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Abstract: In this study, we conduct an investigation on decoupling gravitational sources under the framework of
 gravity. Basically, the complete geometric deformation technique is employed, which facilitates finding the

exact solutions to the anisotropic astrophysical system smoothly without imposing any particular ansatz for the de-
formation  function.  In  addition,  we  used  5-dimensional  Euclidean  spacetime  in  order  to  describe  the  embedding
Class I spacetime in order to obtain a solvable spherical physical system. The resulting solutions are both physically
interesting and viable  with new possibilities  for  investigation.  Notably,  the present  investigation demonstrates  that
the mixture of  + CGD translates to a scenario beyond the pure GR realm and helps to enhance the features of
the interior astrophysical aspects of compact stellar objects. To determine the physical acceptability and stability of
the stellar system based on the obtained solutions, we conducted a series of physical tests that satisfied all stability
criteria, including the nonsingular nature of density and pressure.
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I.  INTRODUCTION

f (R)
f (R,G) f (Q,T )

Modifications  in  the  gravitational  sector  have  been
proposed  from time  to  time  because  of  the  correction  in
the gravitation action. These corrections have become in-
evitable,  when already existing gravitational  theories  are
unable to  address  certain  key  issues  of  the  present  uni-
verse. Several  corrections  have  recently  been  incorpor-
ated for cosmological applications [1, 2], string theory [3,
4],  teleparallel  gravity  [5],  unimodular  gravity  [6], 
gravity  [7, 8],  gravity  [9, 10],  gravity
[11], etc.  Multiple  cosmological  observations  have  con-
firmed  the  late  time  cosmic  acceleration  phenomenon,
which has altered our understanding of the universe. This
recent  development  has  generated  novel  concepts  and
ideas.  The  late  time  cosmic  acceleration  phenomenon  is
attributed to an exotic form of energy called dark energy,
and general  relativity  (GR) has  certain  limitations  in  ad-
dressing this issue. There are various exotic matter fields
that simulate negative pressure and positive energy dens-
ity to explain this bizarre phenomenon; however, a prop-
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f (R,T ) = R+2 f (T ) f (R,T ) = f1(R)+ f2(T )
f (R,T ) = f1(R)+ f2(R) f3(T ) f1(R) f2(R)

f (T ) f2(T ) f3(T )

er  geometrical  modification  without  the  addition  of  any
exotic matter can possibly resolve this issue. Harko et al.
[12]  proposed  the  gravity  by  assuming  a  weak
coupling between matter  and geometry.  The geometrical
part of  Einstein-Hilbert  action  has  been  modified  by  as-
suming the arbitrary function , where R and T de-
note the  Ricci  scalar  and  the  trace  of  the  energy  mo-
mentum  tensor,  respectively.  The  trace  incorporated  in
this  function  may  associate  with  the  existence  of  exotic
imperfect  fluids.  The  functions  are  suggested  in  three
forms: (i) , (ii)  ,
and  (iii) ,  where , ,

,  , and  are arbitrary functions of their re-
spective arguments. The first case can be reduced to GR
under certain conditions, and this has been widely used to
solve cosmological and astrophysical problems.
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Recently,  gravity theory has been of great in-
terest and  used  widely  in  literature  to  address  many  is-
sues related to astrophysics and cosmology. The issues of
late time cosmic dynamics and the anisotropy behavior of
the  expansion  have  been  partially  addressed  in 
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gravity.  Some  of  the  key  findings  in  gravity  are
given here. Alvarenga et al. [13] have studied the evolu-
tion of scalar cosmological perturbations, in metric form-
alism. Balakin and Bochkarev [14] have investigated the
rip  cosmology,  whereas  Noureen et  al.  [15]  have  shown
the implications of shear-free condition on the instability
range  of  an  anisotropic  fluid.  Baffou et  al.  [16]  have
solved  the  cosmological  evolution  of  the  cosmological
parameters  numerically  in  gravity.  Mishra et  al.
[17] have introduced the hybrid scale factor to study the
dynamical behavior of the cosmological model of the uni-
verse and also introduced the squared trace model [18] in

 gravity.  In  order  to  address  the  singularity  issue,
bouncing  cosmology  has  also  been  studied  in 
gravity.  Shabani  and  Ziaie  [19] have  introduced  the  ef-
fective fluid by defining the effective energy density and
pressure  to  present  the  bouncing  cosmological  model.
Tripathy et al. [20] have studied the bouncing cosmology
in  gravity and performed the stability analysis of
the  models  under  linear  homogeneous  perturbations  to
solve  the  bouncing.  The  gravity  theory  has  also
been  significant  in  the  study  of  wormhole  solutions.
Zubair et  al.  [21]  have  obtained  the  wormhole  solutions
in  gravity  and  shown  that  the  wormhole  can  be
constructed  without  exotic  matter  in  few  regions  of
space-time.  Elizalde  and  Khurshudyan  [22] have  ob-
tained the  wormhole  solution  and  explored  the  observa-
tional possibilities for testing these models. Yousaf et al.
[23]  have  investigated  the  irregularity  factors  of  self-
gravitating  spherical  star  that  evolves  in  the  presence  of
an  imperfect  fluid.  Das et  al.  [24]  have  studied  the
gravastar in  gravity and obtained a set of singular-
ity-free, and exact solution of the gravastar.  Abbas et al.
[25]  have  studied  the  charged  perfect  fluid  spherically
symmetric gravitational collapse and commented that the
singularity is formed earlier than the apparent horizons.

f (R,T )
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In  the  context  of  GR,  the  charged  compact  objects
have been  investigated  with  the  interpretation  of  aniso-
tropic  systems  from  Einstein-Maxwell  field  equations.
The anisotropic factor has been mimicked from the elec-
tric  field  intensity,  and  the  model  with  this  assumption
helps in obtaining the stability of static fluid in presence
of  charge.  The  solution  of  Einstein-Maxwell  equations
has  been  instrumental  in  describing  the  astrophysical
compact objects [26–29]. However, since the last decade,
researchers  have  given  attention  to  construct  charged
compact  star  model  in  gravity  to  understand  its
behavior in the geometrically extended gravity. Moraes et
al.  [30] have  studied  the  stellar  equilibrium  configura-
tions of compact stars in  gravity. Islam and Basu
[31] have  constructed  model  of  a  compact  star  in  pres-
ence of magnetic fluid and suggested that these solutions
will  enable  to  describe  the  interior  of  compact  objects.
With the Krori-Barua solutions in an anisotropic distribu-
tion, Sharif and Waseem [32] have analyzed the effects of
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charge on  the  nature  of  relativistic  compact  star  candid-
ates.  In  the  scope  of  this  extended  gravity,  Yadav et  al.
[33]  have  proposed  the  existence  of  non-exotic  compact
star,  that  validates  the  energy  conditions  and  stability  of
the model. Biswas et al. [34] have studied the anisotropic
spherically  symmetric  strange  star  and  have  shown  the
validity of the conditions used in the model. Maurya et al.
[35]  have  suggested  an  embedded approach to  study the
existence of compact structures that describes anisotropic
matter distributions in the framework of matter geometry
coupling. Also, Maurya and Tello-Ortiz [36] have exten-
ded the  isotropic  Durgapal-Fuloria  model  and  investig-
ated the  high  dense  charged  anisotropic  compact  struc-
ture in an isotropic background. Rahaman et al. [37] have
predicted  the  exact  redii  of  the  values  of  the  coupling
parameter  involved in  gravity by considering the
observed mass values of six compact stars. Rej et al. [38]
have obtained  singularity  free  model  of  charged  aniso-
tropic compact star in  gravity.

The  standard  model  is  based  on  the  homogeneity  of
space and large scale isotropy; however, a small scale of
anisotropy can be expected in the universe [39–44]. The
isotropy  and  homogeneity  can  be  observed  through  the
space-time under consideration. However, the space-time
of compact  objects  leads to anisotropic features with the
inhomogeneous  matter  distribution.  Anisotropic  pressure
is the result of the difference between the radial and tan-
gential component  pressures.  This  anisotropy  feature  in-
fluences the physical properties, such as gravitational red-
shift, energy density, and total mass. There are numerous
causes  for  anisotropy,  including  pion  condensation  [45],
phase  transitions  [46], immense  magnetic  fields  of  neut-
ron  stars  [47],  and  strong  electric  fields  [48]  (the  refs.
therein provide further  explanation [49–51]).  In addition
to these, the form of gravitational tidal effects is believed
to be a reason for anisotropy in the compact star, and this
has been responsible for deformation [52–57].

Vn
m[= n(n+1)/2]

(m−n)[= n(n−1)/2]

A review of the relevant literature reveals that several
modified/extended theories of gravity are now employed
to investigate compact stellar models. Therefore, it is cru-
cial  to  comprehend  the  inherent  geometry  of  spacetime
and the procedure for embedding a 4D space-time. In line
with  this,  Karmarkar  [58]  has  embedded  4-dimensional
spacetime into  5-dimensional  Euclidean  space.  This  em-
bedding  simplifies  the  process  of  solving  the  Einstein
field equations.  From  the  historical  background,  accord-
ing to Eddigton [59] the 4-dimensional surfaces in higher
dimension will  not change the metric at  all.  Further,  dif-
ferent  types  of  manifolds  are  linked by  embedding 4-di-
mensional Einstein field equations into 5-dimensional flat
spacetime [60, 61]. It is well known that the n dimension-
al  manifold  can always be embedded in Pseudo-Euc-
lidean space of  dimensions, and the min-
imum  extra  dimensions  of  pseudo-
Euclidean  space  needed  for  the  embedding  is  called  the

S. K. Maurya, B. Mishra, Saibal Ray et al. Chin. Phys. C 46, 105105 (2022)

105105-2



Vnembedding  Class  of .  According  to  this  definition,
Schwarzschild ’s  interior  and  exterior  solutions  are  of
Class  I  and  Class  II,  respectively;  the  class  of  general
spherical  and plane  symmetric  spacetimes  are  II  and III,
respectively; and the well known Kerr metric is of Class
V [62–65].

f (T ,T ) T

f (R,T ) f (R,T )

It  is  notable  that  in  general  relativistic  background,
Maurya et  al.  [64]  have  obtained  the  exact  generalized
model for anisotropic compact stars of embedding Class I
and tested the viability of the model by performing differ-
ent  physical  tests,  including  energy  conditions,  stability
analysis, and mass-radius relation. It should also be men-
tioned that Salako et al. [66] have studied the existence of
strange  starts  in  gravity,  where  is  the  torsion
tensor.  Waheed et al.  [67] used the Karmarkar condition
[58] to  find  the  physically  acceptable  solution  for  com-
pact  stars  in  gravity.  In  gravity,  Ahmed
and Abbas [68] have studied the gravitational collapse us-
ing the Karmarkar condition [58] to the spherically sym-
metric non-static radiating star.

Under the  aforementioned  discussion,  we  now  ex-
plain  our  technique  for  efficiently  solving  the  Einstein
field equations  in  an  anisotropic  domain.  The  newly  ad-
opted  method,  known  as  the  gravitational  decoupling
(GD) approach, allows one to decouple the Einstein equa-
tions [69–73] 1). This gravitational decoupling approach is
applied in  a  system  using  minimal  geometric  deforma-
tion  (MGD)  and  its  extension,  called  extended  MGD  or
complete geometric deformation (CGD).

Ti j

Before  presenting  a  literature  review  for  GD  works,
we would like to highlight the origin of the gravitational
decoupling, which  starts  with  a  simple  matter  distribu-
tion .  Thereafter,  it  is  extended  to  a  more  complex
source  (i)  without  violating  the  spherically  symmetry
condition and  (ii)  by  adding  a  new source  through  a  di-
mensionless coupling constant β as follows: 

Ti j 7→ T̃ (1)
i j = Ti j+β

(1) T̂ (1)
i j . (1)

T̃ (1)
i j

f (R,T )
Ti j

Ti j = T̃ (n)
i j

T n
i j

In a  similar  way,  one  can  extend  the  new  energy  mo-
mentum tensor  and repeat the similar procedure up to
n times. The simple initial solution of  field equa-
tion linked with the source  can then be extended in a
more  generalized  form  associated  with  the  source

 , in a stepwise and systematic procedure. This is
a new procedure to anisotropize the initial (or seed) solu-
tions obtained from the perfect fluid, as well as anisotrop-
ic  matter  distributions.  However,  it  is  necessary  to  note
here that each distinct component for the source  is in-
dependently  conserved.  Moreover,  the  MGD  technique
can be employed in a reverse order to find solution for the
self-gravitating compact objects.

θµν

λ(r) y(r)
λ→− ln[ξ+βh(r)] y(r) = η+βg(r)

Ti j θi j
f (R,T )

θi j

Specifically,  we  have  applied  the  CGD  approach  by
defining the modified action for  total  energy momentum
tensor for  the  anisotropic  matter  distribution  which  in-
cludes  the  extra  source .  In  this  situation,  the  field
equations  for  complete  or  original  system  will  contain
eight unknown functions for anisotropic fluid matter dis-
tribution. By taking this into account, we solve these field
equations using  gravitational  decoupling  via  CGD  ap-
proach by transforming the metric potentials  and 
as:  and .  In  this  way,
we arrive at  the two systems of equations corresponding
to  the  source  and ,  respectively.  The  first  system
will be for pure -gravity system, while the second
system is for extra source . After solving both systems
individually, we  combine  the  solutions  together  and  ob-
tain the complete solution of  the original  decoupled sys-
tem.

The abovementioned techniques have been employed
by  many  investigators  to  tackle  the  system  efficiently
[79– 98].  Moreover,  some  recent  works  on  gravitational
decoupling using MGD and CGD have been explored by
Zubair  and  collaborators  in  different  context  [99– 105].
Here,  the  extended  MGD or  CGD is  used  to  investigate
the  exact  solution  for  compact  stars  in  modified  gravity
theory without imposing a deformation function. The sys-
tematic  approach  of  this  technique  is  described  in  detail
in the following sections.

f (R,T )
The  paper  is  organized  as  follows.  In  Sec.  II,  some

preliminaries  of  the  gravity for  gravitational  de-
coupling along with the Einstein's field equations and the
Class  I  condition  are  discussed.  In  Sec.  III,  we  adopt  a
systematic procedure  to  solve the  field  equations  for  de-
coupled systems. In Sec. IV, the matching conditions for
the  astrophysical  system  are  elaborated.  The  physical
analysis of the problem is described in Sec. V, and in Sec.
VI, discussions and conclusions are presented. 

II.  PRELIMINARIES OF THE MATHEMATICAL
FRAMEWORKS

 

f (R,T)A.    Generalized  gravity for gravitational de-
coupling system

f (R,T )The  generalized  integral  action  for  formula-
tion with an extra source is given by [74] 

S =
1

16π

∫
f (R,T )

√−gd4x+
∫

Lm
√−gd4x

+β

∫
LX
√−gd4x, (2)

Lmwhere  denotes  the  matter  Lagrangian, β denotes  a
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LX

LX

coupling constant, and  is the Lagrangian density of a
new  sector.  Here,  is  not  required  to  be  essentially
defined by GR, however this can create the alterations in
GR as argued in [74].

gµν
Let us now vary the action with respect to the metric

tensor  , which yields the field equations as follows 

(
Rµν−∇µ∇ν

)
fR(R,T )+□ fR(R,T )gµν−

1
2

f (R,T )gµν

=8π
(
Tµν+βθµν

)
− fT (R,T )

(
Tµν+Θµν

)
, (3)

fR(R,T ) = ∂ f (R,T )/∂R fT (R,T ) = ∂ f (R,T )/∂Twhere  and .
Tµν

θµν Θµν

Again, the energy-momentum tensor (EMT)  , and
extra source , along with  can be provided as 

Tµν = gµνLm−2∂Lm/∂gµν, (4)
 

θµν = −gµνLX +2∂LX/∂gµν, (5)
 

Θµν = gγϵδTγϵ/δgµν, (6)

Θµνwhere the conceptual  meaning of  this  special  tensor 
will be physically meaningful later on.

GµνHence,  the  Einstein  tensor ,  after  rearranging  of
Eq. (3), can be given as 

Gµν =
1

fR (R,T )
[
8π

(
Tµν−βθµν

)
+

1
2

( f (R,T )−R fR (R,T ))gµν

−
(
Tµν+Θµν

)
fT (R,T )−

(
gµν□−∇µ∇ν

)
fR (R,T )

+8πEµν
]
. (7)

The respective conservation equation now leads to 

∇µTµν =
fT (R,T )

8π− fT (R,T )

[
(Tµν+Θµν)∇µ ln fT (R,T )

+∇µΘµν−
1
2

gµν∇µT
8π

fT (R,T )
(
β∇µθµν

)]
. (8)

TµνThe energy-momentum tensor  for the anisotropic
matter distribution can be taken as 

Tµν = (ρ+ pt)uµuν+ ptgµν+ (pr − pt)ζµζν, (9)

uµ uµuµ = −1
uµ∇νuµ = 0 pr pt

where  is  the  four  velocity,  satisfying  and
 ,  while ρ,  ,  and  are  the  matter  density,

radial pressure, and tangential pressure of the system, re-
spectively.

Lm = −PHere,  the matter  Lagrangian considered as, ,

P = −(1/3)(pr +2 pt)where .  It  is  important  to  note  that
the matter Lagrangian appears in the field Eq. (7), and the
conservation  Eq.  (8)  can  be  realized  according  to  its
choice  (see  Ref.  [106]  for  detailed  consultation).
However, in the context of GR, this choice would not af-
fect  the  observational  outcomes.  Therefore,  when  the
matter field is described as a perfect fluid, it is important
to choose a particular form of the matter Lagrangian. The
choice  we  mention  here  is  consistent  since  it  provides  a
well-established Lagrangian density.  Consequently,  from
Eq. (4), we can obtain 

δTµν
δgγϵ

=

(
δgµν
δgγϵ

)
Lm+gµν

(
∂Lm

∂gγϵ

)
−2

∂2 Lm

∂gµν ∂gγϵ
. (10)

δgµν/δgγϵ = −gµσgνζδ
σζ
γϵNow,  using , the  above  equa-

tion becomes 

δTµν
δgγϵ

= gµν

(
∂Lm

∂gγϵ

)
−gµσ gνζ δ

σζ
γϵ Lm−2

∂2 Lm

∂gµν ∂gγϵ
. (11)

Plugging (11) in (6), we obtain 

Θµν = −2Tµν+gµν Lm−2gγϵ
∂2 Lm

∂gγϵ ∂gµν
. (12)

Lm = −PAgain, employing (4) and , we finally get 

Θµν = −2Tµν−Pgµν. (13)

f (R,T )
Now,  taking  into  account  the  work  of  Harko et  al.

[12], we consider the linear form of  as 

f (R,T ) = R+2χT, (14)

f (R,T )

χ→ 0

where χ is dimensionless, and known as the coupling con-
stant. The linear form of  is quite successful in the
context  of  astrophysical  and  cosmological  models.  We
have  elaborated  its  successes  in  Section  I.  However,  in
the limit , it  reduces to the anisotropic fluid distri-
bution in the context of GR [107].

f (R,T )By substituting the  functional  (14)  in  Eq.  (7)
we find 

Gµν =8π
(
Tµν−βθµν

)
+χ(2Tµν+2Pgµν+Tgµν)

=8π
(
Tµν−βθµν+ T̂µν

)
, (15)

T̂µνwhere we denote  as
 

T̂µν =
χ

8π
(2Tµν+2Pgµν+Tgµν), (16)
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Tµνwith  as given by Eq. (9).
Hence, from the conservation of (15) one obtains 

∇µ(Tµν−βθµν+ T̂µν
)
= 0. (17)

PAt  this  stage  we  would  like  to  mention  the  terms 
and T as 

P = −1
3

(pr +2 pt), T = −ρ+ pr +2 pt.

 

B.    The Einstein field equations for the
decoupled system

We consider  the  most  general  line  element  to  de-
scribe  a  spherically  symmetric  and  static  spacetime,
which is given by 

ds2 = −ey(r) dt2+ eλ(r)dr2+ r2(dθ2+ sin2 θdϕ2), (18)

y = y(r) λ = λ(r)
where the metric potential y and λ are functions of the ra-
dial coordinate r only, i.e.,  and .

Let  us  write  the  non-zero  components  of  the  field
equations under the static spherically symmetric line ele-
ment (18), which can be given as 

e−λ

8π

(
− 1

r2 +
λ′

r
+

eλ

r2

)
= ρ− T̂ 0

0+βθ
0
0, (19)

 

e−λ

8π

(
1
r2 +

y′

r
− eλ

r2

)
= pr + T̂ 1

1−βθ1
1, (20)

 

e−λ

32π

(
2y′′+ y′2−λ′y′+2

y′−λ′
r

)
= pt + T̂ 2

2−βθ2
2.

(21)

T̂ 0
0 T̂ 1

1

In the preceding expression, a "prime" denotes differ-
entiation  with  respect  to  the  radial  coordinate r.
Moreover,  and  are expressed as
 

T̂ 0
0 =

χ

24π
(−9ρ+ pr +2pt), (22)

 

T̂ 1
1 =

χ

24π
(−3ρ+7pr +2pt), (23)

 

T̂ 2
2 =

χ

24π
(−3ρ+ pr +8pt). (24)

Now our aim is to solve the system of Eqs. (19)–(21)
by  using  a  complete  geometric  deformation  approach,
which we discuss in the next section. 

III.  A SYSTEMATIC PROCEDURE FOR SOLV-
ING THE FIELD EQUATIONS FOR DE-

COUPLED SYSTEM VIA CGD TECHNIQUE

A close  observation  on  the  field  Eqs.  (19) –(21)  re-
veals that a closed exact solution is not a simple and trivi-
al  task.  Therefore,  we  employ  the  CGD  technique  for
solving these  system of  equations  in  a  unique way.  This
CGD technique  provides  a  systematic  approach  consist-
ing of  the  following steps:  first,  split  the  decoupled  sys-
tem into two subsystems; then, solve these subsystems in-
dividually. 

A.    Splitting the decoupled system via CGD approach

λ(r) y(r)
In this approach, we basically deform the gravitation-

al  potentials  and  over  a  linear  transformation
given as 

λ(r) 7→ − ln[ξ(r)+βh(r)], (25)
 

y(r) 7→ η(r)+βg(r), (26)

h(r) g(r)

f (r) , 0 g(r) , 0

θµν
f (R,T )

where  and  denote the decoupling functions cor-
responding to the radial and the temporal components of
the line element (18), respectively. Here, we consider the
deformation  in  conjunction  with  both  the  radial  and  the
temporal  components,  i.e.,  and  ,  so  that
it  is  known  for  the  CGD.  Also,  it  is  always  possible  to
separate the new piece  from the seed matter sector for
pure  system.

Now, inserting Eqs.  (25)  and (26)  into the system of
Eqs. (19)–(21), we can have 

8π
(
ρ− T̂ 0

0
)
+8πβθ0

0 =

[ 1
r2 −

ξ

r2 −
ξ′

r

]
−β

[ h
r2 +

h′

r

]
,

(27)
 

8π
(
pr + T̂ 1

1
)−8πβθ1

1 =

[
ξ

(
1
r2 +

η′

r

)
− 1

r2

]
+β

[
h
( 1
r2 +

η′

r

)
+
ξg′

r

]
, (28)

 

8π
(
pt + T̂ 2

2
)−8πβθ2

2 =

[
ξ

4

(
2η′′+η′2+2

η′

r

)
+
ξ′

4

(
η′+

2
r

) ]
+β

[h
4

(
2η′′+η′2+2

η′

r

)
+

h′

4

(
η′+

2
r

)
+Ψ(r)

]
,

(29)

where 
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Ψ(r) =
µ′h′

4
+
µ

4

(
2h′′ +βh′2 +

2h′

r
+2ξ′h′

)
, (30)

Ψ(r)where  is given by the Eq. (30). 

m(r) =
χ

6π

∫ r

0

{
9ρ(x)− pr(x)−2pt(x)

}
x2 dx︸                                          ︷︷                                          ︸

mfrt

+4π
∫ r

0
ρ(x) x2 dx︸              ︷︷              ︸
mGR

+4πβ
∫ r

0
θ0

0(x) x2 dx︸                  ︷︷                  ︸
mCGD

. (31)

χ→ 0 β→ 0

f (R,T )
mfrt(r) mCGD(r)

f (R,T )

Clearly,  the  limit  and  will  provide  the
usual mass  function  expression  for  an  anisotropic  com-
pact structure in the arena of GR. From Eq. (31), we have
extra contributions due to the  and CGD scenarios
as  and ,  respectively.  At  this  point,  it
should  be  mentioned  that  the  mixture  +  CGD
goes beyond the pure GR scope and thereby helps to en-
hance the compactness, at least from the theoretical point
of view.

h(r) g(r)

ey(r) eλ(r)

h(r) g(r)

θµν
f (R,T )

One can note from the right hand side of Eqs. (27) –
(29)  that  we  have  separated  all  the  first  terms  from  the
new  terms  involved  such  as β and the  decoupling  func-
tions,  and . Here,  we apply the gravitational de-
coupling via CGD through the deformation of the origin-
al metric potentials  and  , by adding to new func-
tions  and . These  decoupling  functions  are  re-
sponsible  for  defining  a  new  set  of  equations  for  extra
source, .  However,  the  symbols ξ and η will  describe
the solution for pure -gravity.

Now, the  separated  field  equations  and  their  corres-
ponding conservation law can be written as 

8π
(
ρ− T̂ 0

0
)
=

[ 1
r2 −

ξ

r2 −
ξ′

r

]
, (32)

 

8π
(
pr + T̂ 1

1
)
=

[
ξ

(
1
r2 +

η′

r

)
− 1

r2

]
, (33)

 

8π
(
pt + T̂ 2

2
)
=

[
ξ

4

(
2η′′+η′2+2

η′

r

)
+
ξ′

4

(
η′+

2
r

) ]
. (34)

∇µ(Tµν+ T̂µν
)
= 0

β = 0

By virtue of the above set of Eqs. (32) – (34), the fol-
lowing conservation equation , i.e., (17),
under the condition , provides 

p′r +
η′

2
(ρ+ pr)−

2
r

(pt − pr) =
χ (3ρ′− p′r −2p′t)

6(4π+χ)
. (35)

Eq.  (33)  can  be  termed  as  the  modified  Tolman-Op-

f (R,T )

χ = 0

penheimer-Volkoff  (TOV)  [108, 109]  equation  in  the
arena  of  gravity  theory.  It  is  noticeable  that  Eq.
(35)  converts  into  the  hydrostatic  equilibrium  condition
for  standard  GR  for .  However,  the  corresponding
solution can be given from the following static spacetime
as 

ds2 = eη(r) dt2− ξ−1(r)dr2− r2(dθ2+ sin2 θdϕ2). (36)

f (R,T )
In this scenario, the gravitational mass for anisotropic

matter  distribution  in -gravity  can  be  determined
by 

m0(r) =
χ

6π

∫ r

0

{
9ρ(x)− pr(x)−2pt(x)

}
x2 dx︸                                          ︷︷                                          ︸

mfrt

+4π
∫ r

0
ρ(x) x2 dx︸              ︷︷              ︸
mGR

. (37)

m0 f (R,T )Here,  is  the  mass  function  in  pure  scen-
ario.  Henceforth,  we  shall  mention  the  system  of  Eqs.
(32)–(34) as a "seed system" and the corresponding solu-
tion as a "seed solution." The spacetime (36) described by
a seed solution will be known as a "seed spacetime."

θµν

Let us now look at the factor β, so that the field equa-
tions for  becomes 

θ0
0 = −

1
8π

[ h
r2 +

h′

r

]
, (38)

 

θ1
1 = −

h
8π

[ 1
r2 +

η′

r

]
+
ξg′

r
, (39)

 

θ2
2 = −

1
8π

[h
4

(
2η′′+η′2+2

η′

r

)
+

h′

4

(
η′+

2
r

)
+Ψ(r)

]
,

(40)

with 

Ψ(r) =
µ′h′

4
+
µ

4

(
2h′′ +βh′2 +

2h′

r
+2ξ′h′

)
.

∇µθµν = 0Hence, in view of Eq. (17), we obtain  in the
following conservation equation for system of Eqs. (38) –
(40) 

(
θ1

1

)′− y′

2

(
θ0

0− θ1
1

)
− 2

r

(
θ2

2− θ1
1

)
=

g′

2
(pr +ρ). (41)

G1
1 =G2

2

In addition  to  this,  now  we  use  the  pressure  aniso-
tropy condition in Eqs. (28) and (29), i.e., , which
provides 
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ξ

(
η′′

2
+
η′2

4
− η

′

2r
− 1

r2

)
+
ξ′η′

4
+

2ξ′

r
− 1

r2 = ∆̂, (42)

∆̂ = (8π+2χ) (pt − pr)where .

f (R,T )
f (R,T )

f (R,T )

pr
pt

This  demonstrates  that  condition  (42)  is  the  same  as
the  anisotropic  condition in  GR.  Since  gravity  is
an extended form of GR for the linear choice of ,
we  can  say  that  the  solution  of  the  field  equations  in

 theory can be obtained by the known solution of
GR. The coupling parameter χ will only affect the matter
variable. Using Eqs. (22) – (24), we can obtain ρ, , and

 from Eqs.  (32)  –  (33)  with  respect  to  the  radial  co-
ordinate as 

8πρ =
1

48(χ2+6χπ+8π2)r2

[
48π(1− ξ′r− ξ)+χ{16

+ ξ′r(η′r−16)+ (4η′r+2η′′r2+η′2r2−16)ξ
}]
, (43)

 

8πpr =
1

48(χ2+6χπ+8π2)r2

[
48π(ξ+η′rξ−1)−χ{16

+ ξ′r(8+η′r)− (16+20η′r−2η′′r2−η′2r2)ξ
}]
,
(44)

 

8πpt =
1

48(χ2+6χπ+8π2)r2

[
12πr(ξ′(2+η′r)+ (2η′

+2η′′r+η′2r)ξ)+χ
{
8+ ξ′r(4+5η′r)

+ (−8+8η′r+10η′′r2+5η′2r2)ξ
}]
. (45)

f (R,T )
pr pt T̂ pr

pt

ρ+ T̂ 0
0

pr − T̂ 1
1 pr − T̂ 2

2

f (R,T )

f (R,T )

{θµν,h,g}

To  find  the  contribution  of ,  it  is  required  to
separate ρ,  , and , because the term contains ρ, ,
and in Eqs. (32)–(34),  respectively. If  we interpret the
term  in Eq. (32) as the effective seed density (sim-
ilarly  in  (33)  and  in  34  as  the  effective
seed  pressures),  then  the  system  of  equations  can  be
treated as the set of Einstein's field equations. The 
contribution is hidden within the redefined thermodynam-
ic quantities,  as mentioned in Eqs.  (43)–(45).  We would
like  to  mention  here  that  no  substantial  effect  has  been
noticed in Eqs. (43)–(45)  since θ-sector is separ-
ated  by  applying  the  CGD.  Hence,  in  order  to  close  the
problem at least mathematically and to check the physic-
al  viability,  we  need  to  find  a  solution  for  the  system

.
Let us  now  define  the  following  new  physical  para-

meters: 

ρeff = ρ+βθ0
0, (46)

 

peff
r = pr −βθ1

1, (47)
 

peff
t = pt −βθ2

2, (48)

where the  effective  thermodynamic  variables  character-
ize the matter distribution of the model.

m(r) mCGD(r)
Here, we can observe the effects of CGD on the mass

function  from . Moreover,  the effective an-
isotropy factor Δ can be given as 

∆eff = (pt − pr)︸   ︷︷   ︸
∆FRT

+ β (θ1
1 − θ2

2)︸      ︷︷      ︸
∆CGD

.
(49)

∆CGD
∆FRT

Here,  we  would  like  to  highlight  an  important  point
that  the  CGD induced an  extra  contribution  in  the
seed anisotropy  which may enhance the anisotropy
within the matter distribution. This contribution may also
improve the equilibrium mechanism of the stellar system
via  the  anisotropic  force.  Now  our  main  objective  is  to
solve  both  systems  of  equations  separately  to  obtain  the
solution of the original system (19)–(21). The solution of
the second system (38)–(40) is dependent on the solution
of  the  first  system  (32) –(34).  Therefore,  we  beign  by
solving the first system using the embedding Class I con-
dition, which is discussed in the following section. 

B.    The Class I condition for the decoupled system
The  metric  (18),  which  refers  to  the  4-dimensional

spherically  symmetric  spacetime,  essentially  describes  a
spacetime of Class II. We would like to mention here that
embedding  requires  a  6-dimensional  pseudo-Euclidean
space.  Regarding  this,  Gupta et  al.  [110]  have  provided
the 6-dimensional Euclidean spacetime in the form 

ds2 = −dY2
1−dY2

2−dY2
3+dX2

1+dX2
2±dX2

3, (50)

with the particular transformation as follows: 

Y1 = r sinθcosϕ, Y2 = r sinθ sinϕ, Y3 = r cosθ,

X1 = K eη(r)/2 cosh
( t

K

)
, X2 = K eη(r)/2 sinh

( t
K

)
,

X3 = Z(r).

Then, Eq. (50) readily takes the form 

ds2 =eη(r)/2 dt2−
(
1+

K2 η′2(r)eη(r)

4
±Z′(r)

)
dr2

− r2(dθ2+ sin2 θdϕ2). (51)

After comparing from Eqs. (4) and (51), we have 

ξ(r) =
(
1+

K2 η′2(r)eη(r)

4
±Z′(r)

)−1

(52)

and 
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ds2 = −dY2
1−dY2

2−dY2
3+dX2

1+dX2
2+dX2

3. (53)

Further, to  be  a  Class  I  static  and non-static  spheric-
ally  symmetric  spacetime,  it  must  satisfy  the  following
Karmarkar condition [58] 

R1010R2323 = R1212R3030+R2102R3103, (54)

R2323 , 0subject to  [111], where the quantities regarding
the Riemann components for the metric (36) are given as 

R2323 = −r2 (1− ξ) sin2 θ, R1212 = −
ξ′r
2ξ
, R3103 = 0,

R1010 = −eη
[
η ′′

2
+
η ′2

4
+
ξ′η ′

4ξ

]
, R2102 = 0,

R3030 = −sin2 θ
η′reηξ

2
. (55)

Notably,  the  abovementioned  Karmarker  condition
was derived  using  a  relation  between  Remannian  com-
ponents,  and  this  condition  provides  a  relation  between
metric potential of the spacetime that guarantees the 4-di-
mensional spherically  symmetric  spacetime  can  be  em-
bedded within the 5-dimensional flat or Euclidean space-
time. Moreover,  when  solving  the  field  equation,  addi-
tional conditions  are  required  due  to  the  number  of  un-
knowns involved in the system of equations. This Class I
condition aids in the solution of the system of equations.

After inserting the Riemann components in condition
(16), we obtain 

2
η′′

η′
+η′ =

ξ′

ξ−1
, (56)

ξ , 1with .
To be a Class I spacetime of the aforementioned dif-

ferential  Eq.  (56),  there  is  a  requirement  to  maintain  the
spacetime  (18).  Therefore,  after  integrating  (17),  the
gravitational potentials are related as follows 

ξ = (1+Aη′2(r)eη(r))−1, (57)

where A is the integration constants.

Z = 0 A = K2/4

Hence, in connection to Eqs. (52) and (57), it  can be
ensured  that  the  transformation  involved  in  Eq.  (50)
provides  5-dimensional  Euclidean  spacetime  in  order  to
describe the embedding Class I spacetime under the con-
dition  and . 

f (R,T)C.    Embedding Class I solution in  gravity for
the seed system

In view of the condition (57), we consider the follow-

f (R,T )ing Class I spacetime in  gravity as, 

ds2 = (X+Br2)2 dt2− r2(dθ2+ sin2 θdϕ2)− (1+Yr2)dr2,
(58)

Y = 8 A B2

eη(r) = (X+Br2)2 ξ(r) =
(1+Yr2)−1.

f (R,T )

where X and B are  constants  and  ,  while  the
seed  metric  potentials  are: ,  and 

 A  literature  survey  shows  that  the  temporal
and radial components of the chosen seed spacetime cor-
responds to  the  well-known Adler  [112]  and Finch-Skea
[113], respectively. Furthermore, this seed Class I space-
time  was  previously  discussed  in  gravity  in  the
context of MGD approach [75]. Therefore, the hybridiza-
tion which we are considering here is reasonable.

f (R,T )Then,  the  density  and  the  pressures  in  scen-
ario [using Eqs. (43) – (45)] characterizing this model can
be given as 

8πρ =
2(χ+3π)Y(3+Yr2)+C[6πYr2(3+Yr2)+ψ1(r)]

6(χ2+6χπ+8π2)(1+Cr2)(1+Yr2)2 ,

(59)
 

8πpr =
−2Y ψ3(r)+C[χ(9+10Yr2−2Y2r4)+ψ2(r)]

6(χ2+6χπ+8π2)(1+Cr2)(1+Yr2)2 , (60)

 

8πpt =
Y(χYr2−6π)+C[6π(4+Yr2)+χψ4(4)]

6(χ2+6χπ+8π2)(1+Cr2)(1+Yr2)2 , (61)

C = B/X ψ1(r) =
χ(3+8Yr2+2r4Y2) ψ2(r) = 6π(4+3Yr2− r4Y2) ψ3(r) =
[χYr2+3π(1+Yr2)] ψ4(r) = (9+4Yr2+Y2r4)

where  we  considered  for  simplicity; 
, , 
, and .

h(r)
g(r)

h(r) g(r)

Now that  we  have  already  specified  the ξ and η,  we
only  need  to  determine  the  deformation  functions 
and  to  close  the θ-sector  completely.  Therefore,  we
apply two different approaches to find deformation func-
tions  and  , as discussed below. 

h(r)

1.    Mimic constraints for the density approach for de-
termining the deformation function 

(1+β)
(1+β)

There are several ways for determining the radial de-
formation  function,  such  as  EOS  or  particular  choice  of
expression. However, the mimic constraints to density ap-
proach  has  some  physical  significance.  If  we  apply  the
mimic constraints to density approach, we can easily find
the effective density as  times the seed density, and
as a result, the mass function will also be  times the
seed  mass.  It  means  that  the  total  mass  of  the  object  is
now controlled by the decoupling constant,  which yields
the extra packing of the mass.

Hence, in this case we shall consider the mimic con-
straints for the density 
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θ0
0(r) = ρ(r), (62)

which leads to 

h′+
h
r
= −8πrρ =⇒ h = −8π

r

∫
ρr2 dr+

F
r
, (63)

where F is a constant of integration.

h(r)
Now, using Eqs. (59) and (63), we find the deforma-

tion function  

h(r) =
h1(r)+h2(r) tan−1 [√C r

]−h3(r) tan−1 [√Y r
]

12(χ2+6χπ+8π2)r (C−Y)2
√

Y(1+Yr2)
, (64)

h(r)where the coefficient used in  can be provided as 

h1(r) =− r (C−Y)
√

Y [−4(χ+3π)Y2r2+C (χ

+4χYr2+12πYr2)],

h2(r) =2
√

Cχ (3C−2Y)
√

Y (1+Yr2),

h3(r) =Cχ(5C−3Y)(1+Yr2).

F = 0
r = 0

f (r)
tan−1(x) x =

√
C r or

√
Y r

x = 0

In  Eq.  (63),  we  take  the  arbitrary  constant  to
avoid the singularity  at .  Moreover,  in  Eq.  (64),  we
avoid the singularity in the expression of  as follows:
(i)  expansion of ,  where ,  up to
the  linear  term  by  using  the  Taylor  series  around ,
and  (ii)  the  integration  constant  involved  in  the  solution
has been taken to be zero.

h(r) g(r)

f (R,T )

h(r) g(r)

ρ(r) = θ0
0(r)

ρeff (1+β)
ρeff = (1+β)ρ

For clarity purposes, we would like to note that mim-
ic constraints only pertain to the matching of two particu-
lar functions [69]. As can be seen, we have two unknown
deformation functions,  and , that are involved in
θ-sector components  (Eqs.  (43)  –  (45)).  Typically,  au-
thors solve the problem by assuming a particular form for
one  of  the  deformation  functions.  However,  this  is  the
first  work  in -gravity  where  we  did  not  consider
any particular form of the deformation function. We have
determined  the  exact  expression  for  both  the  functions,

 and ,  by  solving  the θ-system.  From  Eq.  (43),
only the first derivative of h is given and the deformation
function g is not present in this equation. Then, it is easy
to show that, using the mimicking of  , the ef-
fective  density  will  become  times  the  seed
density ρ, i.e.,  , and the behavior of this ef-
fective density can be controlled by the decoupling para-
meter β.  In  addition,  it  is  advantageous  to  control  the
mass of the object because the mass is directly related to
the energy density. 

g(r)2.    Equation of state approach for determining 

g(r)The other deformation function  will  be obtained

by taking a linear equation of state (EOS) between the θ-
components.  For  this,  let  us  now consider  the  following
linear EOS 

θ1
1 = αθ

0
0 +γ, (65)

where α and γ are the constants.

g(r)
The  first  order  linear  differential  equation  obtained

provides the expression for  as 

g(r) =
−4Y g1(r) ln(1+Cr2)+C[g2(r)+g3(r) ]

24C (χ2+6χπ+8π2) (C−Y)
, (66)

where 

g1(r) =3C(χ+4π)−4(χ+3π)Y,

g2(r) =r2[3C(χ+4π)(−(−5+α)Y +2χγ(2+Yr2)

+4γπ(2+Yr2))−2Y
{
3χ2γ(2+Yr2)

+6π((5−α)Y +4γπ(2+Yr2))+2χ((5−α)Y

+9γπ(2+Yr2))
}]
,

g3(r) =2α(−3C(χ+4π)+4(χ+3π)Y) ln(1+Yr2).

Now, the θ components can be given as 

8πθ0
0 =

2(χ+3π)Y(3+Yr2)+C[6πYr2(3+Yr2)+ψ1(r)]
6(χ2+6χπ+8π2)(1+Cr2)(1+Yr2)2 ,

(67)
 

8πθ1
1 =
−3C(χ+4π)[θ11(r)−αY(3+ r2Y)]+ θ12(r)

12(χ2+6χπ+8π2)(C−Y)(1+Yr2)2 , (68)
 

8πθ2
2 =

θ21(r)+Ψ22(r)
2304(χ2+6χπ+8π2)2(C−Y)2(1+ r2Y)2 . (69)

The  coefficient  used  in  the  expressions  (67) –(69)
have been mentioned in the appendix.

Then, the deformed spacetime can be given by 

ds2 =(X+Br2)2 eβg(r) dt2− r2(dθ2+ sin2 θdϕ2)

− (1+Yr2)
1+βh(r)(1+Yr2)

dr2, (70)

h(r) g(r)where  and  are given in Eqs. (64) and (66).
Thus, the effective quantities are given as 

ρeff(r) = ρ(r)+βθ0
0 = (1+β)ρ(r), (71)

 

peff
r (r) = pr(r)−βθ1

1, (72)
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peff
t (r) = pt(r)−βθ2

2. (73)
 

IV.  MATCHING CONDITION FOR THE ASTRO-
PHYSICAL SYSTEM

r = R
r < R r > R

f (R,T )

f (R,T )

f (R,T ) f (R,T ) =
R+2χT

θµν

In  the  relativistic  astrophysical  system,  the  matching
of the spacetime geometries leads to the system's physic-
al viability  so  that  any  spherically  symmetric  stellar  ob-
ject serves as a strict limiting case. Accordingly, the stel-
lar  distribution at  the  surface of  the  star  ( )  between
the  interior  ( )  and  exterior  ( )  solutions  should
be smooth and continuous. The  theory of gravity
can describe  a  non-minimal  coupling  between  the  geo-
metry  and  matter.  The  non-trivial  coupling  between  the
gravity  and  matter  sectors  can  contribute  to  the  matter
content of  the  outer  space  time  that  surrounds  the  com-
pact  structure.  Also,  the  junction  conditions  in 
gravity needs to be established. Therefore, the field equa-
tions  of  gravity  (15)  for  the  functional 

 is required to be expressed in terms of the Ricci
tensor  and  matter  distribution.  Moreover,  to  analyze  the
contribution  of  the  extended  gravity  on  the  outer  space
time  matter  distribution,  we  shall  ignore  the  term.
Now,  we  can  establish  a  relation  between  the  trace  and
Ricci scalar from (15) as 

R = − (8π+6χ)T −8χP. (74)

Subsequently, we can obtain the field equations as 

Rµν = 2(χ+4π)Tµν−2(2π+χ)T gµν−2χPgµν. (75)

Tµν
f (R,T )

Tµν = 0

f (R,T )

θµν

Now, to obtain insights into the matching condition, it
is  instructive  to  consider  the  contribution  of  and

 gravity  sector  within  the  compact  object.  For
brevity,  we  consider ,  so  that  the  trace,  energy
density and the pressures terms vanish. Here we consider
the geometry of outer spacetime as the Schwarzschild ex-
terior metric.  This  is  possible  because  of  the  linear  rela-
tion between the Ricci scalar and trace of the energy-mo-
mentum tensor  (14).  If  the  gravity-matter  coupling  were
represented  by  the  functional ,  such  that  non-lin-
ear terms would exist between them, and as a result,  ob-
taining R and T explicitly  becomes  difficult.  However,
the minimal coupling further allows the decoupling of 
and  the  seed  source  would  violate  this.  Hence,  the
Schwarzschild metric  as  the  exterior  spacetime  that  sur-
rounds the collapsed configuration is given by 

ds2
+ =−

(
1− 2M

r

)−1
dr2− r2(dθ2− sin2 θdϕ2)

+

(
1− 2M

r

)
dt2. (76)

In this context, the deformed solution can be given by
the most general interior spacetime as 

ds2
− =−

[
ξ(r)+βh(r)

]−1 dr2− r2(dθ2− sin2 θdϕ2)

+ eη(r)+βg(r)dt2. (77)

ds2
+ ds2

−

gµν ds2
− ds2

+

Now, at the boundary Σ, the matching of the geomet-
ries can be performed smoothly between the outer mani-
fold  (76) and the inner manifold  (77) , as per the
junction  conditions  following  the  continuity  equation.
Thus, one may easily get the first and second fundament-
al forms  across  the  surface  Σ,  where  in  the  first  funda-
mental form, the inner geometry can be described by the
metric  tensor  induced  by  and  on the  inter-
face. This can be provided as 

g−00

∣∣∣
r=rb
= g+00

∣∣∣
r=rb

, g−33

∣∣∣
r=rb
= g+33

∣∣∣
r=rb

. (78)

Explicitly, it reads 

ξ(rb)+αh(rb) =
(
1− 2M

rb

)
, (79)

 

eη(rb)+βg(rb) =

(
1− 2M

rb

)
, (80)

where 

M = m(rb) = m0(rb)+4πβ
∫ r

0
θ0

0(x) x2 dx. (81)

Kµν

M− M+
M− M+

Furthermore, the  second fundamental  form is  associ-
ated  with  the  continuity  of  the  extrinsic  curvature 
through the  and  on Σ. Then, by matching of in-
terior ( ) and outer ( ) , the manifold at the Σ gives [

p(eff)
r (r)

]
Σ
=

[
p(r)−αθ1

1(r)
]
Σ
= 0. (82)

Now,  in  principle,  the θ-sector  might  influence  the
outer  spacetime  and  matter  content.  Because  of  this,  the
second fundamental  form  (82)  can  be  expressed  as  fol-
lows: 

p(rb)−α [θ1
1(rb]− = −α [θ1

1(rb)]+, (83)

pr(rb) = p−r (rb)where .
(θ1

1)−(rb)After  substituting  the  value  of  from  Eq.
(39), the above expression reads 

pr(rb)+β
[ h
8π

(y′

r
+

1
r2

)
+
µh′

r

]
r=rb

= −β (θ1
1)+(rb), (84)

y′ ≡ ∂r y−where .
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(θ1
1)+(rb)In order to find out  in (50), we employ Eqs.

(39), (76) and (80), obtaining 

pr(rb)+β
[h(rb)

8π

(y′(R)
R
+

1
R2

)
+
ξ(rb)g′(rb)

8πR

]
=
βh∗(rb)

8π

[
2M

R2 (R−2M
) + 1

R2

]
+β

[
g∗(rb)

]′
8π

(R−2M
R2

)
,

(85)

h∗(rb) g∗(rb)
θµν

where  and  denote the deformation functions
for exterior solution under the extra source , which can
be given by following in the exterior metric as 

ds2
+ =−

(
1− 2M

r
+βg∗

)
dt2+ r2(dθ2− sin2 θdϕ2)

+

(
1− 2M

r
+βh∗

)−1
dr2. (86)

h∗(rb) = 0 g∗(rb) = 0

If  this  the  exterior  solution  (86)  is  given  by  the
Schwarzschild  solution  (76),  then  we  must  substitute

 and  in (86). Then, Eq. (85) yields the
following 

p(rb)+
h(rb)
8π

(
η′(rb)

R
+

1
R2

)
− ξ(rb)g′(rb)

8πrb
= 0. (87)

The above condition (87) can be also written as 

p(rb)−α (
θ1

1(rb)
)−
= 0. (88)

The constants  involves  in  the  solutions  will  be  de-
termined by the necessary and sufficient conditions (79),
(80) and  (87).  Therefore,  by  using  the  boundary  condi-
tions we have obtained the values of the constants 

C =
−2Y

[
χY r2

b +3π(1+ r2
bY)

]
+2βC11(rb)

−6βχ2γ(rb+ r3
bY)2+C22(rb)

, (89)

 

M = M0−
βr
2

h(rb) =
YR3

2(1+YR2)
− βRh(R)

2
, (90)

M0 = m0(rb)where . Also,  we  avoid  writing  the  expres-
sion for the constant B due to its long cumbersome form. 

f (R,T)

V.  PHYSICAL ANALYSIS OF THE GRAVITA-
TIONAL DECOUPLING SOLUTION FOR

 GRAVITY
 

A.    Regularity conditions

eλ ey
Note that  the  regular  behavior  of  the  solution  de-

pends on the deformed metric functions  and  , which

eλ(0) = 1 ey(0) > 0

eλ(r) ey

ξ, η, h, g

h(r)
g(r) r = 0 f (r) g(r)

f (r)
eλ(0) = 1

are  and  , together with the monotonic in-
creasing function of r to describe the realistic objects. In
the  present  case  we  see  that  and  are solely  de-
pendent  on  the  parameters .  Since ξ and η are
metric  functions  corresponding  to  the  seed  space-time
which are already well  behaved,  then only the testing of
the  physical  validity  of  the  deformation  functions, 
and  are  required.  At  the  center, ,  and 
must  be  freed  from  singularity,  and  must  vanish  to
preserve .

In addition, the following conditions also must be sat-
isfied:
 

β > 0Case I: For 
h(r) ≥ 0 g(r) ≥ 0 r ∈ [0,R]

eλ(r) > 0
ey(r) > 0 m(r) > 0

ξ(r) h(r)

1.  If , ,  and  for  all ,  both  are
increasing,  then  the  deformed  metric  function ,

, mass function  are also increasing, when
the growth of  is faster than .

h(r) ≤ 0 g(r) ≤ 0 r ∈ [0,R]
eλ(r) > 0

ey(r) > 0 m(r) > 0
η(r) g(r)

2.  If , ,  and  for  all ,  both  are
decreasing,  then  the  deformed  metric  function ,

, mass function  are increasing, when the
growth of  is faster than .

h(r) ≤ 0 g(r) ≥ 0 r ∈ [0,R]
eλ(r) > 0 ey(r) > 0

m(r) > 0

3. If and  for all , then the de-
formed metric function , , and mass func-
tion  and increasing automatically.

h(r) ≥ 0 g(r) ≤ 0 r ∈ [0,R]
ξ(r) η(r)

h(r) g(r)
eλ(r) > 0 ey(r) > 0 m(r) >

4.  If and  for  all ,  then  the
growth  of  and  must  be  respectively  faster  than

 and ,  to  maintain  the  deformed  metric  function
, , and the mass function  and its in-

creasing behavior.
 

β < 0Case II: For 
h(r) g(r) ∀

r ∈ [0,R] eλ(r) ey(r)

m(r)
η(r) g(r)

1.  For  non-negative  and  increasing  and , 
, the deformed metric function ,  and the

mass function  will be positive and increasing, when
the growth of  is higher than .

h(r) g(r)
r ∈ [0,R] ξ(r) h(r)

eλ(r) ey(r) m(r)

2. If  and  are non-positive and decreasing for
all , then growth of  must be higher than 
in order to preserve the increasing and positive behavior
of , , and the mass function .

h(r) ≤ 0 g(r) ≥ 0 ∀r ∈ [0,R]
eλ(r) ey(r)

m(r) ξ(r)
η(r) h(r) g(r)

3.  If  and , , then  the  de-
formed metric function , ,  and the mass function

 will be positive and increasing, if the growths of 
and  are higher than  and , respectively.

h(r) ≥ 0 g(r) ≤ 0 ∀r ∈ [0,R]
eλ(r) ey(r) m(r)

4.  If  and , ,  then  it  yields
positive  and  increasing  behavior  of , ,  and ,
automatically. 

B.    Adiabatic Index
The  adiabatic  index  Γ  is  defined  as  the  ratio  of  two

specific heats [114] as follows: 

Γ =
ρeff + peff

r

peff
r

[
dpeff

r

dρeff

]
. (91)
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Γ > 4/3
Γ = 4/3

This provides amethod for analyzing the density pro-
file  and  the  stiffness  of  EOS  in  a  spherically  symmetric
system [115–120]. It is argued that Γ can play a key role
in  explaining  the  dynamical  stability  of  a  stellar  system
by applying an infinitesimal radial adiabatic perturbation
[121– 128].  It  is  important  to  note  that  is pre-
scribed  for  a  stable  Newtonian  sphere,  while 
gives  rise  to  a  neutral  equilibrium [129].  In  the  scenario
of  relativistic  fluid  distribution,  an  additional  term  may
create  a  correction  in  the  previous  bound,  which  can  be
expressed as [130, 131] 

Γ <
4
3
+

[
1
3
κ
ρ0 pr0

|p′r0|
r+

4
3

(pt0− pr0)
|p′r0|r

]
max

, (92)

ρ0 pr0 pt0where , , and  are the initial density, radial pres-
sure, and tangential pressure when the matter distribution
is in static equilibrium, respectively. The first term in the
bracket  in  the  above  inequality  describes  the  relativistic
corrections to the Newtonian perfect fluid, while the last
term in the bracket is due to anisotropy.

Γ > 4/3

Γcrit

u = M/R

f (R,T )

However,  for  an  anisotropic,  stable  and  relativistic
dynamical  system,  [114, 131, 132], since  posit-
ive anisotropy  factor  may  slow  down  the  growth  of  in-
stability. The relativistic correction to the adiabatic index
Γ could introduce some instabilities inside the star [133].
To  solve  this,  Moustakidis  [134]  proposed  a  more  strict
condition  on  the  adiabatic  index  Γ  and  achived  a  stable
stellar structure. This condition leads to the existence of a
critical  value  for  the  adiabatic  index  Γ,  denoted  by ,
which depends  on  the  amplitude  of  the  Lagrangian  dis-
placement  from  equilibrium  and  the  compactness  factor

 (where M and R being the total mass and radius
of the spherical system). Specifically, the critical relativ-
istic adiabatic index under in  theory can be given as 

Γcrit =
4
3
+

19
21

u. (93)

r/rb

The  variation  of  the  adiabatic  index  (Γ)  with  respect
to the radial coordinate  is shown in Fig. 1 , which is
physically satisfactory. 

C.    Equilibrium condition
In  the  present  case,  the  obtained  modified  form  of

Tolman  [108]  and  Oppenheimer-Volkoff  (TOV)  [108,
109] equations,  which comply with the hydrostatic equi-
librium of the stellar structure, can be written as 

p′r +
η′

2
(ρ+ pr)−

2
r

(pt − pr)−β
[ (
θ1

1

)′− y′

2

(
θ0

0− θ1
1

)
− 2

r

(
θ2

2− θ1
1

) ]
− χ (3ρ′− p′r −2p′t)

6(4π+χ)
+
βg′

2
(pr +ρ) = 0.

(94)

Fh = −
[
p′r −β

(
θ1

1

)′ ]
Fg=−

[
η′

2
(ρ+pr)+

βg′

2
(pr+ρ)+β

y′

2

(
θ0

0−θ1
1

) ]
Fa =

[ 2
r

(pt − pr) −
2
r

(
θ2

2− θ1
1

) ]
f (R,T )

Fχ =
χ (3ρ′− p′r −2p′t)

6(4π+χ)
Fh+Fg+Fa+Fχ = 0

The  aforementioned  modified  TOV  equation  can  be
expressed in  terms of  several  force  components,  such as
hydrostatic force , gravitational gradi-

ent  force ,

anisotropic  force ,  and
coupling  force  due  to -gravity

 , such that .
We have shown the features of all  the forces for dif-

ferent parameter values in Fig. 2. From this figure, it can
be  observed  that  the  fluid  distribution  possesses  a  stable
equilibrium as  the  combined  effect  of  all  the  forces  in-
volved in Eq. (94) related to the stellar configuration be-
comes zero. 

VI.  DISCUSSION AND CONCLUSION

f (R,T )

Tµν

Lm = −P
P = −1

3
(
pr +2 pt)

In the present investigation, we deal with the decoup-
ling gravitational  sources  in  gravity under  aniso-
tropic  matter  distribution.  However,  the  energy-mo-
mentum tensor  used here  under  the  CGD, is  not  the
usual one as in Eq. (9). Instead, for the present study, we
consider  the  matter  Lagrangian  to  be ,  where

.  The  basis  of  this  particular  choice  is
not a general one, as the matter Lagrangian enters expli-
citly in the field Eq. (7), and different choices lead to dif-
ferent equations of motion. The adopted technique of the
CGD for solving the system of equations seems a unique
approach. This technique provides a systematic approach
as follows:  (1)  split  the  decoupled  system into  two  sub-
systems,  and  (2)  solve  these  subsystems  individually.  A
detailed  discussion  on  this  aspect  has  been  provided  in
the preliminary Sec. V. Based on the aforementioned ap-
proach, we have, essentially, an extended case of all sim-
ilar studies that were previously conducted. The results of
the  present  study  are  generally  interesting,  distinctive,
and satisfactory as far as physical viability is concerned.

Some salient features of the present investigation can
be discussed as follows:
 

f (r)
h(r) r/rb

f (r) h(r)
∀r ∈ (r,R]

(i) We have shown the variation of the radial deform-
ation  function  and  temporal  deformation  function

 with  respect  to  the  radial  coordinate  in Fig.  3.
From this figure, for  and , we note that both are
negative  and  decreasing  functions  ,  giving  the
scenario of point 2 in Case I.
 

λ(r) = − ln[ξ(r)+
α f (r)] ν(r) = η(r)+αh(r)

η(r) h(r)

(ii)  In Fig.  4,  the  metric  functions 
 and  are both increasing and pos-

itive throughout the star, which implies that the growth of
 is faster than the deformation function .

 
(iii) In Fig. 5, the left panel shows the effective radial
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peff
r

peff
t

r/rb

pressure ( ) and the right panel shows the effective tan-
gential  pressure  ( ) with  respect  to  the  radial  coordin-
ate .  Since the constants χ and β influence the radial
and  tangential  pressures,  the  following  observations  can
be made from Fig. 5:
 

peff
r peff

tFor  fixing  χ: when  we  increase β,  both  and 
increase at the core of compact object;
 

peff
r peff

tFor fixing β:  and  show decreasing values  at
the  core  of  the  star  when we move χ from a  negative  to
positive value.
 

ρeff

r/rb

ρeff = (1+β)ρ

(iv)  Variation  of  the  effective  energy  density  ( )
with respect to  is shown in Fig. 6.  We set the same
numerical values as used in Fig. 3. Since the effective en-
ergy  density  is ,  therefore,  the  value  of  the
effective  energy density  at  the  core  and boundary  of  the
stellar  object  will  be decreasing for  decreasing values of
β.  Evidently,  values  of  the  effective  energy  density  of
Case I are higher than those of Case II at each point of the
stellar model.

∆CGD
∆eff r/rb

∆CGD

β ≥ 0
∆FRT ∆CGD

Fa =
2∆eff

r

(v)  The left  panel  of Fig.  7 shows the anisotropy for
the  CGD contribution  ( )  and  the  right  panel  shows
the effective anisotropy ( ) with respect to . We set
the same numerical values as used in Fig. 3. One can ob-
serve  from  the Fig.  7that  the  anisotropic  contribution

 due to CGD shows negative and decreasing behavi-
or within the stellar model, while the effective anisotropy
is  still  increasing  when ,  which  shows  that  the
growth  of  seed  anisotropy  ( )  is  faster  than .
Moreover, it should be noted that when β is positive, the

effective  anisotropic  force  will  produce  less
effect  to  balance  the  system  to  achieve  the  hydrostatic
equilibrium near the surface.
 

f (r)
h(r)

r/rb

β = 0.004 α = 1.4 γ = −0.002 M0/R = 0.2 Y =
f (r) h(r)
∀r ∈ (r,R]

(vi) Variation of the radial deformation function 
and  the  temporal  deformation  function  with  respect
to  the  radial  coordinate  are  depicted  in Fig.  8.  For
this  figure,  we  use  the  numerical  values  of  constants  as

, , , ,  and 
0.005. In Case II, the deformation functions  and 
are  also  negative  and  decreasing  functions ,
similar to those in Case I; see Fig. 8.

Fg Fh Fa

Fχ r/rb

Fig. 2.    (color online) Variation in different forces: is denoted by short dash curves, is denoted by long dashed curves, is de-
noted by solid curves, and is denoted by long dot dashed curves, with respect to the radial coordinate , for Case I (left panel) and
Case II (right panel).

 

r/rbFig. 1.    (color online) Variation in the adiabatic index (Γ) with respect to the radial coordinate .
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eλ eν

r/rb

f (r) h(r)

λ(r) = − ln[ξ(r)+α f (r)] ν(r) = η(r)+

(vii) Variation of the metric functions  and  with
respect to the radial coordinate  are featured in Fig. 9.
For this figure, we use the same numerical values of con-
stants  as  used  in Fig.  3. It  can  be  observed  that  the  de-
formation  functions  and  are negative  and  de-
creasing  function  throughout  the  stellar  model,  and  both
metric  functions  and 

αh(r) ∀r ∈ [0,R]
η(r)

h(r)

 are  increasing  as  well  as  positive .  This
clearly shows that the growth of  is faster than the de-
formation function  in Case II.
 

peff
r

peff
t

(viii) In Fig. 10, the left panel shows the effective ra-
dial  pressure  ( ) and  the  right  panel  shows  the  effect-
ive tangential pressure ( ) with respect to the radial co-

f (r) h(r)
r/rb α = 1.4 γ = −0.002 M0/R = 0.2

Y = 0.005

Fig. 3.    (color online) Variation in the radial deformation function  and temporal deformation function  with respect to the ra-
dial  coordinate .  For  plotting  of  this  figure,  we  use  the  numerical  values  of  the  constants  as , , ,  and

. Henceforth, we shall use this same data set for plotting other figures.
 

eλ eν r/rbFig. 4.    (color online) Variation in the metric functions  and  with respect to the radial coordinate .
 

peff
r

peff
t r/rb

Fig. 5.    (color online) The left panel shows the effective radial pressure ( ), and the right panel shows the effective tangential pres-
sure ( ) with respect to the radial coordinate .
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r/rb

peff
r peff

t

peff
r peff

t
peff

r peff
t

β > 0 β < 0

ordinate .  We set  the same numerical  values as used
in Fig.  3.  Here,  the  constants χ and β also  influence  the
radial and tangential pressures (  and ), and we ob-
serve  the  following  important  points  from Fig.  5:  when
we fix β and χ to move from positive to negative, the val-
ues of the pressures  and  at the core of stellar ob-
ject increase, but when β is decreasing,  and  at the
core also decrease while fixing χ. Further, if we compare
Case I ( ) and Case II ( ), the pressure at the core
in Case I is higher than that in Case II (see Tables 1 and 2
as well as Figs. 5 and 10).
 

∆CGD

∆eff r/rb

∆CGD

∆eff = ∆FRT+∆CGD

(ix) In Fig. 11, the left panel shows the anisotropy for
the  CGD contribution  ( )  and  the  right  panel  shows
the effective anisotropy ( ) with respect to . We set
the  same  numerical  values  as  used  in Fig.  8.  Here,  we
find an interesting observation, i.e.,  when we look at the
left panel of Fig. 11, the anisotropic contribution  is
increasing  throughout  the  compact  star  model,  which
shows  that  CGD approach  can  also  introduce  a  stronger
anisotropy within  the  object  since  the  effective  aniso-
tropy  will be  higher  than  seed  aniso-

∆FRT

Fa = (2∆eff)/2
tropy .  Due  to  this,  the  effective  anisotropic  force

 will produce stronger effects to balance the
system  in  order  to  achieve  the  hydrostatic  equilibrium
near the surface.
 

r/rb

β = 0.004
α = 1.4 γ = −0.002 M0/R = 0.2 Y = 0.005

Γ0 > Γcrit

β > 0.1
β > 0.1

(x) Variations in the adiabatic index (Γ) with respect
to the radial coordinate  are featured in Fig. 1. Here,
we  set  the  numerical  values  of  constants  as ,

, , , and . We have
mentioned  earlier  that  the  anisotropy  may  improve  the
stability of the model. Here, we can note from Fig. 1 that
the value of the adiabatic index Γ for both Cases I and II
is  higher in the presence of gravitational decoupling.  On
the  other  hand,  we  notice  from Fig.  2 that  the  adiabatic
index Γ is monotonically increasing towards the surface.
Tables 3 and 4 show that the adiabatic index  for
both Cases I and II and hence is stable against the radial
adiabatic  infinitesimal  perturbations.  One  can  note  that
we have chosen very small values for the intensity para-
meter β, and hence, an obvious issue may be the follow-
ing:  what  will  be  the  scenario  if  one  chooses ?  If
we  take  a  higher  value  for  the  parameter β,  say ,

ρeffr ρeffr

r/rb

Fig. 6.    (color online) The left panel shows the effective density  for Case I, and the right panel shows the effective density  for
Case II with respect to the radial coordinate .

 

∆CGD

∆eff r/rb

Fig. 7.    (color online) The left panel shows the anisotropy for the CGD contribution ( ), and the right panel shows the effective
anisotropy ( ) with respect to .
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then  the  effective  tangential  pressure  becomes  negative,
and  consequently,  we  will  obtain  an  increasing  energy
density.  In  a  similar  way,  for  the  physical  analysis,  the
mass-radius ratio has been fixed to 0.2 for the seed solu-
tion. However,  in connection to the physical consistency
for the other mass-radius ratios or against some other real

star values, we have checked that the assigned mass-radi-
us  ratio  is  consistent  with  star  LMC  X-4  of  radius  9.51
km.
 

∆CGD

(xi) As  mentioned  earlier,  when  the  anisotropic  con-
tribution  due  gravitational  decoupling  is  negative

f (r) h(r)
r/rb α = 1.4 γ = −0.002 M0/R = 0.2

Y = 0.005

Fig. 8.    (color online) Variation in the radial deformation function, , and the temporal deformation function, , with respect to
the radial coordinate . For plotting this figure, we use the numerical values of the constants as , , , and

. Henceforth, we shall use this same data set for plotting other figures.
 

eλ eν r/rbFig. 9.    (color online) Variation in the metric functions  and  with respect to the radial coordinate .
 

peff
r

peff
t r/rb

Fig. 10.    (color online) The left panel shows the effective radial pressure ( ) and the right panel shows the effective tangential pres-
sure ( ) with respect to the radial coordinate .
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and decreasing, then the anisotropic force will  show less
impact as compared to hydrostatic force for balancing the
system of Case I, which can be seen from Fig. 2 (left pan-
el), while in Case II, the anisotropic force is stronger than
the  hydrostatic  force  near  the  surface.  Moreover,  this

force increases throughout the star, which implies that the
anisotropic force in Case 2 will introduce a strong repuls-
ive force to avoid the gravitational collapse.

As a  final  comment,  we would like  to  add here  that,
although the present work is an extension of the work of

ρeff
0 ρeff

s

peff
0 β = 0.004 α = 1.4 γ = −0.002 Y = 0.005

Table 1.    The numerical  values of  physical  parameters  effective central  density ( ),  effective surface density ( ),  and effective
central pressure ( ) for , , , and .

χ and β ρeff
0 ×1013(gm/cm3) ρeff

s ×1013(gm/cm3) peff
0 ×1033(dyne/cm2)

χ = 0.4, β = 0 3.06204 1.34680 1.84404

χ = −0.4, β = 0 3.36193 1.47900 2.02227

χ = 0.4, β = 0.004 3.07614 1.35285 2.39666

χ = −0.4, β = 0.004 3.37324 1.48417 2.60919

χ = 0.4, β = 0.007 3.08677 1.35739 2.83532

ρeff
0 ρeff

s peff
0

β = 0.004 α = 1.4 γ = −0.002 Y = 0.005

Table 2.    The numerical values of physical parameters ( ), effective surface density ( ), and effective central pressure ( ) for
, , , and .

χ and β ρeff
0 ×1013(gm/cm3) ρeff

s ×1013(gm/cm3) peff
0 ×1033(dyne/cm2)

χ = 0.4, β = 0 3.06204 1.34680 1.84404

χ = −0.4, β = 0 3.36193 1.47900 2.02227

χ = 0.4, β = −0.001 3.05853 1.34528 1.71146

χ = −0.4, β = −0.001 3.35909 1.47771 1.88101

χ = 0.4, β = −0.002 3.05502 1.34377 1.58106

(
M/R

)
zs

Γ0 Γcrit α = 1.4 γ = −0.002

Y = 0.005 χ = 0.4

Table 3.    The numerical values of physical parameters mass-
radius ratio ,  surface red-shift  ( ), central  adiabatic in-
dex  ( ),  and  for  different β with , ,

, and .

β u = M/R zs Γ0 Γcrit

β = 0 0.2 0.29113 1.81430 1.51434

β = 0.004 0.20009 0.29119 1.82829 1.51437

β = 0.007 0.20012 0.29124 1.84826 1.51439

(
M/R

)
zs

Γ0 Γcrit α = 1.4 γ = −0.002

Y = 0.005 χ = 0.4

Table 4.    The numerical values of physical parameters mass-
radius ratio ,  surface red-shift  ( ), central  adiabatic in-
dex  ( ),  and  for  different β with , ,

, and .

β u = M/R zs Γ0 Γcrit

β = 0 0.2 0.29113 1.81430 1.51434

β = −0.001 0.200055 0.291112 1.81400 1.514335

β = −0.002 0.200047 0.291095 1.81547 1.514328

∆CGD

∆eff r/rb

Fig. 11.    (color online) The left panel shows the anisotropy for the CGD contribution ( ) and the right panel shows the effective
anisotropy ( ) with respect to .
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Maurya et al. [75], the obtained results widely differ due
to the particular CGD technique, as can be observed from
all the  case  studies  in  connection  to  the  above  descrip-
tions on Figs. 1–11. The literature survey reveals that this

f (R,T )is the first study to solve field equations in  grav-
ity under the extended gravitational decoupling approach,
where CGD is employed to successfully generate physic-
ally viable solutions for anisotropic systems.

 

APPENDIX
 

θ11(r) =4χγ(1+ r2Y)2+8γπ(1+ r2Y)2,

θ12(r) =4Y[3γ(χ+χr2Y)2+3π(8γπ(1+ r2Y)2−αY(3+ r2Y))+χ(18γπ(1+ r2Y)2−αY(3+ r2Y))],

θ21(r) =
192(χ2+6χπ+8π2)(1+3Cr2)(C−Y)YL1

(1+Cr2)
+

768C(χ2+6χπ+8π2)r2(C−Y)YL1(1+ r2Y)
(1+Cr2)

+96(χ2+6χπ+8π2)r2(C−Y)YΨ21(r),
 

θ22(r) =− (1+ r2Y)
[
96(χ2+6χπ+8π2)(C−Y)Ψ21(r)+

384C(χ2+6χπ+8π2)r2(C−Y)Ψ21(r)
(1+Cr2)

+4αr2Ψ2
21(r)+96(χ2+6χπ+8π2)(C−Y)

{
30γ(χ2+6χπ+8π2)r2(C−Y)Y

8Cr2YL1

(1+Cr2)2

− 4YL1

1+Cr2 +
4αr2Y2L1

(1+ r2Y)2 −
2αYL1

1+ r2Y
L4−2Y

(
3γ (2+ r2Y)+L2+L3

)}]
,

 

Ψ21(r) =L5−
4YL1

(1+Cr2)
− −2αY L1

(1+ r2Y)
+L4−2Y

[
3χ2γ(2+ r2Y)+L2+L3

]
,

L1 =3C(χ+4π)−4(χ+3π)Y, L2 = 6π[(5−α)Y +4γπ(2+ r2Y)], L3 = 2χ[(5−α)Y +9γπ(2+ r2Y)],

L4 =3C(χ+4π)[(5−α)Y +2χγ(2+ r2Y)+4γπ(2+ r2Y)], L5 = 6γ(χ2+6χπ+8π2)r2(C−Y)Y,

C11(rb) =3γ(χ+χr2
bY)2+3π

(
8γπ(1+ r2

bY)2−αY(3+ r2
bY)

)
+χ

[
18γπ(1+ r2

bY)2−αY(3+ r2
bY)

]
,

C22(rb) =6π
[−4−3r2

bY + r4
bY2+βr2

b(−8γπ(1+ r2
bY)2+αY(3+ r2

bY))
]
+χ

[−9−10r2
bY +2r4

bY2

+β
(−36γπ(rb+ r3

bY)2+α(3+8r2
bY +2r4

bY2)
)]
.
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