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Theoretical predictions on a-decay properties of some unknown neutron-
deficient actinide nuclei using machine learning”
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Abstract: Neutron-deficient actinide nuclei provide a valuable window to probe heavy nuclear systems with large
proton-neutron ratios. In recent years, several new neutron-deficient Uranium and Neptunium isotopes have been ob-
served using a-decay spectroscopy [Z. Y. Zhang et al., Phys. Rev. Lett. 122, 192503 (2019); L. Ma et al., Phys. Rev.
Lett. 125, 032502 (2020); Z. Y. Zhang et al., Phys. Rev. Lett. 126, 152502 (2021)]. In spite of these achievements,
some neutron-deficient key nuclei in this mass region are still unknown in experiments. Machine learning al-
gorithms have been applied successfully in different branches of modern physics. It is interesting to explore their ap-
plicability in a-decay studies. In this work, we propose a new model to predict the a-decay energies and half-lives
within the framework based on a machine learning algorithm called the Gaussian process. We first calculate the a-
decay properties of the new actinide nucleus 2'#U. The theoretical results show good agreement with the latest ex-
perimental data, which demonstrates the reliability of our model. We further use the model to predict the a-decay
properties of some unknown neutron-deficient actinide isotopes and compare the results with traditional models. The

results may be useful for future synthesis and identification of these unknown isotopes.
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I. INTRODUCTION

Neutron-deficient actinide nuclei are new growing
points in modern nuclear physics [1-3]. Located in the vi-
cinity of the proton drip line, these nuclei are character-
ized by their large proton/neutron ratios and short half-
lives. Synthesizing these nuclei is a challenging task in
experimental nuclear physics. Owing to recent advances
in beam facilities, detection systems, and analysis meth-
ods, a number of new neutron-deficient actinide nuclei
have been synthesized since 2014, including % Ac [4],
2ipy [5], 2142162211 [3, 6], 219220222-224N [1, 2, 7-9)],
236Bk [10], 24°Es [10], and >**Md [11]. a decay is one of
the most important decay modes in these nuclei [12-21].
It is widely adopted as a powerful tool to identify new
neutron-deficient actinide nuclei in experiments. The
measured a-decay energies and half-lives also provide a
valuable window to probe the evolution of shell structure
and cluster formation in neutron-deficient actinide nuclei.
In Refs. [1, 2, 7-9], the a-decay data of the new neutron-
deficient Neptunium isotopes 2!%-220222-224Np were ana-
lyzed systematically to probe the robustness of the magic

number N =126 along the Neptunium isotopic chain.
Very recently, a new neutron-deficient Uranium isotope
214U was produced via the '"82W(*Ar,4n)>'*U reaction
[3]. The a-decay systematics suggest that the oa-cluster
formation is enhanced abnormally by a factor of two in
comparison with even-even nuclei with 84 <Z <90 and
N < 126. The authors of Ref. [3] conjectured that such an
enhancement is closely related to the strong monopole in-
teraction between the n1f;/, and v1fs;; orbits. In spite of
these achievements, several crucial neutron-deficient ac-
tinide nuclei remain unknown in experiments. For ex-
ample, the neutron-deficient Neptunium isotope 2*'Np is
crucial for addressing the problem of the robustness of
the N =126 magic number in Neptunium completely.
However, this isotope has not been produced yet. Simil-
arly, the neutron-deficient Uranium isotope 2>°U has not
been produced in experiments as well, which is crucial
for examining the robustness of the N = 126 magic num-
ber in Uranium. Reliable theoretical predictions on their
a-decay properties may be important for their future syn-
thesis and identification.

On the theoretical side, many models have been pro-
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posed in the literature to predict a-decay energies and o-
decay half-lives. For a-decay energies, the popular mod-
els include the finite-range droplet model (FRDM) [22],
the finite-range liquid-drop model (FRLDM) [22], the
Thomas-Fermi (TF) model [23], the Duflo-Zuker (DZ)
model [24], the empirical formula based on the liquid-
drop model [25], and the linear trajectory under the
valence correlation scheme [26]. For a-decay half-lives,
the popular models include the new Geiger-Nuttall law
(NGNL) [27], the density-dependent cluster model
(DDCM) [28-33], the multiple channel cluster model
(MCCM) [34, 35], the generalized liquid drop model
(GLDM) [36], the universal decay law (UDL) [37], the
quartetting wave function approach [38, 39], and the
quartet model [40]. These traditional methods have been
adopted in various experimental works to provide theoret-
ical values for comparison. In Ref. [41], the authors cal-
culated the a-decay properties of some neutron-deficient
actinide nuclei, including two new isotopes 2'°Np and
220Np, using the improved Buck-Merchant-Perez cluster
model. The theoretical results showed good agreement
with the experimental data within a factor ~ 2. In spite of
these successes, considering their physical importance, it
is valuable to continue developing new models for reli-
able theoretical predictions on the a-decay properties.

Machine learning has made tremendous progress in
the past ten years and has changed our social life in a sig-
nificant way. It is widely used in image recognition,
product recommendation, autonomous vehicles, and
email spam. Besides celebrated successes in computer
science, machine learning algorithms have also been used
to study realistic problems in modern physics. For ex-
ample, machine learning was successfully used for estim-
ating entropy production [42], distinguishing different to-
pological phases [43], and detecting multimode Wigner
negativity [44]. Meanwhile, machine learning has also
been applied to the field of nuclear physics [45-60]. As
one of the machine learning algorithms, the Gaussian pro-
cess has provided new ideas for the studies of many im-
portant physical problems in recent years [61-66]. The
Gaussian process is a popular machine learning al-
gorithm because it can provide error bars for the predict-
ive values. This advantage could help visualize the mod-
el uncertainties and quantify the theoretical uncertainties
[67]. For a-decay studies, only a few calculations are
available based on a machine learning algorithm called
the artificial neural network [68], and the power of ma-
chine learning algorithms has not been fully realized in a-
decay studies.

In this work, we propose a new model for a decay
within the framework of the Gaussian process, which is
an important machine learning algorithm. We use this
new model to predict the a-decay energies and half-lives
of some unknown neutron-deficient actinide nuclei. Our
theoretical results could be useful for future experimental

synthesis and identification of these isotopes. The re-
mainder of this paper is organized as follows. In Sec. 11, a
brief introduction to the Gaussian process is provided. In
Sec. I11, the theoretical results are detailed for neutron-de-
ficient actinide nuclei with 89 < Z < 94. The summary is
provided in Sec. IV.

II. THEORETICAL FRAMEWORK

a-decay energies and a-decay half-lives are two of the
most important observables in a decay. They depend on
the neutron number N, proton number Z, orbital angular
momentum L of the a emitter, as well as many other
physical quantities in a very complicated way. It is an im-
portant problem to calculate the a-decay energies and
half-lives accurately in theoretical models. In this work,
we propose the use of a machine learning algorithm
called the Gaussian process to capture the complex cor-
relations between the a-decay observables and intrinsic
physical properties of a emitters. This can be implemen-
ted in three steps. In Step I, we construct our Gaussian
process model under the guidance of theoretical consider-
ations of the a-decay physics and general experience of
the machine learning field. In Step II, the Gaussian pro-
cess model is trained with respect to the experimental a-
decay data, which are referred to as the training set in ma-
chine learning terminologies. In Step III, the trained
Gaussian process model is used to calculate the a-decay
properties of unknown o emitters. These results could be
helpful for their synthesis and identification in future ex-
periments.

For later convenience, we introduce a few notations
used in statistics and machine learning. Let A be a set of
independent random variables. A ~ N(u,X) means that
these random variables obey the multivariate Gaussian
distribution with the mean vector given by u and the cov-
ariance matrix given by X. P(B|A) denotes the condition-
al probability distribution of B if 4 happens. {X,Y} de-
notes the training set with n known data points, where
X =[x, x2,---,x,)" and ¥ = [y1,y2,---,ya]" are the inputs
and outputs, respectively.{X., Y.}, with
X, =[x1,x0,,x.]" and Y, =[y,y2,---,y.]", denotes
n, unknown data points. The main goal of machine learn-
ing is to predict the values of the unknown outputs Y,
based on the known Y.

The Gaussian process is a popular nonparametric
model in machine learning. It is a stochastic process
based on the Gaussian distribution and is often used to
study the complicated correlations between different
quantities in a high-dimensional function space. It can be
defined as a collection of random variables with the nov-
el property that any finite number of them satisfies a joint
Gaussian distribution [69]. Let us consider a n-dimen-
sional function Y(X) with X =[x, x,---,x,]7. If
Y = [y(x1),y(x), -+ ya)]” =[y1.32.++,ya]” obeys a joint
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Gaussian distribution, the Gaussian process is given by
Y ~ GP(M(X),K(X, X)). ©))

Here, GP is an abstract symbol for the Gaussian process
and the random variables are the function values y; = y(x;)
at the point x;. X and Y are the Gaussian process inputs
and outputs, respectively.
M(X) = [m(x1),m(xy), - ,m(x,)]" denotes the values of
the mean function of the Gaussian process, and
K(X,X) = [k(x;,x))]nxn 1s the nxn kernel function matrix
of the Gaussian process. The kernel function k(x;,x;) cap-
tures the correlations between the Gaussian process out-
puts at the input points x; and x;. The details of the ker-
nel function k(x;,x;) are introduced later. Because the
marginal distribution of the multivariate Gaussian distri-
bution is still Gaussian, Eq. (1) can be represented more
clearly as

Vi m(xy) k(x1,x,)
Y -

Yn m(x,)

k(x1,x1)

: : . (@)
k(xp, x1) k(xp, xp)
where N represents the Gaussian distribution. For con-
sistency, the kernel function matrix K(X,X) should be
symmetric and positive semidefinite.

For the a-decay studies, the Gaussian process inputs
X can be the proton numbers Z, neutron numbers N, and
orbital angular momenta L of different o emitters, while
the Gaussian process outputs ¥ can be the corresponding
a-decay observables, i.e., the a-decay energies and half-
lives. The proton number Z and neutron number N are
chosen as the features of the inputs because they are
among the most important intrinsic physical properties of
nuclei. In this work, the Gaussian process input is
x; = (Z;,N;) for an o emitter when its corresponding out-
put is y; = 02" to describe the a-decay energy for an o-
decay emitter. When describing the corresponding a-de-
cay half-lives, the Gaussian process input and output are
given by x; = (Z;,N;,L;) and y; = loglOTf"pt', respectively.
The feature L in the input is added as traditional models
show that it is crucial for calculating the unfavored a-de-
cay half-lives [41]. Let {X,Y} be the training set of the
Gaussian process, which contains the experimental data
of the observed a emitters. Then, under the framework of
the Gaussian process, the known a-decay observables ¥
at the points X and unknown a-decay observables Y, at
the points X. satisfy the joint Gaussian distribution
P(Y,Y.) = N(M...,K..) with P(Y.)=N(M.,K,), whose
mean vector is M., = [M,M.]” and the covariance mat-
rix K.. is given by

KX,X) KX.X.) 3)
K(X..X) K(X..X.) |

If there are a number of # points in the training set and a
set of n, new points for the predictions, K(X,X.) and
K(X.,X,) are the nxn, and n, X n, matrices, respectively,
and K(X,X,) = K(X.,X).

To obtain a reasonable predictive distribution on Y.,
we are interested in the conditional distribution of Y,
when Y is given, based on the definition of the condition-
al probability function

K** =

P(Y.Y.)

P(Y.|Y) = PY)

4)

where P(Y)=N(M,K) with K =K(X,X). After condi-
tioning the joint Gaussian distribution, the predictive dis-
tribution on Y, is expressed as

Y.[Y ~ N[M(X.)+K(X,X.)T K(X,X)" (Y - M(X)),
KX..X.,)-KX,X.)" KX, X)"'K(X,X.)), (5)

which is the central equation for the predictions with the
Gaussian process. In this work, M(X), which is the mean
function for the training set, is set to zero as usual due to
a lack of prior knowledge. In addition, the mean function
for the prediction points, which is denoted by M(X,), is
also chosen to be zero.

The kernel function k(x;,x;) is crucial for the predict-
ability of the Gaussian process. In this work, we consider
three common choices:

e Matérn 3/2:
k(x;,xj) = Uz(l+$rij)exp(—7rij],

o Matérn 5/2:

5 5 5
k(x;,xj) = n2(1 +T\/_rij+_r'2')exp(_£rij),

e Matérn 7/2:

Vioo14, 7V7 V7
k(x,-,xj)=n2(1+Tr,~j+57ri2j+ﬁr?j cXp —Tr,-j .

where ;= ||x;—x)|| is the distance between the input
points x; and x;, and 6= {nz,l} represents the hyperpara-
meters of the Gaussian process. The free hyperparamet-

ers 6 can be determined by maximizing the natural logar-
ithm of the likelihood function
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1 1
InP(Y|X,0) = —EYTK(X, X)'y- z1n IK(X,X)|— gln(Zﬂ),

(6)
with respect to the training set [69, 70].

III. NUMERICAL RESULTS AND DISCUSSIONS

With the model discussed above, we perform predic-
tions on the a-decay energies and half-lives for some un-
known neutron-deficient actinide nuclei with 89 < Z <
94, respectively. To predict the a-decay energies and
half-lives, the Gaussian process inputs are chosen as
x; = (Z;,N;) and x; = (Z;,N;,L;) for each nucleus, respect-
ively. Here, the angular momentum and parity follow the
conservation laws [41]

T _ L
|If—1i|<L<1f+1i, — =D (7
: T

where I;, Iy, n;, and 7y are the spins and parities of the
initial and final states, respectively. Meanwhile, the
Gaussian process outputs are the corresponding a-decay
energies and the common logarithm of the a-decay half-
lives, respectively. Here, the Gaussian process training
sets consist of, respectively, a set of 101 actinide nuclei
with available experimental a-decay energies and a set of
102 actinide nuclei with available experimental a-decay
half-lives (see the supplementary material). The corres-
ponding experimental a-decay energies and half-lives are
obtained from the AME2016 [71, 72] and the
NUBASE2016 [73], respectively. Regarding the nuclei
with newly reported a-decay properties, such as 2!1220Pa
[5’ 74]’ 216,218,223U [3’ 75]’ and 219,220,222Np [1’ 2’ 7]’ we
select the newest experimental results as the outputs for
the Gaussian process training sets, while the a-decay
properties of the newest neutron-deficient nucleus 24U
are not included. For the new experimental a-decay half-
lives with asymmetric uncertainties, their uncertainties
are symmetrized as in NUBASE2016 [73]. To provide
the systemic error for the Gaussian process, three differ-
ent kernel functions are used in this work. Table 1 shows
the hyperparameters of the Gaussian process determined
in this work. The first column lists the three kernel func-
tions used for calculating both the a-decay energies and
half-lives. The second and third columns list the hyper-
parameters for calculating the a-decay energies with dif-

ferent kernel functions, and the last two columns list
those for calculating the a-decay half-lives. Besides, Fig.
1 depicts the natural logarithm of the likelihood function
values for training the a-decay energies and half-lives
over the hyperparameter space using the Gaussian pro-
cess with three different kernel functions. The red stars
indicate the maximum natural logarithm of the likelihood
function values.

We first calculate the a-decay properties of the new
actinide nucleus 2'*U to test the reliability of the Gaussi-
an process. The predictive a-decay energies and half-lives
with three kernel functions versus the neutron number for
the Uranium isotopes are shown in Fig. 2. In addition, the
lo confidence intervals provided by the Gaussian pro-
cess with three kernel functions are also plotted in Fig. 2.
The black dashed line represents N = 128. The a-decay
energies of the new nuclei >'*U are marked by the black
arrow in Fig. 2(a). It can be clearly seen that, for 24U, all
the a-decay energies calculated with the three kernel
functions can reproduce the newest experimental results
well. Numerically, the calculated o-decay energies of
2140 are 8.679, 8.652, and 8.633 MeV using the Matérn
3/2, Matérn 5/2, and Matérn 7/2 kernel functions, respect-
ively. In Ref. [3], the experimental a-decay energy of
214U is 8.696 MeV. The deviations between the experi-
mental result and the theoretical results calculated with
the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel func-
tions are 0.017, 0.044, and 0.063 MeV, respectively.
These small deviations show that the calculated results
are in good agreement with the experimental result. Be-
sides, we applied the leave-one-out cross-validation to the
Gaussian process with three Matérn kernel functions. The
root mean squared errors of the Gaussian process with the
Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions
are 0.082, 0.082, and 0.100 MeV, respectively, when cal-
culating the a-decay energies. The results indicate that
the Gaussian process is a pretty good model for calculat-
ing the a-decay energies. Similarly, the a-decay half-lives
of the new nuclei 2'*U are denoted by the black arrow in
Fig. 2(b). It can be seen that the a-decay half-lives calcu-
lated with the Matérn 3/2, Matérn 5/2, and Matérn 7/2
kernel functions are all very close to the experimental res-
ult. The predictive results are 1.23x10°, 1.28x10 ", and
1.37x10 ~ s, respectively. The experimental a-decay half-
life is 9.94x107* s in Ref. [3]. Therefore, the calculated
a-decay half-lives are in good accordance with the exper-

Table 1. The hyperparameters 6, = {né,lQ] and 6y = {r]%,lr} of the Gaussian process determined by two training sets for calculating

the a-decay energies and half-lives, respectively.

kernel function 7]2Q /MeV lo 77% Ir
Matérn 3/2 34.480 17.010 22.566 5.389
Matérn 5/2 22.680 6.386 14.457 2.946
Matérn 7/2 18.594 4.199 13.020 2.381
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Fig. 1. (color online) The natural logarithm of the likelihood function values for training the a-decay energies and half-lives over the

hyperparameter space using the Gaussian process with three different kernel functions. Fig. 1(a) - (¢) depict the natural logarithm of the
likelihood function values over the hyperparameter space when training the a-decay energies with the Matérn 3/2, Matérn 5/2, and
Matérn 7/2 kernel functions, respectively. Fig. 1(d) - (f) show, respectively, the natural logarithm of the likelihood function values for

training the a-decay half-lives using the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions.
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(a), the black hollow squares indicate the experimental a-decay energies. The yellow upper triangles and purple lower triangles repres-

(color online) Predictions on (a) a-decay energies and (b) half-lives versus the neutron number for the Uranium isotopes. For

ent the a-decay energies derived from the finite-range droplet model (FRDM) [22], and those extracted from the finite-range liquid-
drop model (FRLDM) [22], respectively. The green right triangles, blue left triangles, and red dots, respectively, denote the predictive
o-decay energies obtained using the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions. For (b), the black hollow squares repres-
ent the experimental a-decay half-lives. The yellow upper triangles represent the a-decay half-lives calculated using the new Geiger-
Nuttall law (NGNL) [27] and the purple lower triangles represent the a-decay half-lives calculated using the density-dependent cluster
model (DDCM) [28]. The green right triangles, blue left triangles, and red dots present the predictive a-decay half-lives obtained using
the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions, respectively. The predictive a-decay properties are in good accordance
with those calculated with the traditional models.

imental result with a factor of 1.240, 1.289, and 1.376, re-
spectively. We also performed the leave-one-out cross-
validation on the Gaussian process with three Matérn ker-
nel functions when calculating the a-decay half-lives. The

root mean squared errors of the Gaussian process with the
Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions
are 0.734, 0.807, and 0.861, respectively. These devi-
ations are acceptable due to the difficulties in calculating
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the a-decay half-lives. Based on the discussion above, it
can be argued that the Gaussian process is a reliable
method for predicting the a-decay properties. This indic-
ates that the complex correlations between the a-decay
observables and intrinsic physical properties of the o
emitters can be described using the Gaussian process.

We further predict the a-decay properties of some un-
known neutron-deficient actinide nuclei with 89 < Z < 93
using the Gaussian process, and the results are shown in
Table 2. To verfiy the dependability of our predictive res-
ults, we compare them with the theoretical results calcu-
lated using the traditional models. In Table 2, the first
column shows the a-decay parent nuclei. The second,
third, and fourth columns denote the predictive a-decay
energies obtained with the Matérn 3/2, Matérn 5/2, and
Matérn 7/2 kernel functions, respectively. The fifth and
sixth columns list the a-decay energies extracted from the
FRDM and FRLDM, respectively. The seventh, eighth,
and ninth columns list the a-decay half-lives predicted us-
ing the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel
functions, respectively. The last two columns represent,

respectively, the a-decay half-lives calculated using the
new NGNL and DDCM. To compare the predictive a-de-
cay results with the theoretical calculations from the tra-
ditional models more visually, all results with the 1¢ con-
fidence intervals are shown in Fig. 2 - Fig. 6.

For the Uranium isotopic chain, the a-decay energies
and half-lives of the unknown nuclei 2'*??°U are pre-
dicted using the Gaussian process with three kernel func-
tions, as shown in Fig. 2. Moreover, the unknown a-de-
cay energies of the 2'’U are predicted. It can be seen from
Fig. 2 that both the predictive a-decay energies and half-
lives are in good agreement with the results calculated
with the traditional models. First, we would like to dis-
cuss the predictive results for the a-decay energies, which
are shown in Fig. 2(a). The a-decay energies predicted
for 213U and ??°U are similar to those calculated using the
traditional models. For 22°U with N = 128, the predicted
a-decay energies are the largest compared with the a-de-
cay energies of the other Uranium isotopes shown in Fig.
2(a). Then, we focus on the known a-decay energies of
nuclei with N = 128, e.g., 2!’ Ac in Fig. 3, ?'8Th in Fig. 4,

Table 2. Predictions on the a-decay energies and half-lives of the Ac-Th-Pa-U-Np isotopes in the neutron-deficient mass region. The

first column shows the a-decay parent nuclei. The predictive a-decay energies obtained with the Matérn 3/2, Matérn 5/2, and Matérn
7/2 kernel functions are shown in the second, third, and fourth columns, respectively. The fifth and sixth columns present the a-decay
energies extracted from the finite-range droplet model (FRDM), denoted as 22a, and the finite-range liquid-drop model (FRLDM), de-
noted as 22b, in Ref. [22], respectively. The calculated a-decay energies of 214U are 8.679, 8.652, and 8.633 MeV obtained using the
Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions, respectively, which show good agreement with the experimental a-decay en-
ergy with a value of 8.696 MeV. In addition, the a-decay half-lives predicted using the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel
functions are shown in the seventh, eighth, and ninth columns, respectively. The last two columns, respectively, denote the a-decay
half-lives calculated with the new Geiger-Nuttall law (NGNL) [27] and density-dependent cluster model (DDCM) [28]. The a-decay
half-lives of 24U predicted with the Matérn 3/2, Matérn 5/2, and Matérn 7/2 kernel functions are 1.23x1073, 1.28x1073, and 1.37x1073
s, respectively, which show good agreement with the experimental a-decay half-life of 9.94x107 s.

Nucl.  Quyy/MeV  Quigy/MeV  Quyy/MeV  0g/MeV  Oop/MeV T)3%)s  T)3%s  T)7%s TN s  TPRM)s
204 A¢ 8.158 8.120 8.103 8.435 8.625 223x1071 2.65x1071  2.49x107!  1.18x107%  1.31x1072
206 8.374 8.302 8.199 8515 8.715 1.39x1072  1.92x1072  2.48x1072  8.80x1073  4.14x1073
207Th 8.289 8.255 8.205 8.205 8.405 3.22x1073  3.49x1073  4.05x1073  1.17x1072  6.56x1073
2097 8.130 8.138 8.146 7.825 8.035 2.17x1072  2.46x1072  3.04x107%2  4.46x107>  2.44x1072
210py 8.533 8.524 8.498 8.265 8.495 227x1073  291x1073  3.58x1073  4.44x1073  4.66x1073
22p, 8.883 8.895 8.901 8.145 8.325

23y 8.759 8.713 8.666 8.385 8.605 1.39x1073  1.59x1073  1.67x1073  2.82x107%  1.48x1073
2l4y 8.679 8.652 8.633 8.445 8.665 1.23x1073  1.28x1073  1.37x1073  4.09x1073  1.70x1073
217y 8.379 8.370 8.379 8.505 8.705

20y 10.300 10.300 10.291 10.625 10.845 1.64x1077  8.69x107%  5.65x107%  3.83x107%  7.12x1078
2I6Np 8.804 8.678 8.572 8.625 8.845 5.98x107%  6.74x107*  7.23x10™*  7.47x1073  7.62x1073
2Np 8.728 8.646 8.593 8.725 8.955 1.24x1073  1.49x1073  1.63x107%  9.02x1073  4.60x1073
218Np 8.715 8.656 8.640 8.945 9.175 7.34x1073 1.12x1072  143x1072 146 x1072  1.41x1072
2INp 10.539 10.583 10.594 10.645 10865  6.04x1077  3.14x1077 1.84x1077  1.98x107%  4.76x107%
224Np 9.339 9.330 9.323 8.905 9.105 1.47x10*  1.83x107* 2.16x107™*  142x107°  6.16x107>
B2Np 5.886 5.852 5.846 6.005 6.165
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and 2"Pa in Fig. 5. All of these have the largest a-decay
energies among their corresponding isotopes. This sys-
tematical behavior can be attributed to the shell effect
[76, 77]. The parent nuclei with N = 128 are more likely
to decay into the daughter nuclei with N =126, which is a
magic number. Thus, the largest a-decay energies are ob-
served at N = 128 for the parent nuclei. Then, as shown in
Fig. 2(b), for the predictive a-decay half-lives of >'3U and
220y, they coincide with the theoretical results calculated
using the NGNL and DDCM. In addition, for 22°U, the
predictive a-decay half-lives are the smallest in Fig. 2(b),
which means it tends to spontaneously emit an a-particle
to be stable. Apparently, both the predictive a-decay en-
ergies and half-lives show the shell effect. Thus, the
Gaussian process can be used to characterize the a-decay
properties even near the shell closure. Based on the above
discussion, we can confirm that the predictive a-decay
properties for the Uranium isotopes are as trustworthy as
the calculated results obtained using the traditional mod-
els.

Similarly, the a-decay properties of 2%*Ac predicted
using the Gaussian process for the Actinium isotopes are
shown in Fig. 3. Regarding the Thorium isotopic chain,
the a-decay properties of 200207.209Th are forecast, which

are shown in Fig. 4. Meanwhile, the a-decay energies and
half-lives of 2!°Pa are predicted using the Gaussian pro-
cess, as shown in Fig. 5, for the Protactinium isotopes. In
addition, we calculate the unknown a-decay energies of
222Pa using the three kernel functions. The Neptunium
isotopic chain is of great interest at present. In this work,
we predict the a-decay properties of the unknown nuclei
216-218.221.224Np - and the results are shown in Fig. 6.
Moreover, we predict the unknown a-decay energies of
Z32Np. It can be clearly observed that, in Fig. 3(a) - Fig.
6(a), the predictive a-decay energies are, respectively,
very close to the calculated values extracted from the
FRDM and FRLDM, and the predictive a-decay half-
lives show good agreement with the results calculated us-
ing the NGNL and DDCM, respectively, in Fig. 3(b) -
Fig. 6(b). Hence, the predictive a-decay properties ob-
tained with the Gaussian process are consistent with the
results calculated with the traditional models. Remark-
ably, the predictive a decay properties of 22!Np shown in
Fig. 6 with N = 128 also exhibit the shell effect similar to
those of 22U, as shown in Fig. 2. Thus, the Gaussian pro-
cess can be considered to be a trustworthy model for pre-
dicting the a-decay properties and can be used to charac-
terize the a-decay properties even near the shell closure.

T I T T T T T T T T T
10t (@) 55 Z=891 410"} O Expt ¥ M32 g i
of Bi%y 4 A NGNL % wm52 §
: 10°F 1
_ S'é!ﬁm 7. _ v DDCM & M712 g
> QQE!!NHE b ¢ 2 o 1
o 6 %% F 07! i setuEn g X ]
| O Expt ¥ w3z By | 10 [iFaes L
A FRDM 4 M52 8 40" Q;m, ]
4- I
A VvV FRLDM ® M7/2 - . (b) * Z=89
116 120 124 128 132 136 140 10 116 120 124 128 132 136 140
Neutron Number Neutron Number
Fig. 3. (color online) Similar to Fig. 2 but for the Actinium isotopes.
15
11 T : T _ T 10 T T T T T T T
ol @ H Z=90 +i O Expt. % M3/2 &
ol migg 07 A NGNL % M52 if ]
1 7
= 8!““ - %j __ 10’} Y DDCM ® M7/2 o
£ 7 Ty 8 10°F g 1
o -
S6 O Expt % M3/2 ”5! 1 10“&&,!&:&". n“' :
5 A FRDM ¥ M52 51 - =} I?
4 v FRLDM & M7/2 10 (b) a® 7290
L L ! ! L L L -9 ! 1 ! | ! ! 1
116 120 124 128 132 136 140 10 16 120 124 128 132 136 140

Neutron Number

Fig. 4.
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s gl 17T’ 129 z 0 T
24 h!E ~ 10°F 5T 3
i - - i
c6 O Expt. » M3/2 !ﬁ 10"} e 7 3
5 A FRDM X M52 B - Lhe ey I?‘
4t 1 : 1
i Vv FRLDM ® wM7/2 _ L ®) ?m 7 =91
120 124 128 132 136 140 10 120 124 128 132 136 140
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Fig. 5. (color online) Similar to Fig. 2 but for the Protactinium isotopes.
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Fig. 6.

Furthermore, because of the similar predictive results of
the a-decay energies and half-lives obtained using the
three kernel functions, it can be concluded that the sys-
tematic error of the Gaussian process is small.

Finally, we use the Gaussian process to predict the a-
decay properties of some unknown neutron-deficient
Plutonium isotopes, as only 2?6-23*Pu have been synthes-
ized until now and there remain gaps in the experimental
observations for the Plutonium isotopic chain. We pre-
dict the a-decay energies of 2!7-227Pu, with the corres-
ponding results listed in Table 3, and the a-decay half-
lives of 2*’Pu, with the corresponding results presented in
Table 4, using the Gaussian process. Only the a-decay
half-life of ?*’Pu is predicted because the angular mo-
mentums of the other nuclei are uncertain. In Table. 3, the
first column shows the parent nuclei for o decay. The
second, third, and fourth columns show the predictive a-
decay energies obtained with the Matérn 3/2, Matérn 5/2,
and Matérn 7/2 kernel functions, respectively. The last
two columns present the calculated a-decay energies ex-
tracted from the FRDM and FRLDM, respectively. In Ta-
ble 4, the first column lists the parent nucleus for a decay.
The second, third, and fourth columns show the predict-
ive a-decay half-lives obtained with the Matérn 3/2,
Matérn 5/2, and Matérn 7/2 kernel functions, respect-

Neutron Number

(color online) Similar to Fig. 2 but for the Neptunium isotopes.

ively. The last two columns, respectively, present the a-
decay half-lives calculated using the NGNL and DDCM.
The predictive a-decay properties for the Plutonium iso-
topes versus the neutron number are plotted in Fig. 7. It
can be observed that the a-decay energy of *?*Pu with N
= 128 is the largest, which also shows the effect of the
shell closure. This peak can be seen clearly in Fig. 7(a) at
N = 128. Furthermore, in Fig. 7(a), most of the predictive
a-decay energies are consistent with the calculated res-
ults derived from the FRDM and FRLDM except for
those predicted for 2'7-2!°Pu. Based on the predictive res-
ults for 2'7-21%Pu in Fig. 7(a), it can be seen that with in-
creasing extrapolation distance, the systematic error of
the Gaussian process is large. For 217-21%Py, the predict-
ive a-decay energies obtained with the Matérn 3/2 kernel
function are in agreement with those obtained with the
FRDM and FRLDM, while the a-decay energies ob-
tained with the Matérn 5/2 and Matérn 7/2 kernel func-
tions show differences from the results calculated with
the traditional models, respectively. These differences
must be confirmed in future experiments. In Fig. 7(b), the
predictive a-decay half-lives of ?*’Pu show good agree-
ment with the results calculated with the NGNL and
DDCM. Previous studies have reported general diffi-
culties with respect to extrapolation within the frame-

024101-8
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Table 3.

Predictions on the a-decay energies for the unknown Pu isotopes. The first column shows the parent nuclei for a-decay. The

second, third, and fourth columns show the predictive a-decay energies obtained with the Matérn 3/2, Matérn 5/2, and Matérn 7/2 ker-

nel functions, respectively. The last two columns present the calculated a-decay energies extracted from the FRDM and FRLDM,

which are denoted as 22a and 22b, respectively.

Nucl. Om,,, /MeV Owms), /MeV Omyj, IMeV 0224/MeV 022/MeV
217py 8.997 8.594 8.204 8.925 9.165
218py 8.988 8.697 8.442 8.975 9.205
219py 9.142 8.977 8.843 9.185 9.435
220py 9.663 9.665 9.634 9.165 9.395
21py 10.384 10.515 10.545 10.135 10.365
222py 10.658 10.816 10.844 10.865 11.105
223py 10.422 10.481 10.447 10.055 10.295
224py 9.980 9.942 9.853 9.565 9.805
225py 9.474 9.404 9.311 9.285 9.505
226py 8.901 8.815 8.730 9.035 9.255
227py 8.350 8.284 8.233 8.695 8.925
Table 4. Predictions on the a-decay half-lives for the unknown Pu isotope. The first column shows the parent nucleus for a-decay.

The second, third, and fourth columns present the predictive a-decay half-lives obtained with the Matérn 3/2, Matérn 5/2, and Matérn
7/2 kernel functions, respectively. The last two columns show the calculated a-decay half-lives obtained with the NGNL and DDCM,

respectively.
Nucl. Ti\;];/z/s Tf\g/z/s Tll‘g/z/s T{\}?NL/S T{)/IZ)CM/S
27py 1.15%x107! 2.49%107! 4.05x107! 437x1072 1.08x107!
T T _ T 1015 T T T T
1} (a) § é 7 Z=94 oih O Exet. % M3/2 [
101 il ; O F A NGNL % M52
of - 1 7t v DDCM @ M7/2 ;
S I % 0 2 &
> 8l O X (2]
= [ oX ] «10°F i 3
5 ! Qg B g X
6t O Expt. % M3/2 1 10" # :
51 A FRDM ¥ M52 ot j
4l Vv FRLDM ® Mm72 I ) 7=094
124 128 132 136 140 10133 134 136 138 140

Neutron Number

Fig. 7.

work of the Gaussian process [61-63]. A similar problem
may also exist in this work, and we expect that this prob-
lem can be further improved upon. We hope that our the-
oretical predictions will be helpful for the synthesis ex-
periments of neutron-deficient actinide nuclei in the fu-
ture.

IV. CONCLUSIONS

In summary, a new model is used to predict the a-de-

Neutron Number

(color online) Similar to Fig. 2 but for the Plutonium isotopes.

cay energies and half-lives of some unknown neutron-de-
ficient nuclei with 89 < Z < 94 within the framework
based on a machine learning algorithm called the Gaussi-
an process. Three kernel functions, namely the Matérn
3/2, Matérn 5/2, and Matérn 7/2 kernel functions, are
used to obtain the systematic error of the Gaussian pro-
cess in this work. First, the a-decay properties of the new
actinide nucleus 2'*U are calculated. The deviations
between the experimental result and the a-decay energies
calculated with the Matérn 3/2, Matérn 5/2, and Matérn
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7/2 kernel functions are 0.017 MeV, 0.044 MeV, and
0.063 MeV, respectively. The predictive a-decay half-
lives show good agreement with the experimental result
with a factor of 1.240, 1.289, and 1.376, respectively. It
can be seen that the calculated results of both the a-de-
cay energies and half-lives agree well with the latest ex-
perimental results. This shows the reliability of the Gaus-
sian process for predicting the a-decay properties. Then,
we further use the Gaussian process to calculate the a-de-
cay properties of some unknown neutron-deficient nuclei
with 89 < Z < 93. The predictive a-decay energies show
good agreement with the results extracted from the
FRDM and FRLDM. Moreover, the a-decay half-lives
are in good accordance with the theoretical results calcu-
lated with the NGNL and DDCM. These comparative res-
ults show that the Gaussian process is a trustworthy mod-
el for predicting the a-decay properties. Noticeably, the
predictive a-decay properties of 2°U and ?>'Np show the
systematical behaviors at N = 128, which indicates that
the Gaussian process can be applied to characterize the a-
decay properties even near the shell closure. Finally, the

a-decay energies of the unknown 2'7-227Py and the a-de-
cay half-lives of the unknown 2?’Pu are obtained, for the
Plutonium isotopes, where few isotopes have been syn-
thesized in experiments to date. Furthermore, the calcu-
lated results show that the systematic error of the Gaussi-
an process is small. We believe that our work can serve
as a useful reference for further studies on neutron-defi-
cient actinide nuclei. Our work provides a new method
for research on a decay based on machine learning, and
we hope that more machine learning approaches (e.g.,
learning machine [78]) can be generalized to study o de-
cay in the future.
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