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Abstract: In this study, we compute the correlation functions of Wilson(-'t Hooft) loops with chiral primary operat-
ors in the  supersymmetric Yang-Mills theory with  gauge symmetry, which has a holographic dual de-
scription of  the Type IIB superstring theory on the  background. Specifically,  we compute the coeffi-
cients of the chiral primary operators in the operator product expansion of Wilson loops in the fundamental repres-
entation, Wilson-'t Hooft loops in the symmetric representation, Wilson loops in the anti-fundamental representation,
and  Wilson  loops  in  the  spinor  representation.  We also  compare  these  results  to  those  of  the  super
Yang-Mills theory.
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I.  INTRODUCTION

SU(N)
AdS 5×S 5

λ ≡ g2
YMN

The holographic  duality  between  the  maximally  su-
persymmetric Yang-Mills theory (SYM) with the 
gauge group and Type IIB string theory on the 
background is the most studied example of the AdS/CFT
correspondence  [1].  The  vacuum  expectation  values  of
Wilson  loops  are  natural  observables  in  gauge  theories,
and  they  are  also  calculable  from  the  AdS  side.  In  the
string  theory  description,  a  Wilson  loop1) in the  funda-
mental  representation  is  related  to  a  fundamental  string
with  the  worldsheet  ending  on  the  AdS  boundary  along
the  contour  of  this  Wilson  loop  [2, 3]. The  on-shell  ac-
tion, with  the  boundary  terms  from  the  Legendre  trans-
formation  [4], yields  the  prediction  for  the  vacuum  ex-
pectation  value  (vev)  of  this  Wilson  loop  at  large N and
large  't  Hooft  coupling ,  when  the  classical
string  theory  becomes  a  good  approximation  with  large
string tension and small curvature. This holographic pre-
diction matches the field theory results in the large N and
λ limit.  The  field  theory  results  were  obtained  based  on
the conjecture that the computations can be reduced to the
ones in the Gaussian matrix model [5]. Later, this conjec-
ture  was  proved  using  supersymmetric  localization  [6].
This  match  provided  a  highly  non-trivial  check  of  the

AdS/CFT conjecture  since  the vev of  a  Wilson loop is  a
non-trival function of λ and N. Higher-rank Wilson loops
in  gauge  theories  are  dual  to  D-branes  carrying  electric
flux on the their  worldvolume [7−10].  When the rank of
the  representation  is  sufficiently  high,  the  back  reaction
from the D-branes must be considered. A Wilson loop in
the  higher-rank representation  with  mixed symmetries  is
dual to a certain bubbling supergravity solution [11−13].
We  will  not  discuss  such  supergravity  solutions  in  this
paper.

AdS 2×S 2

AdS 2×S 4

1/2
SO(2,1)×SO(3)×SO(5)

N = 4
S L(2,Z)

Specifically,  half-BPS  circular  Wilson  loops  in  the
rank-k symmetric representation of  the gauge group cor-
respond  to  a  D3-brane  with  the  worldvolume
and k units  of  fundamental  string  charge  [7].  Half-BPS
circular Wilson loops in the rank-k anti-symmetric repres-
entation  of  the  gauge  group  have  a  bulk  description  in
terms  of  the  D5-brane  with k units of  funda-
mental  string  charge  [8].  These  D-branes  are -BPS
and  preserve  the  same  isomet-
ries. While a 't Hooft loop, which is the magnetic dual of
a Wilson loop, can be obtained using S-duality in 
SYM. A general  transformation maps a  Wilson
loop  to  a  Wilson-'t  Hooft  (WH)  loop  [14]. It  was  pro-
posed  in  [15] that  a  WH  loop  in  symmetric  representa-
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tions  of  both  the  gauge  group  and  its  Goddard-Nuyts-
Olive (GNO) dual group [16] (the Langlands dual group)
is dual to a D3-brane carrying both F-string and D-string
charges. More details on such WH loops will be provided
later in this section.

k k

A circular Wilson loop can be expanded in a series of
local  operators  with  different  conformal  dimensions,
when the probing distance is much larger than the radius
of  this  loop.  Half-BPS  chiral  primary  operators  (CPOs)
are an important class of operators with protected dimen-
sions appearing in this operator product expansion (OPE).
The OPE  coefficient  can  be  extracted  from  the  correla-
tion function of a Wilson loop and local operators [17]. In
the  large N and λ limit,  the  correlation  function  of  a
Wilson  loop  in  the  fundamental  representation  with  a
CPO can be derived by calculating the coupling of the su-
pergravity modes  dual  to  this  CPO  to  the  string  world-
sheet [17]. Similar procedure can be used to compute the
correlator of a higher rank Wilson loop with a CPO using
D3  and D5  branes and replacing the string worldsheet
by the  brane worldvolume [18]. These  results  were  con-
firmed  by  the  field  theory  side  using  the  matrix  model
[18, 19]. The  reduction  to  this  matrix  model  computa-
tions was later confirmed by supersymmetric localization
[20].

N = 4 SO(N)
SU(N)

sp(
N −1

2
)

SU(N)
SO(N)

spin(N)
SO(N)

The  SYM theory with the gauge group 
has  some  features  different  from  the  theory.  For
odd N, the group is non-simply-laced, and the S-dual the-
ory has the gauge algebra  [16]. In this case, the
gauge algebras before and after the S-duality transforma-
tion are different. This is distinct from the S-duality trans-
formation of the theory with the gauge group . For
even N,  the  group  is  simply-laced  and  the  dual
theory  still  has  the  gauge  algebra . Another  not-
able feature regarding Wilson loops in  theories is
the presence of Wilson loops in spinor representations.

N = 4 SO(N)

N = 4 SO(N)
AdS 5×RP5

RP5

S 5

RP5 = S 5/Z2

RP4 RP5

In  the  string  theory,  SYM can  be  real-
ized as the low energy effective theory of coincident D3-
branes  atop  a  suitable  O3  plane.  Based  on  this,  Witten
proposed  that  the  SYM  is  holographically
dual  to  the  string  theory  on  the  orientifold
[21].  The  five-dimensional  real  projective  space  is
obtained  by  the  five-dimensional  sphere  by identify-
ing  antipodal  points, .  This  correspondence
was  recently  studied  in  [22].  It  has  been  demonstrated
that the expectation value of the Wilson loop in the spinor
representation of the gauge group, calculated through su-
persymmetric localization [22, 23], precisely matches the
result obtained from the D5-brane, with its worldvolume
including the  subspace of . The holographic de-
scriptions of Wilson loops in the fundamental, symmetric,
and anti-symmetric representations were also studied, and

N = 4 SO(N)

the holographic predictions of their vevs exactly matched
the results of supersymmetric localization [22,23]. In this
study, we compute the correlation functions of Wilson(-'t
Hooft) loops with CPOs of SYM with gauge
symmetry. The considered line operators include the fol-
lowing:
 

g = spin(N) W□
● Half-BPS circular Wilson loops in the fundamental

representation of the Lie algebra , .
 

WAk

●  Half-BPS  circular  Wilson  loops  in  the k-th  anti-
symmetric representation of g, .
 

Wsp

● Half-BPS  circular  Wilson  loops  in  the  spinor  rep-
resentation of g, .
 

(λelec.,λmag.) ∈ Λw×Λmw

●  Special  half-BPS  circular  WH  loops.  Recall  that
WH  loops  [14]  are  labelled  by 
with the identification 

(λelec.,λmag.) ∼ (wλelec.,wλmag.),w ∈W. (1)

Λw Λmw
Lg

Lg
Lg

[λelec.]
[λmag.]

Lg
WHS n,S m

Here,  and  are the weight lattices of g and , re-
spectively,  is the GNO dual group [16] of g1), and W is
the  Weyl  group  of g and .  We  focus  on  the  case  in
which the W-orbit  corresponds to the n-th symmet-
ric  representation  of g and  the W-orbit  corres-
ponds to the m-th symmetric representation of . We la-
bel these WH loops by 's.

N = 4S O(N)

AdS 5

The paper is organized as follows. In Sections II and
III,  we  briefly  review  the  dual  string  description  of  the

 theory  and  the  half-BPS  CPOs  with  their
gravity duals.  In  Sections  IV,  V,  VI,  and  VII,  we  com-
pute the OPE coefficients of these CPOs in the OPE ex-
pansion of the Wilson loops in the fundamental represent-
ation, the WH loops in the symmetric representation, the
Wilson loops in the anti-fundamental representation, and
the Wilson  loops  in  the  spinor  representation,  respect-
ively. The final section lists our conclusions and provides
a discussion. In Appendix A, we briefly discuss the coef-
ficient  of  the  bulk-to-boundary  propagator  of  a  certain
mode in . 

N = 4 SO(N)
II.  THE STRING THEORY DESCRIPTION OF

THE  THEORY

N = 4
SO(N)
AdS 5×RP5 5

F5
2 BRR

Four-dimensional  SYM  with  the  gauge  group
 is  dual  to  the  Type  IIB superstring  theory  on  the

 background  with  Ramond-Ramond  (RR) -
form fluxes  [21]. We also choose "discrete torsion'' of
the  RR -form . We  will  describe  this  discrete  tor-
sion later. In the large N and large 't Hooft coupling limit,
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AdS 5×RP5

AdS 5
LAdS 5

1 AdS 5×RP5

the IIB supergravity on  is a good approxima-
tion of this superstring theory. We set the radius of ,

 to ; then, the metric of  is 

ds2 = ds2
AdS 5
+ds2

RP5 . (2)

5The RR -form flux is 

F5 = 4(ω5+ ω̃5) , (3)

ω5 ω̃5 AdS 5 RP5where  and  are the volume forms on  and 
with unit radius, respectively.

LAdS 5
= 1From ,  one  obtains  that  [22]  in  the  large N

limit, 

4πgsNα′ = 1 , (4)

which leads to 

α′ =

√
2
λ
, (5)

g2
YM = 8πgs SO(N)

λ ≡ g2
YMN

by using  the  relation  in  the  case  [22]
and the definition of the 't Hooft coupling .

2
BNS 2 BRR

The  discrete  torsions  for  the  Neveu-Schwarz -form
 and the RR -form  are defined through 

e2πiθNS ≡ exp
(
i
∫

RP2
BNS

)
= ±1 , (6)

 

e2πiθRR ≡ exp
(
i
∫

RP2
BRR

)
= ±1 . (7)

RP2 RP5 (θNS , θRR) =
(0,0) SO(2n)

(θNS , θRR) = (0,
1
2

)
SO(2n+1)

where  we  use  inside .  When 
 the gauge group of the dual theory is . When

,  the  gauge  group  of  the  dual  theory  is
. 

III.  CPOs AND THE CORRESPONDING SUPER-
GRAVITY MODES

Φi, i = 1, · · · ,6
SO(N)

SO(6)R

We plan to compute the correlation functions of half-
BPS  CPOs  and  various  loop  operators.  These  CPOs  are
constructed  using  the  six  scalar  fields ,
which are in the adjoint representation of  and the
vector  representation  of ,  the  R-symmetry  group
of this theory. Such CPOs are 

OI =CI
i1···il

Tr□(Φi1 · · ·Φil ) , (8)

l ≥ 2
SO(N) CI

SO(6)R CI

with . Here, the trace is taken in the fundamental rep-
resentation of , and  is in the traceless l-th totally
symmetric  representation  of .  We  choose  to
satisfy 

CI
i1···il

CJi1···il = δIJ , (9)

CJi1···il CJi1···il = δi1 j1 · · ·δil jlCJ
j1··· jl

Φi N ×N
OI

SU(N)

here,  is  defined  as .  Since
's are  anti-symmetric matrices, l should be even

for  non-vanishing .  This  constraint  is  new  compared
with the case in which the gauge group is .

l≪ N OI

AdS 5×RP5

For ,  the  holographic  description  of  is ex-
pressed in terms of fluctuations of the background fields
in the IIB supergravity on ,1) 

Gmn = gmn+hmn , (10)
 

Fm1···m5
= fm1···m5

+δ fm1···m5
, δ fm1···m5

= 5∇[m1
am2···m5] ,

(11)

gmn fm1···m5

hmn δ fm1···m5

where  and  are  the  background  fields  (2)  and
(3), and  and  are fluctuations.

The fluctuations dual to half-BPS CPOs are [24] 

hµν = −
6
5
∆sgµν+

4
∆+1

∇(µ∇ν)s , (12)

 

hαβ = 2∆sgαβ , (13)
 

aµ1···µ4
= −4ϵµ1···µ5

∇µ5 s , (14)
 

aα1···α4
= 4

∑
I

ϵαα1···α4
sI(x)∇αY I(y) . (15)

s(x,y) =
∑

I sI(x)Y I(y) x,y
AdS 5 RP5 (µν)

Y I(y)
RP5

Here,  with  being coordinates in
the  part and  part, respectively.  in (12) as-
sumes  the  traceless  symmetric  part.  is  the  "scalar
spherical harmonics'' on  satisfying, 

∇α∇αY I = −∆(∆+4)Y I . (16)

[0,∆,0] SO(6)R
Y I

RP5 = S 5/Z2 Y I

S 5

∆ = l

They are in the  representation of , and we
choose the normalization of  to be the same as the one
in [24]. Since , locally  is the same as the
scalar  spherical  harmonics  on . Δ  is  dual  to  the  con-
formal  dimension  of  the  CPO.  For  the  case  at  hand,  we
have  since it is protected by supersymmetry. Recall
that l should be even. In the supergravity side, this is ow-

Holographic operator product expansion of loop operators in... Chin. Phys. C 47, 083101 (2023)

m,n, · · · AdS 5 ×RP5 µ,ν, · · · AdS 5 α,β, · · · RP51) We use the notation that  refer to the coordinates in ,  refer to the ones in the  part and  refer to the ones in the 
part. The underlined indices refer to the target space ones.
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Z2
AdS 5×S 5 AdS 5×RP5 ϵµ1···µ5

ϵα1···α5

AdS 5 RP5

ing  to  the  fact  that  the  projection  of  the  fields  on
 gives  the  fields  on .  and

 are the anti-symmetric tensors corresponding to the
volume  form of  and , respectively.  The  back-
ground five-form field strength can then be expressed as 

Fµ1···µ5
= −4ϵµ1···µ5

, Fα1···α5
= −4ϵα1···α5

. (17)

 

IV.  OPE OF WILSON LOOPS IN THE
FUNDAMENTAL REPRESENTATION

SO(N)
R4

We consider  the half-BPS Wilson loop in the 
theory in Euclidean space , 

W□[C] =
1
N

Tr□Pexp
[∮

C
i
(
Aµ(x)ẋµ+ i|ẋ|Θ jΦ

j(x)
)
ds

]
, (18)

xµ(s) = (acos s,asin s,0,0)

ẋµ =
∂xµ

∂s
Θ j 6

AdS 5 EAdS 5

where  the  contour C is ,
, and  is a constant unit -vector. The trace is

taken in the fundamental representation. For the dual de-
scription,  we  use  the  Euclidean  ( )  in  the
Poincarè coordinates, such that the metric is 

ds2 =
1
z2 (dz2+dxidxi) . (19)

The action of the fundamental string (F-string) is 

S =
1

2πα′

∫
d2σ

√
detgµν , (20)

gµνwith the induced metric  being 

gµν =
∂xρ

∂σµ
∂xκ

∂σµ
gρκ . (21)

(z, s)

As  for  the  F-string  solution  dual  to  the  circular
Wilson loop, we choose the worldsheet coordinates to be

. The corresponding classical F-string solution can be
parameterized as [4, 17] 

x1 =
√

a2− z2 cos s , x2 =
√

a2− z2 sin s , x3 = x4 = 0 .
(22)

EAdS 2 EAdS 5

The  worldsheet  of  this  F-string  has  the  topology  of
 and  is  entirely  embedded  within  the  re-

gion of the background geometry.1)

Taking into account the boundary terms from the Le-
gendre  transformation  [4],  the  on-shell  action  of  this  F-

string is given by [4, 17] 

S F1 =
1

2πα′
(−2π) = − 1

α′
. (23)

Using (5), we get [22] 

S F1 = −
√
λ

2
. (24)

Thus, the holographic prediction for the vev of the Wilson
loop is 

⟨W□[C]⟩ = exp

√
λ

2
, (25)

in the large N and large λ limit.
W□[C]

W□[C]

When probing  from a  distance L much larger
than its radius a, the operator product expansion (OPE) of

 is 

W□[C] = ⟨W□[C]⟩
1+∑

i,n

Cn
i a∆

n
i On

i

 , (26)

∆n
i On

i
O0

i On
i n > 0

where  are  the  conformal  weights  of  the  operator ,
 is  the i-th  primary  field,  and 's  with  are  its

conformal descends.

OI

OI

To extract the OPE coefficients of the half-BPS CPOs
 with normalized two-point functions, we can compute

the  normalized  correlation  of  this  Wilson  loop  and  the
half-BPS CPO ,2) 

⟨⟨OI(x)⟩⟩W□[C] ≡
⟨W□[C]OI(x)⟩
√
NOI ⟨W□[C]⟩

, (27)

NOI OIwhere is defined by the two point function of , 

⟨OI(y)OJ(z)⟩ = δIJNOI

|y− z|2∆OI
. (28)

L =
√

x2≫ aTaking the OPE limit where , we have 

⟨⟨OI(x)⟩⟩W□[C] =C□,O
a∆

L2∆ . (29)

C□,O
OI

The goal is to compute  holographically, which is the
OPE coefficient of the primary operator  in the expan-
sion (26).

To  achieve  this,  we  need  to  calculate  the  change  in
the F-string action owing to the fluctuations of the back-

Hong-Zhe Zhang, Wan-Zhe Feng, Jun-Bao Wu Chin. Phys. C 47, 083101 (2023)

1) In the following, we will sometimes use AdS to refer to EAdS for simplicity. It is expected that this will not result in any confusion.
x R42)  is the coordinate in .
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OIground fields dual to  [17], 

δS F1 =
1

2πα′

∫
d2σ

√
detgµν

1
2

gµν
∂xρ

∂σµ
∂xκ

∂σν
hρκ , (30)

σµ

xρ = xρ(σµ)
where 's  are  the  worldsheet  coordinates  and

 expresses how  the  string  worldsheet  is  em-
bedded in the spacetime.

sI sI(x,z) =
∫

d4x′G∆(x′; x,z)sI
0(x′)

sI
0 OI

Then, we write  as ;
here,  is a source for  on the boundary, and
 

G∆(x′; x,z) = c
(

z
z2+ |x− x′|2

)∆
, (31)

is  the  boundary-to-bulk  propagator  with  the  constant c
being1)
 

c =
∆+1

2(3−∆)/2N
√
∆
. (32)

Then, the correlation function is given by 

⟨⟨OI(x)⟩⟩W□[C] = −
δS F1

δsI
0(x)

∣∣∣∣∣
sI

0=0
. (33)

In the OPE limit, we have 

G∆(x′, x,z) ≃ c
z∆

L2∆ , (34)

 

∂µsI ≃ δz
µ

∆

z
sI , (35)

 

∂µ∂νsI ≃ δz
µδ

z
ν

∆(∆−1)
z2 sI . (36)

We use these and the fact that in the Poincarè coordinates 

Γz
µν = zgµν−

2
z
δz
µδ

z
ν . (37)

Then, from (12), we get 

hµν ≃ −2∆gµνsIY I +
4∆
z2 δ

z
µδ

z
νsIY I , (38)

The induced metric is 

gss =
a2− z2

z2 , gsz = 0 , gzz =
a2

z2(a2− z2)
. (39)

We have 

det(gµν) =
a2

z4 . (40)

From these, we obtain 

gµν
∂xρ

∂σµ
∂xρ

∂σν
hρκ = −2∆

z2

a2 sIY I . (41)

Then, the variation of the F-string action is 

δS F1 = −
∆Y I

πα′a

∫
d2σsI . (42)

Using (31), we get 

⟨⟨OI(x)⟩⟩W□[C] = −
δS F1

δsI
0(x)

∣∣∣∣∣
sI

0=0

=
∆Y I(y)c
πα′aL2∆

∫
d2σz∆

=
∆Y I(y)c
πα′aL2∆

∫ π

0
dψ

∫ a

0
dzz∆

= Y I(y)
2c∆

α′(∆+1)
a∆

L2∆ . (43)

Now, using (5) and (32), we obtain 

⟨⟨OI(x)⟩⟩W□[C] = Y I(y)2∆/2−1

√
λ∆

N
a∆

L2∆ . (44)

Thus, the OPE coefficient is2) 

C□,O = Y I(y)2∆/2−1

√
λ∆

N
. (45)

Y I(y)We  use  the  convention  that  the  factor  is not  in-
cluded in the OPE coefficient, which leads to 

C□,O = 2∆/2−1

√
λ∆

N
. (46)

λ,N
SU(N)

AdS 2
AdS 5

S 5 RP5

α′

The  above  result  expressed  in  terms  of ,  and  Δ  is
identical  to  the  result  obtained  in  the  case  [17].
Since  the  string  worldsheet  is  an  subspace com-
pletely embedded inside the  part of the background
geometry, the change from  to  does not impact the
calculation  of  the  coupling  between  the  supergravity
modes and the string worldsheet. The relation between 

Holographic operator product expansion of loop operators in... Chin. Phys. C 47, 083101 (2023)

√
2 AdS 5 ×S 5 RP5 = S 5/Z21) This constant c is  times the corresponding constant in the  case given in [24, 25], due to the fact that . For more details, see Ap-

pendix A.
S 5→ RP52) Here y is the image of Θ under the map . This also applies for the case of the D3 brane in the next subsection.
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SO(N) α′ =
√

2/λ√
2 α′ =

√
λ

SU(N)
cS O =

√
2cS U

λ,N,∆ SO(N) SU(N)

SO(N)

and λ in the  case is , which has an extra
factor  of ,  compared with the relation  in  the

case.  The  coefficient  inside  the  bulk-to-boundary
propagator, c,  is .  These  two  effects  cancel
each  other;  thus,  the  results  of  the  OPE  coefficients  in
terms of  are identical for both  and .
However, one should keep in mind that Δ should be even
in the case of . 

V.  OPE OF WH LOOPS IN THE SYMMETRIC
REPRESENTATION

Lg
m = 0

In  this  section,  we  compute  the  OPE  coefficients  of
half-BPS circular WH loops in the symmetric representa-
tion. WH loops appear owing to the worldlines of dyons
that carry both electric and magnetic charges of the gauge
theory. In this section, we only consider the case in which
the  dyons  are  in  the n-th  symmetric  representation  of g
and  the m-th  symmetric  representation  of .1) When

, we get the following Wilson loops in the n-th sym-
metric representation, 

WS n
[C] =

1
dimS n

TrS n
Pexp

[∮
C

i
(
Aµ(x)ẋµ+ i|ẋ|Θ jΦ

j(x)
)
ds

]
,

(47)

S n

SO(N) dimS n

where  denotes  the n-th  symmetric  representation  of
 and  denotes its dimensionality.

SU(N)
AdS 5×S 5

SO(N)
AdS 5×RP5

SO(N)

Non-trivially  generalizing  the  results  in  [7],  it  was
proposed in  [15]  that  for  the  case,  WH loops are
dual to D3-branes in . In [22], a D3-brane dual
to a Wilson loop in the symmetric representation for the

 case  was  given.  We  expect  that  generalizing  the
solution  in  [15]  to  the  case  will  provide  the
dual description of WH loops in the symmetric represent-
ation, in the  case.

EAdS 5We start  with  the  coordinate  system in ,  such
that the metric takes the form [7] 

ds2 =
1
z2 (dz2+dr2

1 + r2
1dψ2+dr2

2 + r2
2dϕ2) . (48)

EAdS 5 r→∞ η = 0
AdS 5 4

The boundary of  the  is  now at  and .
In this coordinate, the  part of the RR -form poten-
tial is 

CAdS
4 =

r1r2

z4 dr1∧dψ∧dr2∧dϕ. (49)

r1 = a,r2 = 0We place the WH loop on the boundary at .
We make the following coordinate transformation: 

r1 =
acosη

coshρ− sinhρcosθ
, (50)

 

r2 =
asinhρsinθ

coshρ− sinhρcosθ
, (51)

 

z =
asinη

coshρ− sinhρcosθ
. (52)

EAdS 5The metric on  in this coordinate system is 

ds2 =
1

sin2 η

[
dη2+ cos2 ηdψ2+ sinh2 ρ(dθ2+ sin2 θdϕ2)

]
.

(53)

C0
AdS 5×RP5

We only consider the case in which the theta angle in
the  field  theory  is  zero.  This  corresponds  to  setting  the
background  RR  zero  form  potential  (the  axion), ,  to
zero. Then, the action of the D3-brane on the 
background is 

S D3 = S D3
DBI+S D3

WZ , (54)

where 

S D3
DBI = TD3

∫
d4σ

√
det(g+2πα′F) , (55)

 

S D3
WZ = −TD3

∫
P[C4] . (56)

P[C4] C4

Here, g is  the  induced  metric  on  the  D3-brane, F is  the
electromagnetic  field  on  the  D3-brane  worldvolume,

 is the pull-back of  to the worldvolume, and the
D3-brane tension reads 

TD3 =
1

(2π)3α′2gs
=

N
2π2 , (57)

α′ =
√

2/λ g2
YM = 8πgs

S O(N)
where  the  relations  and  in  the

 case have been used.

ρ,ψ,θ,ϕ η = η(ρ)

Fψρ Fθϕ

For the D3-brane dual to the above WH loop, we take
the worldvolume coordinates to be ,  and 
on the worldvolume.  We also need to consider  the com-
ponents  and  of the electromagnetic field strength
on the D3-brane worldvolume.

S O(N)
The  D3-brane  solution,  obtained  by  adjusting  the

solution in [15] to the  case, is given by 

sinη = κ−1 sinhρ, κ =

√
n2λ

32N2 +
2π2m2

λ
, (58)
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1) A more precise description of such WH loops was provided in Section 1.

083101-6



Fψρ =
inλ

16πN sinh2 ρ
, Fθϕ =

msinθ
2

. (59)

λ̃ =
16π2N2ng

λ
ng = 1 g = spin(2n) ng = 2

g = spin(2n+1)

Let us introduce a dual 't Hooft coupling1), ,
where  for ,  and  for

. Then, we can express κ as 

κ =
1

4N

√
n2λ

2
+

2m2λ̃2

ng
. (60)

Taking into account the boundary terms, the on-shell ac-
tion of the D3-brane is 

S D3 = −2N(κ
√

1+ κ2+ sinh−1 κ) . (61)

Thus, the holographic prediction of the vacuum expecta-
tion value of the WH is 

⟨WHS n,S m
[C]⟩ = exp

[
2N(κ

√
1+ κ2+ sinh−1 κ)

]
. (62)

m = 0

⟨WS n
⟩

When we take , this D3-brane solution becomes the
same as  the one in  [22],  though in  different  coordinates.
Furthermore, the holographic prediction for  is con-
sistent with the results from localization [22] in the large
λ limit with κ fixed.

WHS n,S m[C] OI(x)
Now,  we  holographically  compute  the  correlator  of

 and  

⟨⟨OI(x)⟩⟩WHS n ,S m [C] ≡
⟨WHS n,S m

[C]OI(x)⟩
√
NO⟨WHS n,S m

[C]⟩
, (63)

L≫ a
CWHS n ,S m ,O S D3

DBI

in  the  OPE limit ,  and  extract  the  OPE coefficient
.  The change in  due to  the fluctuations of

the background field is 

δS D3
DBI = TD3

∫
d4σ
√

detM 1
2

(M−1)µν
∂xρ

∂σµ
∂xκ

∂σν
hρκ , (64)

M = g+2πα′F
σµ

hρκ

where  we  have  defined  the  matrix ,  and
's are worldvolume coordinates. By using the result of
 in  the  OPE  limit  given  in  (38)  and  the  above  D3-

brane solution, we obtain 

δS D3
DBI =4Nκ2Y I

∫
dρdθ

sinθ
sinh2 ρ

×
(
−1−2κ2+

1− sinh2 ρ(κ−2− sin2 θ)
(coshρ− sinhρcosθ)2

)
sI . (65)

S WZNow,  we  compute  the  change  of  due to  the  fluctu-
ations of the background fields, 

δS D3
WZ = −TD3

∫
P[a4]. (66)

From (14), we have 

aI
µ···µ4
= −4∆zϵµ···µ4zsIY I = −4∆Cµ···µ4

sIY I . (67)

Thus, 

δS D3
WZ = 4TD3∆Y I

∫
P[C4]sI . (68)

From the coordinate transformation (50)−(52), we obtain 

δS D3
WZ = 8N∆κ4Y I

∫
dρdθ

sinθ
sinh2 ρ

(
1− 1

κ2

sinhρcosθ
coshρ− sinhρcosθ

)
.

(69)

Then, the total change of the action is 

δS D3 =δS D3
DBI+δS

D3
WZ = −4N∆Y I

∫ sinh−1 κ

0
dρ

×
∫ π

0
dθ

sinθ
(coshρ− sinhρcosθ)2 sI . (70)

sI(x,z) =
∫

d4x′G∆(x′; x,z)sI
0(x′)

⟨⟨O(x)⟩⟩WHS n ,S m [C]

Using , we  can  com-
pute  as 

⟨⟨O(x)⟩⟩WHS n ,S m [C] = −
δS D3

δs0(x)
. (71)

In the OPE limit, we have 

⟨⟨O(x)⟩⟩WHS n ,S m [C] =
a∆

L2∆

4N∆cY I(y)
κ∆

∫ sinh−1 ρ

0
dρ

×
∫ π

0
dθ

sinh∆ ρsinθ
(coshρ− sinhρcosθ)2+∆ . (72)

Taking the two integrals, we get 

CWHS n ,S m ,O =
2(∆+3)/2

√
∆

Y I(y) sinh(∆sinh−1 κ) . (73)

Thus, 

Holographic operator product expansion of loop operators in... Chin. Phys. C 47, 083101 (2023)

λ̃ =L g2
YMN LgYM =

4π√ng

gYM
θYM = 01) This results is from , with the dual Yang-Mills coupling  when  [26−28].
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CWHS n ,S m ,O =
2(∆+3)/2

√
∆

sinh(∆sinh−1 κ)

=
i(−1)∆/22(∆+3)/2

√
∆

V∆(iκ) . (74)

Vn(x) = sin(ncos−1 x)Here,  is  one  type  of  the  Chebyshev
polynomials, and we have used the fact that Δ is even.

m = 0√
2 SU(N)

AdS 5

SU(N) SO(N)
SO(N) α′

α′ =
√

2/λ g2
YM = 8πgs SO(N)

SU(N)
TD3

TD3 TD3 = N/(2π2)

cS O =
√

2cS U

SO(N)

The result for the Wilson loop ( ) in terms of κ is
 times the results in [18] for the  case due to the

change  of c.1) Here,  we  provide  a  brief  explanation  on
this  point.  Since  the  worldvolume  of  the  D3-brane  is
completely inside ,  the calculations of  the coupling
between the supergravity modes and the D3-brane world-
volume for both  and  cases are the same. In
the  case,  the  relation  between  and λ reads

,  while  the  relation  in  the 
case  is  also  changed  compared  with  the  case.
However, their effects on  cancel each other. The re-
lation  between  and N,  i.e., , is  un-
changed. Formally, when we express the results in terms
of κ and Δ, the only change is from the coefficient of the
bulk-to-boundary propagator .  This  leads  to
the  above  conclusion  about  the  OPE  coefficients.
However,  the  relation  between κ and λ changes  in  the
case of , becoming 

κ =
n

4N

√
λ

2
, (75)

spin(N) SU(N)
while  for  the  Wilson  loop  in  the n-th symmetric  repres-
entation of  in the  case, the relation reads 

κ =
n
√
λ

4N
. (76)

SO(N)
SU(N)

Hence, the result in terms of λ and Δ in the  case is
not just  a  constant  multiplying  the  result  in  the 
case.

C□,O
m = 0 κ→ 0

κ =
n

4N
√
λ/2

Finally,  to  compare  with  the  result  for  in  (46),
we  set  in  (74)  and  take  the  limit.  Using

 in this case, we obtain
 

CWS n ,O ≃ 2(∆+3)/2
√
∆κ = 2∆/2−1

√
∆λ

N
n, (77)

nC□,Owhich is just , as expected. 

VI.  OPE OF WILSON LOOPS IN THE ANTI-
SYMMETRIC REPRESENTATION

Let us consider half-BPS circular Wilson loops in the

SO(N)
rank-k anti-symmetric  representation  of  the  gauge  group

, 

WAk
[C] =

1
dimAk

TrAk
Pexp

[∮
C

i
(
Aµ(x)ẋµ+ i|ẋ|Θ jΦ

j(x)
)
ds

]
.

(78)

AdS 2×S 4

k/N

They  have  a  bulk  description  in  terms  of  the  D5-brane
with k units of  fundamental  string  charge.  The  world-
volume of this D5-brane has topology . The D5
description  of  Wilson  loops  is  valid  in  the  large N and
large λ limit with  fixed.

S 5 ∑6
i=1 z2

i = 1We can parameterize the unit ;  as
 

z1 = cosθ, z j+1 = sinθw j, j = 1, j = 2, · · · ,5, (79)

∑5
j=1 w2

j = 1 S 5with .  Then,  the metric  of  the unit  can be
written as 

dΩ2
5 = dθ2+ sin2 θdΩ2

4 , (80)

dΩ2
4 S 4with  as the metric of the unit .

RP5 S 5

zi ∼ −zi RP5

S 5 0 ≤ θ ≤ π/2
θ = π/2

RP5

 can be obtained from  by identifying antipod-
al points . One way to realize this is to view 
as the upper hemisphere of  ( ) with antipod-
al  points  on  the  equator  ( )  identified.  The  metric
of  is thus given by 

ds2
RP5 = dθ2+ sin2 θds′24 , 0 ≤ θ ≤ π/2 (81)

ds′24 = dΩ2
4 θ < π/2 ds′24

RP4 θ = π/2
where  when , and  is the metric of

 when .
AdS 5×RP5Hence, the metric of  reads 

ds2 =cosh2 u(dζ2+ sinh2 ζdψ2)+du2

+ sinh2 u(dϑ2+ sin2ϑdϕ2)+dθ2+ sin2 θds′24 , (82)
AdS 5 RP5 1 AdS 5

AdS 2×S 2
with the radius of  and  set to . The  part
of the above metric is written in the form of an 
fibration for  computational  convenience,  and  these  co-
ordinates  are  related  to  the  one  in  (48)  by  the  following
coordinate transformation: 

r1 =
acoshusinhζ

coshucoshζ − cosϑsinhu
, (83)

 

r2 =
asinhusinϑ

coshucoshζ − cosϑsinhu
, (84)

 

z =
a

coshucoshζ − cosϑsinhu
, (85)

Hong-Zhe Zhang, Wan-Zhe Feng, Jun-Bao Wu Chin. Phys. C 47, 083101 (2023)

1) There is a sign typo in [18] when the result was finally expressed using the Chebyshev polynomials.
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where a is the radius of the Wilson loop.
SO(6)R ΘI

ΘI = (1,0, · · · ,0) AdS 5×RP5

AdS 2
u = 0 S 4

RP5 θk
S 5

AdS 2×S 4 ⊂ AdS 5×RP5

Using the  transformation, we set in (78) to
. Then, in , the D5-brane dual

to  this  antisymmetric  Wilson  loop  occupies  the  in
the  above  metric  with  and  wraps  an  submani-
fold  of  at  a  constant  polar  angle  (on  the  upper
hemisphere  of )  [22].  The  D5-brane  worldvolume  is

, and its metric reads 

ds̃2 = dζ2+ sinh2 ζdψ2+ sin2 θkdΩ2
4 . (86)

U(1) Fψζ

AdS5×RP5

Turning on the worldvolume  gauge field  to ac-
count for the k units of fundamental brane charge, the ac-
tion of  the  D5-brane on the  background can
be written as 

S D5 = S D5
DBI+S D5

WZ , (87)

where 

S D5
DBI = TD5

∫
d6σ

√
det(g+2πα′F), (88)

 

S D5
WZ = −2πα′iTD5

∫
F ∧P[C(4)]. (89)

In the above equations, the tension of the D5-brane reads 

TD5 =
1

gs(2π)5(α′)3 =
N

8π4

√
λ

2
, (90)

and the self-dual 4-form potential is [8] 

C(4) = 4
(u
8
− sinh4u

32

)
dH2∧dΩ2−

(3
2
θ−sin2θ+

1
8

sin4θ
)
dΩ4 .

(91)

dH2 AdS 2
sinhζdζ ∧dψ dΩ2 S 2

sinϑdϑ∧dϕ dΩ4 S 4

Here,  is  the  volume  form  of  the  unit ,
,  is  the  volume  form  of  the  unit ,

, and  is the volume form of the unit .
The fact that the flux of the worldvolume gauge field

equals k,  together  with  the  brane  equations  of  motion,
gives rise to the condition [8]1) 

θk − sinθk cosθk = π
k
N
, (92)

and the worldvolume gauge field is 

Fψζ =
i
√
λ/2sinhζ cosθk

2π
. (93)

The on-shell D5-brane DBI and WZ action are 

S D5
DBI =

2N
3π

√
λ

2

∫
dζ sinhζ sin5 θk . (94)

 

S D5
WZ =

4iN
3

∫
dζ Fψζ

(3
2
θ− sin2θ+

1
8

sin4θ
)
,

(95)

Adding  appropriate  boundary  terms  [8], the  on-shell  ac-
tion for the D5-brane is 

S D5 = S D5
DBI+S D5

WZ+S D5
bdy = −

2N
3π

√
λ

2
sin3 θk . (96)

Thus, the holographic prediction for the expectation value
of the Wilson loop in the rank k antisymmetric represent-
ation is given by 

⟨WAk
⟩ = exp

(2N
3π

√
λ

2
sin3 θk

)
. (97)

hµν hαβ
The variation of the DBI part of the action to the first or-
der in the fluctuation  and  is 

δS D5
DBI =TD5

∫
d6σ

√
det(g+2πα′F)

(
(g+2πα′F

)−1)mn

× 1
2

(hµν∂mXµ∂nXν+hαβ∂mXα∂nXβ)

=
N
3π

√
λ

2
sin5 θk

∫
dζ sinhζ

×
(

−4∆
cosh2 ζ sin2 θk

+8∆
)
s∆Y∆,0(θk) ,

(98)

z = a/coshζwhere  we  have  used  the  D5  solution ,  c.f.,
(85).  The  variation  of  the  WZ  part  of  the  action  to  the
first order in the fluctuation is given by2)
 

δS D5
WZ =−2πα′iTD5

∫
F ∧P[a(4)]

=−2πα′iTD5

∫
dψdζdσ1dσ2dσ3dσ4 µ(Ω4) Fψζ

×4sin4 θS I∂θY I

=
8N
3π

√
λ

2
cosθk sin4 θk

∫
dζ sinhζs∆∂θk

Y∆,0(θk) ,

(99)

Holographic operator product expansion of loop operators in... Chin. Phys. C 47, 083101 (2023)

k < N/2 θk < π/2 RP4 θ = π/2
k = N/2

1) Here we restrict . Then we have . It is proposed [22] that the D5 brane doubly wrapping  at  is dual to the antisymmetric Wilson
loops with  for even N.

S 4 S O(5) θk2) Here and in the following, we have used the fact that integrating over  selects the  invariant harmonics. Then the harmonics only depends on .
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where the 4-form fluctuation is given by 

aσ1σ2σ3σ4
= 4sin4 θµ(Ω4)

∑
sI∂θY I (100)

σ1,σ2,σ3,σ4 S 4

µ(Ω4)
with  being  the  coordinates  on  and  the
corresponding measure  is 

µ(Ω4) = sin3σ1 sin2σ2 sinσ3. (101)

Thus,  the  variation  of  the  D5  action  to  the  first  order  is
given by 

δS D5 = δS D5
DBI+δS

D5
WZ . (102)

The normalized correlation function between the Wilson
loop and the CPO is evaluated as 

⟨WAk
(C)O∆(L)⟩

√
NO⟨W(C)⟩

= −δS D5

δs0
(103)

Recall that 

sI(x⃗,z) =
∫

d4 x⃗′G∆(x⃗′, x⃗,z)sI
0(x⃗) , (104)

where the bulk-to-boundary propagator 

G∆(x⃗′, x⃗,z) = c
(

z
z2+ |x⃗− x⃗′|2

)∆
≃ c

z∆

L2∆ (105)

z = a/coshζand the D5 solution . The only integral opera-
tion one needs to perform is ∫ ∞

0
dζ

sinhζ

cosh∆+2 ζ
=

1
∆+1

. (106)

Hence, we obtain 

⟨WAk
O∆(L)⟩

√
NO⟨WAk

⟩
=

a∆

L2∆

2∆/2N∆
3π

√
λ

∆

∆+3
∆−1

sin3 θk

× [
2(∆+1)cosθkC

(2)
∆−1−∆C(2)

∆

]
, (107)

SO(5)where  we  have  used  the  following  results  for  the 
invariant harmonics [18]1) 

Y∆,0(θk) =N∆C(2)
∆

(cosθk) , (108)

and 

∆Y∆,0(θk)+
cosθk

sinθk
∂θk

Y∆,0(θk)

=N∆
[ ∆

sin2 θk
C(2)
∆
− (∆+3)

cosθk

sin2 θk
C(2)
∆−1

]
. (109)

N∆The normalization factor  is obtained from 

Y∆,0(0) =N∆C(2)
∆

(1) =N∆
(∆+3)!

6∆!
, (110)

yielding 

N∆ =
6∆!

(∆+3)!
Y∆,0(0) . (111)

We then obtain 

⟨WAk
O∆(L)⟩

√
NO⟨WAk

⟩
=

a∆

L2∆ Y∆,0(0)
2∆/2

3π

√
∆λ

6(∆−2)!
(∆+1)!

sin3 θk

× [
2(∆+1)cosθkC

(2)
∆−1−∆C(2)

∆

]
. (112)

Using the recurrence relation [29, 30] 

∆C(λ)
∆

(x)= 2(∆+λ−1)xC(λ)
∆−1(x)−(∆+2λ−2)C(λ)

∆−2(x) , (113)

we finally arrive at 

CWAk ,O =
2∆/2

3π

√
∆λsin3 θk

6(∆−2)!
(∆+1)!

C(2)
∆−2(cosθk) . (114)

SO(N) SU(N)

AdS 2×S 4 AdS 2 AdS 5
S 4 RP5 θk < π/2

S 4 S 4

S 5 θ = θk

D5
SU(N) TD5

SO(N)
SU(N)

This result  is  identical  to  that  for  the  case
obtained  in  [18]. The  D5-brane  worldvolume  has  topo-
logy  with  in the  part of the back-
ground geometry and  in the  part. Since ,
the  we consider in this case is the same as the  em-
bedded  in  determined  by  in the  parameteriza-
tion given in (79). Thus, the computation of the coupling
of the supergravity modes to the -brane is the same as
that for the  case, although the expression of  in
terms of λ and N for the  case is different from that
for the  case.

SO(N) TD5 =
N

8π4

√
λ

2

SU(N) TD5 =
N
√
λ

8π4

cS O =
√

2cS U

SO(N) SU(N)
k≪ N CAk ,O = kC□,O

SU(N)

In the  case, we have , while for

the  case  the  relation  is .  Taking this
change and the relation  into account, we ar-
rive  at  the  conclusion  that  the  OPE  coefficients  in  the

 case are the same as the ones in the  case.
Thus,  in  the  limit,  the  relation  re-
mains the same as that in the  case. This can be ob-

Hong-Zhe Zhang, Wan-Zhe Feng, Jun-Bao Wu Chin. Phys. C 47, 083101 (2023)

N∆
Y∆,0(0)

1) Here we use the normalization of spherical hamonic function in [24], so the  obtained here is different from the one in [18]. This difference will disappear
when we express the final result in terms of .
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θ3
k ∼ 3πk/2Ntained from the result  in this limit and 

C(2)
∆−2(1) =

(∆+1)!
6(∆−2)!

. (115)

 

VII.  OPE OF WILSON LOOPS IN THE SPINOR
REPRESENTATION

S O(N)
Now we turn to the half-BPS circular Wilson loop in

the spinor representation S of , 

WS [C] =
1

dimS
TrSPexp

[∮
C

i
(
Aµ(x)ẋµ+ iΘiΦ

i(x)
)
ds

]
.

(116)

AdS 2×RP4

ΦI ΘI = (1,0, · · · ,0)
u = 0, θ = π/2

U(1)

The dual description of this Wilson loop is in terms of the
D5-brane  whose  worldvolume  has  topology 
[21].  If  we  still  chose  the  to  be ,  the
embedding  of  the  D5-brane  is  given  by  in
the coordinates used in the previous section [22].  In this
case,  the  field  strength  of  the  worldvolume  gauge
field  vanishes.  Taking  into  account  the  boundary  terms,
the total on-shell action of this D5-brane is 

S D5 = − N
3π

√
λ

2
, (117)

so the holographic prediction for the expectation value of
the Wilson loop in the spinor representation is [22] 

⟨WS ⟩ = exp

 N
3π

√
λ

2

 . (118)

Fψζ

θk = π/2
CS ,O

θk = π/2 CAk ,O
2

AdS 2×S 4 AdS 2×RP4

As  observed  in  [22], ,  given  by  (93),  vanishes
when . A  shortcut  to  compute  the  OPE  coeffi-
cient  using the  result  obtained  in  the  previous  sec-
tion is by setting  in  and dividing the result
by  to  take  into  account  the  change  of  the  D5-brane
worldvolume from  into , 

CS ,O =
1
2

CWAk ,O
∣∣∣∣
θk=π/2

=
2∆/2

3π

√
∆λ

6(∆−2)!
(∆+1)!

C(2)
∆−2(0)

=
(−2)∆/2−1

√
∆λ

π(∆2−1)
. (119)

Here, we have used the fact that, for even Δ, 

C(2)
∆

(0) = (−1)∆/2
∆+2

2
, (120)

C(λ)
∆

(x)
obtained  from  the  following  generating  function  of  the
Gegenbauer polynomials :
 

1
(1−2xt+ t2)λ

=

∞∑
∆=0

C(λ)
∆

(x)t∆. (121)

 

VIII.  CONCLUSION

N = 4 SO(N)
AdS 5×RP5

SO(N)

S O(N)

N = 4 SO(N)
SU(N)

N = 4 SU(N)

In this study, we investigated the holographic duality
of the  SYM theory and the Type IIB string
theory on the  background in the large N and
λ limit. To this end, we investigated the OPE coefficients
of half-BPS circular  Wilson loops  in  various  representa-
tions. Wilson loops were expanded in terms of local oper-
ators  when  the  probing  distances  were  much  larger  than
the sizes  of  the  Wilson  loops.  The  coefficients  were  ex-
tracted from  the  expansion  for  the  operators  we  con-
sidered.  Our  focus  was  on  the  half-BPS  CPOs  and  their
corresponding  gravity  duals.  Specifically,  we  computed
the  correlation  functions  of  local  CPOs  and  the  Wilson
loops  in  the  fundamental  representation,  the  symmetric
representation, the anti-symmetric representation, and the
spinor  representation.  We  studied  the  Wilson
loops  in  the  symmetric/anti-symmetric  representations
through their dual D3/D5-brane descriptions. The appear-
ance of the Wilson loops in the spinor representation is a
new  feature  in  the  theories. In  addition,  we  dis-
cussed the WH loops in the symmetric representation us-
ing a  D3-brane  with  both  electric  and magnetic  charges.
The  SYM theory with the gauge group  has
some features different from the  theory. We com-
pared  our  results  with  those  of  the  SYM
theory. 

APPENDIX A: THE COEFFICIENT c OF THE
BULK-TO-BOUNDARY PROPAGATORS

sI

sI

In this appendix, we compute the coefficient c of the
bulk-to-boundary propagator of the modes . The action
for , obtained from the full "actual" action of IIB super-
gravity [31] is [24] 

S =
∫

AdS 5

d5x
√

det(gAdS 5
)
1
2

BI

[
∂µsI∂µsI +∆(∆−4)(sI)2

]
,

(A1)

BIwhere  is given by 

BI =
16
κ2

∆(∆−1)(∆+2)
∆+1

z(∆) , (A2)

z(∆)
where κ is the coupling constant of type IIB supergravity,
and  is explained below. Using 

2κ2 = (2π)7g2α′4 , (A3)
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α′ =
√

2/λ gs = g2
YM/(8π)

SO(N)
and  the  relations  and  for  the

 case, we obtain 

κ2 =
(2π)5

8N2 , (A4)

SU(N) z(∆)which  is  same  as  the  one  for  the  case.  is
defined by ∫

RP5
d5y

√
det(gRP5 )Y IY J = δIJz(∆) . (A5)

z(∆)The expression for  is 

z(∆) =
π3

2∆(∆+1)(∆+2)
, (A6)

SU(N)
RP5 = S 5/Z2

which equals to half of the result in the  case since
the integration is over . Using the above res-
ult, we obtain 

BI =
22−∆N2∆(∆−1)
π2(∆+1)2 . (A7)

The coefficient of the bulk-to-boundary propagator is 

c =
√
α0

BI
, (A8)

where [17] 

α0 =
∆−1
2π2 , (A9)

SO(N) SU(N)which  is  identical  for  both  and  cases. Fi-
nally, we obtain 

c =
∆+1

2(3−∆)/2N
√
∆
, (A10)

√
2 SU(N)which equals  times the result for the  case.
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