible amount of contamination caused by quasideuteron
excitations [55]. Subtracting the contribution of the
quasideuteron effect will slightly enhance Egym(0®),
thereby improving the agreement with the results repor-
ted herein .

To end this section, we present the limitations of this
study. We only focused on nuclear giant resonances in
*®pb. However, m* 0 from the GDR of **Pb is not con-
sistent with the GDR in '°O [71]. Describing the giant
resonances simultaneously in light and heavy nuclei is
still a challenge. Concerning the ambiguities in determin-

ing nucleon effective masses from nuclear giant reson-

ances, please refer to Ref. [5]. It is also worth mention-
ing that owing to the simple quadratic momentum de-
pendence of the single-nucleon potential in Skyrme en-
ergy density functional, the nucleon effective mass is mo-
mentum independent and only has a simple density de-
pendence [see Eq. (3)], which is not the case in micro-
scopic many body theories, such as the chiral effective
theory [29, 30]. The extended Skyrme pseudopotential
[72-74] with higher order momentum-dependent terms
may help to address the issues on isospin splitting of nuc-
leon effective mass.

IV. CONCLUSIONS

Within the framework of Skyrme energy density
functional and random phase approximation, we conduc-
ted Bayesian analysis for data on the ground and collect-
ive excitation states of *"’Pb to extract information on the
nucleon effective mass and its isospin splitting. Our res-
ults indicate that the isoscalar effective mass m} /m ex-
hibits a particularly strong correlation with the peak en-
ergy of isocalar giant quadrupole resonance, and the isov-
ector effective mass m ,/m is correlated with the con-
strained energy of isovector giant dipole resonance. By
including the constrained energy of the isoscalar mono-
pole resonance, the peak energy of isocalar giant quadru-
pole resonance, the electric dipole polarizability, and the
constrained energy of the isovector giant dipole reson-
ance in the analysis, we constrained the isocalar and isov-
ector effective masses and the isospin splitting of nucle-
on effective mass at saturation density as mj,/m=
0.8770 01, meo/m=0.787000, and m;_,/m = (020715,
respectively, at 90% confidence level. For a 68.3% (10)

confidence level, the constraints become m* co/m=
0.02 _ 0.03 « _ 0.09
0.87*092 m’ o /m=0.78*0% and m;,_,/m =(0.20*35)s. In

addition, the symmetry energy at the subsaturation dens-
ity p*=0.05fm™> was constrained as Egym(p") =
167708 MeV at 68.3% confidence level and Egm(p*) =
16.7*]3 MeV at 90% confidence level.
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