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Abstract: In this paper, we present two non-perturbative string cosmological solutions without curvature singularit-
ies for the bosonic gravi-dilaton system. These solutions are general in that they can straightforwardly match the per-
turbative solution to arbitrarily high orders in the perturbative region. The first solution includes non-perturbative 
corrections  based on Hohm-Zwiebach action.  We then use  the  simple  phenomenological  map between the  and
loop  corrected  theories  in  string  cosmology  to  construct  a  non-perturbative  loop  corrected  non-singular  solution.
Both solutions are non-singular everywhere. Therefore, the pre- and post-big-bangs are smoothly connected by these
solutions.
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I.  INTRODUCTION

a (t)↔ 1/a (t)

O (d,d)

gs = exp(2ϕ)
H (t)

α′

Resolving the  big-bang  singularity  is  a  widely  con-
cerned  problem.  In  Einstein's  general  theory  of  gravity,
spacetime  is  generated  from  the  big-bang,  whereas  in
string cosmology, the story is different owing to the fam-
ous  scale-factor  duality  [1−4].  Scale-factor  duality  was
first  obtained  from the  equations  of  motion  (EOM)  of  a
string's  low  energy  gravi-dilaton  effective  action.  It
shows that the EOM with the FLRW-like ansatz is invari-
ant  under  the  transformations  between  the  scale  factor
and  its  inversion,  namely, .  Keep  in  mind
that string dilaton plays a central role in this duality. The
main differences between T-duality and scale-factor dual-
ity are  that  scale-factor  duality  does  not  require  a  com-
pactified  background and  belongs  to  a  continuous  group
of .  Remarkably,  scale-factor  duality  introduces
pre-big-bang cosmology [5−9]. It implies that the story of
our universe was not only born from the initial  big-bang
singularity,  but  that  there is  a  long duration of  evolution
in a pre-big-bang region. Pre- and post-big-bang scenari-
os  are  disconnected  by  the  big-bang  singularity.
However, when the universe evolves to the big-bang sin-
gularity,  the  growth  of  the  string  coupling 
and  Hubble  parameter  invalidates perturbative  the-
ory. The theory of quantum gravity around this region re-
quires  the  low  energy  effective  action  to  include  two
types of corrections: (1) The string curvature scale, which
includes  higher-derivative  corrections,  and  (2)  the

strong  coupling  regime,  which  requires  quantum  loop
corrections.

α′

O(d,d)

α′

In  literature,  several  phenomenological  higher  loop
models  [9−11]  have  been  proposed  to  resolve  the  big-
bang singularity. For the higher-derivative  corrections,
at  the  cost  of  losing  scale-factor  duality  or  sym-
metry, several simplified models were proposed [5, 12] to
smoothly  connect  the  pre-  and  post-big-bang  scenarios.
However, can a natural global picture of the non-singular
universe be obtained when the action includes  correc-
tions to all orders?

α′

α′

O (d,d)

α′

O (d,d)
α′

O (d,d)

To answer this question, let us focus on recent devel-
opments in  non-perturbative  string  cosmology  to  all  or-
ders  in .  In  Refs.  [13, 14],  in  addition  to  manifesting
scale-factor duality  in  the  EOM,  Meissner  and  Venezi-
ano found that when the massless closed string fields only
depend on time, the low energy effective action of closed
strings with the zeroth and first orders in  could be sim-
plified  and  rewritten  in  an  invariant form.  Sub-
sequently,  Sen  proved  that  this  result  could  be  extended
to all  orders in the  corrections of full  string field the-
ory  [2, 15]. In  other  words,  closed  string  spacetime  ac-
tion can be rewritten in the  covariant  form to all
orders  in  without  imposing  any  extra  constraint  or
symmetry.  Based  on  these  works,  Hohm  and  Zwiebach
[16−18]  demonstrated  that  covariant  spacetime
action  could  be  dramatically  simplified.  This  result
provides  possible  non-perturbative  dS  or  AdS  vacua  to
bosonic  string  theory  [18−22].  Moreover,  Hohm-

        Received 30 May 2023; Accepted 13 June 2023; Published online 14 June 2023
      * Li Song is supported by the Sichuan Science and Technology Program (2022YFG0317). Deyou Chen is supported by the Tianfu talent plan and FXHU.
     † E-mail: songli1984@scu.edu.cn
     ‡ E-mail: deyouchen@hotmail.com

Chinese Physics C    Vol. 47, No. 9 (2023) 095102

     ©2023 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese
Academy of Sciences and IOP Publishing Ltd

095102-1

http://orcid.org/0000-0003-3270-8778


Zwiebach  action  makes  it  possible  to  seriously  analyze
the  stringy  effects  on  the  cosmological  singularity  and
black hole singularity. In Ref. [23], a set of non-singular
non-perturbative string  cosmological  solutions  was  con-
structed for  the first  time.  This set  of  solutions was sub-
sequently  extended  to  more  general  solutions  matching
the perturbative solution to an arbitrary order in α' expan-
sion  [24].  For  more  recent  developments  in  smoothing
cosmological  and  black  hole  singularities,  refer  to  Refs.
[25−34].

α′

α′

t→∞

α′

α′

The purpose of this paper is to give non-singular non-
perturbative solutions with  corrections or loop correc-
tions. We first construct an  corrected solution based on
Hohm-Zwiebach action.  The solution we present  is  non-
perturbative  in  that  it  covers  the  entire  region  from  the
pre-big-bang  to  the  post-big-bang  and  is  non-singular
everywhere.  In  the  perturbative  region , this  solu-
tion matches  the  perturbative  solution to  an arbitrary  or-
der in .  Therefore, though we currently only know the
first  two orders in  corrections,  once higher orders are
calculated, our solution can be straightforwardly matched

α′

α′

to them by fixing the parameters. Our solution is parallel
to  those given in  [24].  In  Ref.  [24],  a  phenomenological
map between  corrected theory and loop corrected the-
ory are found. With the help of this map, we construct a
non-perturbative  loop  corrected  solution,  which  is  non-
singular everywhere  and  includes  higher  loop  contribu-
tions.  Hence,  both  the  corrected  and  loop  corrected
solutions  we  construct  resolve  the  big-bang  singularity
and connect  the  pre-big-bang and post-big-bang scenari-
os smoothly.

α′

The  remainder  of  this  paper  is  organized  as  follows:
We give  a  non-singular  non-perturbative  solution  to  any
order  in  expansion  in  Section  II.  In  Section  III,  we
present  a  loop  corrected  non-singular  non-perturbative
solution. Section IV contains our conclusions. 

α′II.  GENERAL  CORRECTED SOLUTION

α′Because we are going to find both  and loop correc-
ted  solutions,  we  write  the  full  perturbative  structure  of
the closed string effective action,

I =
∫

dd+1x
√−g
ß

e−2ϕ
îÄ

R+4(∂ϕ)2− 1
12
H2
ä
+

4
(RµνσρRµνσρ+ · · · )+O(α′2)

]
+
î
(c1

RR+ c1
ϕ(∂ϕ)

2+ c1
HH2)+α′(c1

α′RRµνσρRµνσρ+ · · · )+O(α′2)
ó

+ e2ϕ
î
(c2

RR+ c2
ϕ(∂ϕ)

2+ c2
HH2)+α′(c2

α′RRµνσρRµνσρ+ · · · )+O(α′2)
ó
+ · · ·
™
. (1)

gµν bµν
Hµνρ = 3∂[µbνρ] bµν = 0

ci
[··· ] α′

This  action contains  three massless  fields,  the  metric
,  dilaton ϕ,  and  antisymmetric  field ,  whose  field

strength  is .  We  set  in  this  study.
All  are unknown up to now. We first consider the 
corrected solutions. To this end, we focus on the loop tree
level,  that  is,  the  first  line  of  the  above  action.  In  the
FLRW background,
 

ds2 = −dt2+a2 (t)δi jdxidx j. (2)

α′The loop tree level action with all orders in the  correc-
tions is given by Hohm and Zwiebach in Refs. [17, 18]:
 

Iα′ =
∫

dDx
√−ge−2ϕ

Ä
R+4(∂ϕ)2

+
1
4
α′
(
RµνρσRµνρσ+ . . .

)
+α′2(. . .)+ . . .

ä
, (3)

 

=

∫
dte−Φ

(
−Φ̇2+

∞∑
k=1

(
α′
)k−1 cktr

(
Ṡ2k)) , (4)

Swhere the notation  is defined as
 

S =
(

0 a2 (t)

a−2 (t) 0

)
. (5)

c1 = −
1
8

c2 =
1
64

ck≥3

In the  action  (4),  we  can  only  determine  the  coeffi-

cients  and  for  bosonic  string  theory
through the  one-loop and two-loop beta  functions  of  the
non-linear sigma model,  and  are undetermined con-
stants. We define
 

H (t) =
ȧ (t)
a (t)
,

f (H) =d
∞∑

k=1

(
−α′
)k−1 22(k+1)kckH2k−1

=−2dH−2dα′H3+O
(
α′3
)
,

g (H) =d
∞∑

k=1

(
−α′
)k−1 22k+1 (2k−1)ckH2k

=−dH2− 3
2

dα′H4+O
(
α′
)
, (6)

H (t)where  is the Hubble parameter. Note that
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g′(H) = H f ′(H), and g(H) = H f (H)−
∫ H

0
f (x)dx,

f ′(H) ≡ d
dH

f (H)where .  The  action  (4)  is  simplified  to
the Hohm-Zwiebach action 

IHZ =

∫
dte−Φ

(
−Φ̇2+g(H)−H f (H)

)
, (7)

and after  variation,  the EOM of Hohm-Zwiebach ac-
tion (7) is 

Φ̈+
1
2

H f (H) = 0,
d
dt
(
e−Φ f (H)

)
= 0, Φ̇2+g (H) = 0.

(8)

t→∞In  the  perturbative  region ,  the  perturbative
solution can be obtained iteratively using (6),
 

H (t) =

√
2√
α′

ñ
t0
t
−160c2

t3
0

t3 +
256

(
770c2

2+19c3
)

3
t5
0

t5

−
2048

(
88232c3

2+4644c3c2+41c4
)

5
t7
0

t7 +O
Ç

t9
0

t9

åô
,

Φ (t) =− 1
2

log

Ç
β2 t2

t2
0

å
−32c2

t2
0

t2 +
256

(
44c2

2+ c3
)

3
t4
0

t4

−
2048

(
6976c3

2+352c3c2+3c4
)

15
t6
0

t6 +O
Ç

t8
0

t8

å
,

(9)

with

f (H (t)) =−2dH−128c2dα′H3+768c3dα′2H5−4096c4dα′3H7+O
(
α′4H9) ,

=

√
d

t0

ñ
−2t0

t
+64c2

t3
0

t3 −
512

(
50c2

2+ c3
)

3
t5
0

t5 +
4096

(
2632c3

2+124c3c2+ c4
)

5
t7
0

t7 +O
Ç

t9
0

t9

åô
,

g (H (t)) =−dH2−96c2dα′H4+640c3dα′2H6−3584c4dα′3H8+O
(
α′4H10) ,

=
1
t2
0

ñ
− t2

0

t2 +128c2
t4
0

t4 −
2048

(
50c2

2+ c3
)

3
t6
0

t6 +
8192

(
24448c3

2+1136c3c2+9c4
)

15
t8
0

t8 +O
Ç

t10
0

t10

åô
,

t0 ≡
√
α′√
2d

c1 = −
1
8

t = 0
H(t)→−H(t) Φ(t)→ Φ(t) f (t)→− f (t) g(t)→ g(t)

where β is an integration constant, , and the uni-

versal  is  used.  This  solution  is  singular  at  the
non-perturbative  region .  From  scale  factor  duality,

, , , and  is
also a solution.

√
α′

t
→ 0√

α′

t
ck≥3

α′

A non-perturbative non-singular solution of the EOM
(8) should meet two conditions: (1) It must match the per-

turbative solution (9) in the perturbative region ,

and  (2)  it  must  be  non-singular  for  any .  Because
 are  still  unknown  up  to  now,  a  good  solution  only

needs to match the first two orders in . Such a solution

ck≤n n > 2
ck

was  constructed  in  Ref.  [23].  However,  an  important
question  is  can  we  construct  a  general  solution  that  can
easily  match  all  given  for  some ?  In  other
words, a general solution expressed in terms of . In ref.
[24], two such solutions were given. In this study, we ob-
tain another simpler solution.  Every term in our solution
is non-singular.  Let  us  first  define a  dimensionless  para-
meter: 

τ ≡ t
t0
=

…
2d
α′

t. (10)

After  extensive  calculation,  we  find  a  non-perturbative
solution of the EOM (8),

H(t) =

 
2

α′β2λ0

(
e−
∑∞

k=1

λk

τ2k+1

((
τ2+1

)2∑∞
k=1

(
8k2λkτ

4k−2(
τ2k +1

)3 −
2k(2k−1)λkτ

2k−2(
τ2k +1

)2

)
+τ2−1

))
(
τ2+1

)3/2 , (11)
 

Φ(t) =
1
2

log
λ0

1+τ2
+

∞∑
n=1

λn

1+τ2n , (12)

 

f (H(t)) = −2d

 
2β2λ0(
τ2+1

)
α′

e
∑∞

k=1

λk

τ2k+1 = −2dH(t)−2dα′H(t)3+O(α′2), (13)
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g(H(t)) =− 2d
α′

( ∞∑
k=1

2kλkτ
2k−1(

τ2k +1
)2 +

τ

τ2+1

)2

=−dH(t)2− 3
2

dα′H(t)4+O(α′2). (14)

c1 = −1/8 c2 = 1/64
t/
√
α′→∞

Applying  and  and expanding this
solution  in  the  perturbative  region  to  match
the perturbative solution (9), we identify 

λ0 =1/β2, λ1 = 0, λ2 =
11+1024c3

12
,

λ3 =−
4

15
(13+2816c3+1536c4)... (15)

∑∞
n=1

λn

1+τ2n

λn,n > 0 λn≥1 = 0

It  is  clear  that  every  single  term  in  the  sums  of  the
solution,  such  as , is  non-singular  every-
where. However, note that there could be a small possib-
ility that the summation is not non-singular for fine-tuned
parameters, 1).  If  choosing ,  the  solution
reduces to 

H(t) =−
√

2√
α′

(
1−τ2

)(
1+τ2

)3/2 ,

Φ(t) =− 1
2

logβ2− 1
2

log
(
1+τ2

)
,

f (t) =− 2
√

2d√
α′

1√
1+τ2

,

g(t) =− 2d
α′

τ2(
1+τ2

)2 . (16)

This is exactly the solution given in Ref. [23]. 

III.  GENERAL LOOP CORRECTED
SOLUTION

α′
After  constructing  the  non-perturbative  non-singular

 corrected solution, we want to find the corresponding
loop  corrected  non-perturbative  non-singular  solution.
We do not  know the form and coefficients  of  the higher
loop  terms  in  the  full  perturbative  action  (1).  For  the
FLRW background  (2),  an  effective  loop  corrected  ac-
tion is expressed as 

ILoop =

∫
dd+1x

√−ge−2ϕ
î
R+4

(
∂µϕ
)2−V

(
e−Φ(x))ó ,

=

∫
dte−Φ

[
− Φ̇+dH2−V(e−Φ)

]
, (17)

O(d,d)where the  non-local dilaton is [9, 10] 

e−Φ(t) =Vd

∫
dt′
∣∣∣∣d(2ϕ)

dt′

∣∣∣∣ √−g (t′)e−2ϕ(t′)δ
(
2ϕ (t)−2ϕ

(
t′
))

=Vd
√
−g (t)e−2ϕ(t).

(18)

The EOM is 

2Φ̈L −2dH2
L −
∂V
∂ΦL

=0,

Φ̇2
L −dH2

L −V =0,

ḢL −HLΦ̇L =0, (19)

mn σn

where the subscript L indicates that the quantities belong
to the loop corrected theory. For a positive integer n and
arbitrary parameters  and , a class of solutions of the
above EOM was constructed in Refs. [10, 11], 

Φ
(n)
L (t) =

1
2n

log
Å

σ2n
n

1+ (mnt)2n

ã
,

H(n)
L (t) =

1√
d

mn

σn
eΦ

(n)
L (t)

=
mn√

d

ï
1

1+ (mnt)2n

ò1/2n

. (20)

This had the potential 

V (n)
L =

Å
mn

σn

ã2

e2Φ(n)
L (t)
ïÄ

1−σ−2n
n e2nΦ(n)

L (t)
ä 2n−1

n −1
ò
. (21)

eΦAs  argued  in  Refs.  [10, 11],  because  the  factor 
roughly represents the coupling constant, the integer n ef-
fectively represents the loop number. The potential indic-
ates the non-perturbative contributions by the nth loop.

α′In  Ref.  [24],  a  map  was  constructed  between  the 
and loop corrected theories, 

HL ↔ f (Hα′ ) ,

−VL ↔ g (Hα′ )+d f (Hα′ )2

ΦL ↔ Φα′ +Φ0.

(22)

Φ0

α′ enΦ(n)
L

Here,  is  a constant.  Through this map, we can find a
loop  corrected  non-perturbative  non-singular  solution
from our  corrected solution (14). Because  indic-
ates the contribution from the n-th loop, we use Eq. (20)
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eΦ
(n)
Lto express the solution in terms of . Then, after some

tedious calculation, we obtain the loop corrected solution, 

ΦL(t) =Φ(1)
L +

∞∑
n=1

e2nΦ(n)
L

HL(t) =
m1

σ1
exp

[
Φ

(1)
L +

∞∑
n=1

e2nΦ(n)
L

]

VL(Φ(n)
L (t)) =

(
Φ̇

(1)
L +

∞∑
n=1

2nΦ̇(n)
L e2nΦ(n)

L

)2

− dm2
1

σ2
1

exp

[
2Φ(1)

L +2
∞∑

n=1

e2nΦ(n)
L

]
, (23)

mn =
√

2d/α′ σiwhere we set , and  are free parameters to
be determined  using  coefficients  calculated  from  the  ef-
fective low energy action. Obviously, this solution is non-

t ∼ 0singular around the non-perturbative region .
 

IV.  CONCLUSION

α′

α′

α′

α′

In  this  paper,  based  on  Hohm-Zwiebach  action,  we
first construct a class of general  corrected non-perturb-
ative non-singular string cosmology solutions. Currently,
only  the  first  two  orders  in  correction  are  available.
Our solution matches these results in the perturbative re-
gion as required. Once higher orders in  correction are
available, we  will  straightforwardly  fix  the  correspond-
ing  parameters  in  our  solution  to  match  the  perturbative
solutions.  There  is  a  phenomenological  map  between 
and loop corrected theories, as given in Ref. [24]. We use
this  map  to  construct  the  corresponding  loop  corrected
solution, which is also non-singular and non-perturbative.
Because both  solutions  are  non-singular  everywhere,  the
pre- and post-big-bangs are smoothly connected by them.
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