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Abstract: Understanding nuclear shape, behavior, and stability, as well as improving nuclear models, depends on
the precise determination of ground-state nuclear charge radii. Existing experimental techniques are limited to ex-
tremely narrow regions of the nuclear chart; theoretical models, including relativistic Hartree-Bogoliubov (RHB) and
Hartree-Fock-Bogoliubov (HFB), predict broad trends of nuclear properties but miss fine isotopic features such as
odd-even staggering effects and shell-closure kinks. High computational time and cost are other obstacles to theoret-
ical approaches. Although machine-learning algorithms have made significant progress in predicting charge radii,
they are still hindered by a lack of balanced data and characteristics, primarily centered around A > 40 and Z > 20.
In the present study, we present the first application of CatBoost regression to compute nuclear charge radii. We in-
tegrated two experimental datasets with RHB-calculated point-coupling interaction (PC-X) theoretical features and
extended our study range to A > 17, Z > 8. We found the best hyperparameters using Optuna’s Tree-structured Par-
zen Estimator (TPE) sampler with 10-fold cross-validation (CV), achieving a CV root-mean-square error (RMSE) of
0.0106 fm and hold-out RMSE of 0.0102 fm, with only three features, i.e., neutron number (&), proton number (2),
and RHB theoretical binding energy (BE), outperforming nine other ML models: random forest (RF), quantile RF
(QRF), Cubist, Gaussian process regression with polynomial kernel (GPPK), multivariate adaptive regression splines
(MARS), SVR, ANN, convolutional neural network (CNN), and Brussels-Skyrme-on-a-grid 3 (BSkG3). SHapley
Additive exPlanations (SHAP) analysis confirms the highest global influence of BE in the model's predictions, fol-
lowed by proton number and neutron number. The proposed model can accurately reproduce the N =50 kink and
odd-even staggering effects in krypton and strontium chains. These results establish CatBoost as a robust and not-
ably promising model for charge-radius prediction and beyond, with the potential to impact r-process modeling and

future theoretical development.
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I. INTRODUCTION

Nuclear charge radius (R,.) is one of the most funda-
mental features of atomic nuclei and has been extens-
ively investigated in nuclear physics [1]. It provides in-
sights into the charge distribution within the nucleus,
overall nuclear shape, and nuclear stability and behavior
[2]. Ford et al. [3] emphasized the importance of nuclear
charge radius in understanding nuclear shape and behavi-
or. There are a number of experimental techniques to cal-
culate charge radii, some of which have been in use since
the mid-20th century. For example, one of the most pre-
cise experimental techniques is based on electron scatter-
ing experiments for the determination of charge distribu-
tion of nuclei, or more specifically, electron scattering ex-
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periments of °Li, "Li, "*C, and '°O [4, 5]. Muonic atom
spectroscopy and Ko X-ray isotope shift (KIS) are also
extensively used [6]. However, limitations in experiment-
al techniques restrict their application to specific regions
of the nuclear chart.

For this reason, a wide variety of nuclear models have
been developed. They can analyze ground state proper-
ties, including R., with much greater accuracy. Macro-
scopic models, including the liquid drop model [7, 8] and
Garvey-Kelson relation [9] are the simplest approaches.
They provide preliminary insights into nuclear structure
and its properties. For better predictions, phenomena such
as isospin dependence and shell effects have also been in-
corporated [10]. Microscopic models further enhance the-
oretical accuracy by delving into the nucleus at the nucle-
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on level, focusing on individual interactions between pro-
tons and neutrons. The Skyrme-Hartree-Fock-Bogoli-
ubov (HFB) models use the Skyrme interaction to model
nucleon-nucleon forces, approximate the average poten-
tial experienced by each nucleon by using the Hartree-Fo-
ck approximation, and handle pairing correlations by the
Bogoliubov transformation for accurate calculations [11,
12]. The relativistic effects on Skyrme-Hartree-Fock are
studied in the RMF model [13]. Apart from these ap-
proaches, empirical formulae have also been derived by
capturing the local relations, for example, 6R, i.e., the
charge radii difference of two isotopes of a single ele-
ment [14]. Advanced mean field models, e.g., deformed
relativistic Hartree-Bogoliubov, offer a further deep de-
scription by adding properties such as deformation and
superfluidity [15—17]. Furthermore, ab initio no-core
shell models consider direct interaction of nucleons
without core approximations [18, 19]. Lastly, the
Weizsédcker-Skyrme (WS*) model integrates both micro-
scopic and macroscopic parameters for a better descrip-
tion of nuclear properties of exotic as well as stable nuc-
lei [10].

Machine learning (ML) and deep learning (DL) offer
high potential in their application to both theoretical and
experimental nuclear physics [20]. For example, predic-
tions of nuclear mass using support vector and Gaussian
process regressors exhibit good performance both within
and beyond the training set [21]. ML algorithms applied
over AME2020 data [22, 23], outperformed the semi-em-
pirical Bethe-Weisdker formula [24]. Similarly, the im-
pact parameter in heavy-ion collisions can be determined
using neural networks (NNs) [25]. Predictive modeling of
ground state energies of even-even nuclei can be imple-
mented using ANNs over a theoretical dataset calculated
from the Hartree-Fock-Bogoliubov (HFB) model [26].
The study of unstable nuclei relies heavily on the o de-
cay. An approach integrating the sophisticated a-decay
model with a Bayesian neural network (BNN) is em-
ployed to enhance the prediction accuracy of a-decay
half-lives. According to global and extrapolated analyses,
model-based predictions of o decay can be more effect-
ively described by the BNN approach [27]. The extreme
gradient Boosting (XGBoost) framework is used to study
the a-decay energy and half-life of superheavy nuclei,
which are optimized using Bayesian hyperparameters. By
incorporating key nuclear structural features, including
mass number, proton-to-neutron ratio, magic number
proximity, and angular momentum transfer, the optim-
ized model captures essential physical mechanisms gov-
erning the a decay [28]. On the basis of WKB barrier
penetrability, an improved formula considering the de-
formation effect for the a-decay half-lives was proposed.
The improved empirical formula and XGBoost models
were used to predict the a-decay half-lives of nuclei with
Z=117,118, 119, and 120. You et al. [29], combined the

empirical formulas with ML techniques to explore the ef-
fect of nuclear deformation on a decay half-lives, enhan-
cing predictive performance within deformed regions.
The a-decay energies and half-lives have also been stud-
ied using a Gaussian process algorithm [30].

A recent and most comprehensive exploration of
modern ML models applied to charge radii predictions,
Bayram et al. [31], showed high potential of both mod-
ern tree-based algorithms (XgBoost, Cubist) along with
conventional ML. These models have a relatively low
RMSE (0.03992-0.0119) fm. Jalili et al. [32] have extens-
ively explored Support Vector Regression (SVR) over a
diverse range of Z. They pointed out the impact of includ-
ing 4 as a feature on the model performance. Their most
prominent contribution includes the novel application of
RBF (Radial Basis Function) with SVR, a decrease in
RMSE from 0.045 fm to 0.016 fm for over 1000 isotopes,
as well as improved extrapolation ability of the model.
Wu et al. [33] applied feed-forward networks with Z, N,
and B(E2) inputs to capture magic-number kinks and
study symmetry-energy links. Utama et al. [34] bridged
BNNs with density functional theory to substantially re-
duce prediction errors by a factor of three. Ma et al. [35]
used naive Bayes classifiers to refine HFB and semi-em-
pirical radii, with notable gains in terms of accuracy.
Dong et al. [36] reduced errors significantly by combin-
ing Bayesian networks with the NP formula, and Dong et
al. [37] later included physics-driven features to over-
come overfitting. Recently, Jian et al. [38] implemented a
continuous Bayesian probability (CBP) estimator and
Bayesian model averaging (BMA) to enhance the predic-
tions of charge radii from sophisticated theoretical nucle-
ar structure models. They combined the CBP estimator
and BMA to refine charge radii predictions from the
HFB, RHB, and semi-empirical liquid-drop models. Their
method pushed the standard deviation in predictions of
Rc below 0.02 fm, demonstrating a strong potential for
CBP and BMA in accurate predictions of nuclear charge
radii.

Despite the broad scope of theoretical and ML-based
studies, two prominent gaps persist. First, global models
such as RHB reproduce broad charge-radius trends but
fail to capture fine features at the isotopic chain level
such as odd-even staggering and exotic-isotope kinks
across the nuclear chart. Second, ML approaches (ANNs,
Bayesian NNs, SVR) achieve competitive RMSEs but re-
main constrained by limited data and imbalanced experi-
mental data, narrow feature sets, and a lack of inter-
pretability. Moreover, most of the ML studies are limited
to A>40 and Z > 20. To the best of our knowledge, no
previous study has leveraged CatBoost's ordered boost-
ing with Optuna-TPE optimization, combined comple-
mentary experimental datasets and RHB-based theoretic-
al features of PC-X data, and used SHAP analysis to
provide feature-level insights both globally and at the
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chain level around N=50.

In this study, CatBoost regression was employed for
predicting Rc . The model was trained on merged and
processed data extracted from three data tables: (Li et al.
[39], Angeli et al. [40], and PC-X [41]. These tables sys-
tematically pushed our study range to A>17 and Z > 8
below the previously reported range, i.e., A>40 and
Z >20. For the best possible performance, the hyperpara-
meters were efficiently searched with Optuna’s TPE
sampler, and model's interpretation was conducted with
SHAP analysis. The Kr and Sr chains were reproduced to
assess the model's ability to capture the characteristic
"kink" at N =50 and odd-even staggering effects. We
demonstrate that our approach outperforms the theoretic-
al model (Skyrme-Hartree-Fock-Bogoliubov model) and
established ML techniques in rigorously cross-validated
tests. The main contribution of our study is the higher
predictive performance achieved by the first implementa-
tion of CatBoost, which is systematically combined with
Optuna-driven Bayesian hyperparameter adjustment.

The paper is organized as follows. Section II presents
a quick overview of the theoretical background of the
CatBoost algorithm, Optuna’s Bayesian optimization
with TPE sampler, SHAP values, and RHB-derived phys-
ics features. Section III describes dataset merging and
preprocessing, feature selection, hyperparameter tuning,
and model evaluation protocol. Section IV reports cross-
validation and hold-out performance, comparative bench-
marking, optimization history, SHAP insights, and iso-
topic-chain kink reproduction. Section V concludes the
manuscript by highlighting the main findings of this
study and outlining directions for future research.

II. THEORY

A. CatBoost

The CatBoost algorithm works on the gradient boost-
ing framework using functional gradient descent to iterat-
ively improve an ensemble predictor [42]. After every it-
eration m, the current approximation F,_; is updated
simply as

Fm(x) = Fm—l(x)+pmh(X;am), (1)

where p,, is the step size and h(x;a,,) is a chosen binary
decision tree parameterized by a,,, which is used to es-
timate the negative gradient of the loss over the training
data [42]. Each tree segregates the feature space into dis-
joint regions and fits constant values on the leaves, which
builds its structure greedily to minimize residual error.
CatBoost fits gradient-boosted decision trees using a
second-order expansion of a regularized loss [43], which
is itself an implementation of Prokhorenkova et al. [42]

and the original gradient boosting framework of Fried-
man [44] on the CatBoost model. At iteration ¢, new tree
w, 1s chosen to minimize

L= [giwi(x) + $hiwi(x)*] +u(w), )

i=1

where  gi, = 0w, €(yi, Wi (X)), iy = 0%, C(yi, Wis1 (%)
and u(w,) denotes a regularization term to penalize the
complexity of the tree. The distinct and powerful feature
of CatBoost is ordered boosting. The standard gradient
boosting approaches, such as XGBoost, LightGBM, and
AdaBoost [45—47], are prone to overfitting on small or
skewed datasets. These models are prone to overfitting
the training set by learning from their residuals. This is-
sue is addressed in the CatBoost using ordered boosting.
Rather than building each tree using the entire training
data, ordered boosting draws on progressively larger pre-
fixes of data. For each new split, only previous observa-
tions (not those that are being split) are used to calculate
gradients, preserving unbiasedness and independence (for
further details, see Ref. [43]). CatBoost’s ability to per-
form unbiased ordered boosting and effective categorical
feature handling accelerates training and improves its
generalization ability in relation to that of other boosting
models.

B. Bayesian hyperparameter optimization with
Optuna

Hyperparameter tuning is crucial for achieving high
model accuracy, but all the possible configurations can be
extremely expensive given that each combination of para-
meters requires full model training and validation. To ad-
dress time and cost issues, we applied Optuna's Bayesian
framework [48], which leverages past trial results to dir-
ect subsequent search and lower the total number of eval-
uations. Hyperparameter tuning is formulated as

min £(x), G

where x € X denotes a hyperparameter configuration and
f(x) is the K-fold cross-validated loss. Optuna [48] con-
structs the search space dynamically within the objective
using calls and allows conditional and hierarchical para-
meter definitions. It employs the tree-structured Parzen
estimator (TPE) sampler [49], which models two densit-
ies:

t(x), y<y,
plxly) = )
gx), y=y,
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where £(x) is the density formed by observations {x}
with f(x®) <y*, and g(x) is formed by the remaining ob-
servations. The TPE algorithm depends on y* to the
quantile y of the observed y-values, so that P(y <y*)=1v.
New potential best combinations of hyperparameters are
then drawn by maximizing the ratio £(x)/g(x), focusing
the search only on the promising regions of the hyper-
parameter space. This complete package of dynamic
search-space definition, Bayesian TPE sampling, and ef-
fective metadata storage provides efficient exploration of
complex, high-dimensional hyperparameter space in a
short time and reduced computational cost.

C. SHAP value analysis

SHAP (SHapley Additive exPlanations) [50] is a
technique based on game theory and used to interpret the
output of ML models by determining the contribution of
each feature to the model's performance. SHAP values
use Lloyd Shapley’s original cooperative game theoretic
solution [51] to feature attribution in ML. The explana-
tion model is given by a linear function of binary vari-
ables,

M
8@) = ¢o + Y _$i7, )

i=1

which uniquely satisfies the axioms of local consistency,
accuracy, and missingness [50]. Then, KerneISHAP ap-
proximates {¢;} using a single weighted regression; on the
other hand, TreeSHAP calculates them exactly for tree
ensembles in polynomial time [52].

D. Physics-driven features from RHB (PC-X)

In the present analysis, we employed the physics-
driven features computed in [41] using the relativistic
Hartree-Bogoliubov framework with separable pairing
force incorporating the latest PC-X parameterization. The
nonlinear point-coupling PC-X functional within the cov-
ariant density functional theory of nuclear structure
provides a self-consistent description of bulk saturation,
shell effects, and pairing effects. Instead of recomputing
theoretical features, we used S, S,,, and BE directly from
[41]. The reason behind our choice of features computed
using PC-X functional was the large data volume, i.e.,
9162 nuclei (ensuring BE values for virtually all of our
experimental entries), and its demonstrated high fidelity
in reproducing the experimental ground state properties,
including BE and nuclear charge radii across the nuclear
chart. These properties make it a reliable physics-driven
feature source, encoding saturation properties, symmetry-
energy effects, shell-closure behavior, and pairing correl-
ations, establishing a theoretical foundation for our Cat-
Boost model.

o1. METHODOLOGY

A. Data acquisition and preprocessing

We used three state-of-the-art datasets [39—41] to
build this CatBoost model of nuclear charge radii. The
first data source [40] is an updated compilation of experi-
mental charge radii that contains experimentally meas-
ured charge radii of 909 isotopes ranging from hydrogen
(Z=1) to curium (Z = 96). The second data source [10]
contains 257 samples of nuclear charge radii from berylli-
um (Z = 4) to radium (Z = 88), where 236 of them were
measured using laser spectroscopy. The third data source
is a set of theoretical ground state properties of 9162 iso-
topes calculated using the relativistic Hartree-Bogoli-
ubov framework with separable pairing forces along with
the latest point coupling density functional PC-X [41].
First, we integrated Angeli and Marinova’s with the latest
data table compiled by Li, Luo, and Wang. In the case of
clashes, i.e., repetition of the charge radius of a single
isotope in both datasets, we retained the latest charge ra-
dius compiled by Li, Luo, and Wang. This integrated
dataset was then introduced with new columns of theoret-
ical ground state properties from the third dataset. 4, N,
and Z were used as identifiers for adding new features
from the theoretical dataset. After the integration, Tukey’
s "1.5 x IQR" rule [53] was used to find and eliminate po-
tential outliers. The Tukey’s Interquartile Range (IQR)
method is a robust, distribution-agnostic technique that is
widely used in exploratory data analysis and outlier re-
moval. In this method, first quartile (25th percentile) Q1
and third quartile (75th percentile) Q3 values were calcu-
lated using the pandas library, and then the interquartile
range was established, followed by the calculation of
lower and upper fences. The complete calculation is ex-
pressed as follows:

Q) =4.2144 fm, (6)
03 =5.3640 fm, @)
IQR = Q05— Q; = 1.1496 fm, ®)
Lower fence = Q; — 1.5IQR = 2.4901 fm, 9)
Upper fence = Q5 + 1.5IQR = 7.0884 fm. (10)

Based on this technique, 17 out of 1040 nuclei fell
outside the lower fence. Figure 1 shows the resulting box
plot with outliers highlighted in red, and Table 1 lists the
corresponding nuclides.

The theoretical ground state properties were only
available for the nuclides ranging from oxygen (Z = 8) to
darmstadtium (Z = 110), and 26 nuclides had missing val-
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Nuclear Charge Radius (Rc) [fm]

Fig. 1.

(color online) Box-plot of R, using 1.5XIQR rule.

Table 1. Nuclides flagged as outliers by Tukey’s 1.5 x IQR
rule on R..
Sr# A N VA R./fm
1 1 0 1 0.8783
2 2 1 1 2.1421
3 3 2 1 1.7591
4 3 1 2 1.9661
5 4 2 2 1.6755
6 6 4 2 2.0660
7 8 6 2 1.9239
8 7 4 3 2.4440
9 8 5 3 2.3390
10 9 6 3 2.2450
11 11 8 3 2.4820
12 10 6 4 2.3612
13 11 7 4 2.4669
14 10 5 5 2.4277
15 11 6 5 2.4060
16 12 6 6 2.4702
17 13 7 6 2.4614

ues of theoretical ground state properties. We simply ex-
cluded these isotopes from our study, which became re-
stricted to the range between oxygen (Z = 8) and curium
(Z = 96). The reasons behind exclusion are that 17 nuclei
of them were flagged as outliers, and the remaining 9 iso-
topes were also removed to keep our data complete
(without missing entries). Finally, we ended up with the
consolidated data table of charge radii of 1014 isotopes
with predictors N, Z, theoretical BE, S,, (two-neutron
separation energy), and S, (one-neutron separation en-
ergy). Including mass number (4) would add perfect mul-
ticollinearity with neutron number and proton number
(given that A = N + Z); moreover, it would provide no in-
dependent information. Our preliminary tests showed no
improvement in predictive performance. Thus, its exclu-
sion can enhance the model stability and preserve the
clarity for SHAP-based feature importance analysis.
However, as detailed in Section IIL.B, S, and S,, were
subsequently removed from the feature set for the final
model.

B. Feature selection and model implementation

In the feature selection phase, a significantly light-
weight CatBoost model was trained with iterations = 500,
learning_rate = 0.1 for quick insight into the candidate
features and selection of the most promising ones. A ran-
dom seed of 42 was maintained to ensure the reproducib-
ility of the feature selection process. Rather than training
on a single random test/train split, we k-fold cross-valid-
ated (described in Section II1.D) on shuffled 10-folds but
with a fixed random seed of 42. In this exploratory fea-
ture score of a lightweight model (illustrated in Fig. 2),
neutron number, BE, and proton number were the most
influential features, with mean importances of 36.8%,
28.1%, and 26.7,%. Based on these insights, we dropped
less important features, i.e., S, and S,,, corresponding to
theoretical S, and S,,, which demonstrated notably low
mean importances (4.6% and 3.8%, respectively). There-
fore, they were dropped from the final model. Using only
the three features mentioned above, we achieved prom-
ising predictive performance. Consequently, we reduced
our feature set to these three features to demonstrate that
CatBoost performs well even with a limited feature set.

C. Hyperparameter optimization

The model was then tuned for the best possible pre-
dictive performance by searching for optimal hyperpara-
meters. Hyperparameters were selected via Optuna’s TPE
sampler. The search was performed with 10-fold cross-
validation by targeting the minimum average RMSE
across all folds. In total, 200 Optuna trials were executed,
and the metadata of each trial was stored in a relational
database file, which we queried later to analyze search
history using the Optuna "best-so-far" plot (Fig. 3). Hy-
perparameter interactions were studied using a parallel-
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Fig. 3. (color online) Optuna CV-RMSE progress over 200
trials. (a) Full-range CV-RMSE history for all trials. (b)
Zoomed-in view (outliers clipped).

coordinate plot (Fig. 4). The full search space is summar-
ized in Table 2.

D. Model evaluation protocol

To assess the predictive performance and reliability of
our model, we rigorously evaluated our model in a sys-
tematic protocol.

Error Metrics: Three standard regression metrics for
performance evaluation were used on both 10-fold cross-
validation and unseen hold-out sets:

N
1
MAE = — i =il 11
N;}y $ (11)
|
RMSE = | — ) 12
N;(y ) (12)
MAPE—%XN:@ (13)
N i |

i=1

where N denotes the number of samples (isotopes in our
case), y; is the true (experimental) charge radius, and §; is
the predicted charge radius by Catboost.

e Mean absolute error (MAE): It represents the
simple average absolute deviation. Given that it weighs
all values equally, it is robust and relatively less sensitive

RMSE  bagging temperature  depth iterations 12_leaf reg learning_rate  min_data in_leaf random strength
0.020 095182 11 2085 0.70637 10 14975
0.020 N 07~ P

0.015

0010

0.005

0.000

Fig. 4. (color online) Parallel-coordinates plot of the top 50
Optuna trials, showing the sampled hyperparameter values
and their corresponding 10-fold CV-RMSE (color-coded).

Table 2. Search space for CatBoost hyperparameters.

Hyperparameter Type Search Range Scale
iterations integer 1000-3000 linear

learning_rate float 1074-10"! log
depth integer 6—12 linear

12 leaf reg float 107310 log
random_strength float 0.0-2.0 linear
bagging_temperature float 0.0-1.0 linear
min_data_in_leaf integer 5-20 linear

to large errors.

e Root mean squared error (RMSE): It is the most
commonly used metric in regression studies. It squares
errors, computing averages. This penalizes larger errors
more heavily, thus making it robust to highlight signific-
ant prediction failures.

e Mean absolute percentage error (MAPE) : It de-
scribes errors as percentages of real values, allowing
scale-independent comparison between different meas-
urement ranges. Moreover, percentage error is always
more intuitive than all other metrics.

Cross-Validation: The whole training dataset (80% of
the total, i.e., 811 nuclides) was segregated into ten equal
samples via random sampling, and then training and test-
ing were performed on these ten samples. Each time, nine
samples were used to train, and the remaining sample was
used as part of the validation set. This 10-fold CV was
used both for hyperparameter tuning and to report error
metrics (with standard deviation) over all folds (see
Table 3 in Section (4) for fold-wise RMSE, MAE, and
MAPE, plus mean + SD and hold-out results).

Hold-Out Test: To ensure the robustness and reliabil-
ity, the final hyperparameter-tuned model was tested on a
fully unseen holdout test set of 203 nuclei. The final per-
formance was reported on the 203-nuclide test set. This
procedure diagnoses overfitting and allows robust assess-
ment of model accuracy for real-world predictions.

Comparative Benchmarking: The results were com-
pared against nine recently reported ML methods (RF,
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Table 3. Fold-wise metrics (RMSE, MAE, MAPE) for 10-
fold CV on the training set, along with mean + SD and hold-
out test results.

Fold RMSE MAE MAPE (%)
1 0.0079 0.0058 0.135
2 0.0095 0.0053 0.124
3 0.0094 0.0060 0.139
4 0.0182 0.0089 0.228
5 0.0099 0.0065 0.153
6 0.0126 0.0079 0.198
7 0.0070 0.0056 0.127
8 0.0108 0.0068 0.155
9 0.0119 0.0078 0.180
10 0.0091 0.0058 0.131
Mean CV 0.0106 £ 0.0030 0.0067 +0.0011 0.157 £0.033
Test 0.0102 0.0067 0.154

QRF, Cubist, XGBoost, GPPK, MARS, SVR, ANN, and
CNN) [31, 54] and the BRUSLIB BSkG3 [55] theoretic-
al data library for ground state properties based on
Hartree-Fock-Bogoliubov (HFB) with Skyrme Energy-
Density Functional. All the models were compared as-
suming experimental measurements as the gold standard.

Interpretability: The performance of CatBoost is in-
terpreted using residual analysis, parallel-coordinate plot,
and SHAP summary analysis.

e Residual Analysis: Discrepancy plots and pre-
dicted-vs-true scatter (Fig. 5) were used for residual ana-
lysis and to highlight any systematic biases.

e Hyperparameter Insights: The Optuna "best-so-
far" plot (Fig. 3) was used to track convergence history,
while parallel-coordinate plots (Fig. 4) revealed key in-
sights into hyperparameter interactions.

e Feature Contributions: SHAP values were com-
puted on the training data, and a beeswarm SHAP sum-
mary plot was used to rank feature importances and to in-
terpret our model.

This rigorous, systematic, and comprehensive evalu-
ation protocol ensures that our conclusions about model
performance and our claim of superiority over other mod-
els are both physically meaningful and statistically sound.

IV. RESULTS AND DISCUSSION

In this section, we analyze the accuracy of our Cat-
Boost model and its performance on charge radii predic-
tions. First, we present a summary of 10-fold cross-valid-

(b)

Residual (fm)

. /
90% of residuals = [0.0167] fm c

95% of residuals = [0.0227| fm % MAPE = 0.154%
98% of residuals = [0.0288] fm HJ R? =0.9998 —0.03

RMSE = 0.0102 fm
MAE = 0.0067 fm ~0.02

Residual: Predicted R - True R, (fm)

50 100 150 200 250
Mass Number A

30 35 40 45 50 55 60
True R (fm)

Fig. 5. (color online) (a) Discrepancy Plot of Residuals (Pre-
dicted R. - True R.) vs mass number A. (b) Predicted versus
true R..

ation results on the training set by using RMSE, MAE,
and MAPE as performance metrics to examine the over-
all stability across 10-fold isotopic splits. Then, we ana-
lyze the model's performance on hold-out unseen tests
and quantitatively compare the predictive abilities of our
model with recently reported ML algorithms. Then, we
analyze the outcome of hyperparameter tuning, followed
by a study of feature interactions and SHAP analysis. Fi-
nally, we use our trained model to predict krypton and
strontium isotopic chains to compare our CatBoost pre-
dictions with theoretical models (BSkG3 and PC-X) and
previously reported ML algorithms.

A. 10-fold cross-validation and hold-out test

Table 4 summarizes error metrics of the CatBoost
model, while Table 3 presents detailed fold-wise error
metrics. The hold-out RMSE test was 0.0102 fm, which
is notably low, demonstrating a considerably high pre-
dictive performance on unseen real-world predictions.
The mean RMSE of 10 folds was 0.0106 fm with a stand-
ard deviation of 0.0030 fm. The fold-wise RMSE ranged
between 0.0070 fm and 0.0182 fm, where the upper value
is still lower than the average of 10-fold error for many
models (Table 5). The 10-fold average of MAE and
MAPE was 0.0067 fm with a standard deviation of
0.0011 fm and 0.157% with a standard deviation of
0.033%, respectively, demostrating remarkable predict-
ive accuracy. In K-fold CV, we found that eight out of 10
folds demonstrated RMSE below 0.012 fm. This consist-
ently low error suggests that the model is stable and not
sensitive to variations in training-validation splitting. In
summary, consistently low error is evidence that our
model captures the underlying relations between the
charge radius and our features (¥, Z, BE).

In Fig. 5, we present a two-way perspective on the

Table 4. 10-fold CV and hold-out test errors.
Metric Mean (CV) SD (CV) Test
RMSE/fm 0.0106 0.0030 0.0102
MAE/fm 0.0067 0.0011 0.0067
MAPE (%) 0.157 0.033 0.154
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Table 5.
charge-radius dataset.

Cross-validation and RMSE/MAE (in fm) test for our CatBoost framework compared with other data-driven models on the

Model CV-RMSE CV MAE Test RMSE Test MAE

CatBoost (this study) 0.0106 0.0067 0.0102 0.0067

Cubist [31] 0.01199 0.00770 0.0102 0.0075

Extreme Gradient Boosting (XGBoost) [31] 0.01533 0.01114 0.0125 0.0093

Random Forest (RF) [31] 0.01746 0.01173 0.0138 0.0102

Quantile Regression Forest (QRF) [31] 0.01791 0.01232 0.0140 0.0104

Gaussian Process Predictive Kernel (GPPK) [31] 0.03715 0.02901 0.0346 0.0273

Multivariate Adaptive Regression Splines (MARS) [31] 0.03462 0.02745 0.0346 0.0277

Support Vector Regression (SVR) [31] 0.04286 0.03300 0.0439 0.0336

Artificial Neural Network (ANN) [31] 0.03992 0.03174 0.0564 0.0494
Convolutional Neural Network (CNN) [54] - 0.0156 -

generalization performance of the model. In panel (a), re-
siduals (Predicted R, — Actual R.) are represented against
atomic mass number 4, and color encoding indicates the
magnitude of residuals. This plot reveals that most of the
points are tightly concentrated at the central zero error
line, with very few outliers. The inset quantifying the re-
sidual distribution is added, which shows that 90%, 95%,
and 98% of the absolute errors are below 0.0167 fm,
0.0227 fm, and 0.0288 fm, respectively. This proves that
the errors of the model are consistently low, and very few
predictions have errors beyond 0.03 fm. Importantly, no
systematic bias over the whole range of mass numbers is
observed. A few outliers can be seen with relatively high-
er residuals, suggesting the limitation of the model in the
scarce light-nuclei region of the nuclear chart. Panel (b)
illustrates the correlation between predicted and true
charge radii, which presents an excellent agreement along
the ideal y = x line. The inset in panel (b) shows the per-
formance metrics: RMSE = 0.0102 fm, MAE = 0.0067
fm, MAPE = 0.154%, and R?> = 0.9998, which means that
our model can explain approximately 99.98% of the vari-
ance in the nuclear charge radius.

1.  Comparison with Previous ML Studies

In Table 5, we compare the 10-fold cross-validation
of our model as well as hold-out test errors with a range
of alternative data-driven algorithms [31, 54]. Notably,
CatBoost outperforms all other algorithms by delivering
the smallest 10-fold CV with RMSE equal to 0.0106 fm
and MAE equal to 0.0067 fm, as well as the lowest test
RMSE (0.0102 fm) and MAE (0.0067 fm). The closest
competitor of CatBoost is Cubist, which achieves a CV-
RMSE of 0.0120 fm with the same test RMSE. XGBoost,
Random Forest, and Quantile Random Forest rank third,
fourth, and fifth in the competition, respectively, with CV
errors that exceed those of CatBoost by approximately
15%—30%. Gaussian process polynomial kernel (GPPK),

multivariate adaptive regression splines (MARS), sup-
port vector regression (SVR), and artificial neural net-
works (ANN) exhibit relatively larger errors (CV-RMSE
up to 0.04286 fm and RMSE test up to 0.0564 fm), while
the CNN exhibits a RMSE test of 0.0156 fm. In other
words, GPPK, MARS, SVR, and ANN are approxim-
ately three to four times less accurate than CatBoost (see
Table 5). These results establish the fact that CatBoost
excels in nuclear charge-radii modeling, combining the
lowest errors in both cross-validation and hold-out test-
ing. Its consistently superior performance, especially
against modern algorithms such as Cubist and XGBoost,
demonstrates the robust generalization ability of Cat-
Boost. This highlights the potential of CatBoost in nucle-
ar science, particularly in ground state properties and nuc-
lear structure, leading to efficient and more accurate mod-
eling of nuclear structure and even nucleosynthesis.

B. Hyperparameter tuning history and interactions

In Fig. 3, we present a full-scale optimization history
(panel a) and a zoomed-in view of the best-so-far traject-
ory (panel b) of Optuna-driven 10-fold CV hyperparamet-
er search over 200 trials. If we discuss the first 50 trials in
panel (a), trial 0 begins at 0.012849 fm, then for explora-
tion it spikes at trials 1 (0.060102 fm) and 2 (0.574825
fm), and then settles back to 0.012948 fm at trial 3. We
observe a prominent improvement at trial 5, where CV-
RMSE falls to 0.011198 fm. In subsequent trials (6-49),
CV-RMSE oscillates mostly between 0.010880 fm (trial
38) and 0.015588 fm (trial 24), with occasional higher
values at trials 10 (0.139897 fm), 14 (0.289320 fm), 35
(0.024157 fm), and 39 (0.035871 fm) as the sampler ini-
tially explores various hyperparameter regions.

Panel (b), downscaled on the best-so-far CV-RMSE
trajectory, which is also present in panel (a), shows ex-
treme outliers clipped off to illustrate the evolution of op-
timization effectively. The best-so-far curve descends as
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the trials proceed until trial 188, which achieves a minim-
um CV-RMSE of approximately 0.0104 fm. This trial re-
mains the best through trial 200. This evolution of rapid
early descent followed by continuous fine-tuning con-
firms that our 200-trial search was both efficient and suf-
ficient to search the optimal CatBoost hyperparameters
for the prediction of nuclear charge radii. We observe that
additional trials might slightly reduce CV-RMSE, but
given that we achieved the desired performance, and it
stabilized by trial 200, we limited our search to 200 trials
to balance accuracy and computational cost. To study the
interactions among the hyperparameters, we filtered out
the top 50 trials (with the lowest CV-RMSE) and visual-
ized them using the parallel-coordinates plot among the
CV-RMSE and all the hyperparameters. Fig. 4 shows a
parallel-coordinates plot of the 50 Optuna trials with the
lowest 10-fold CV-RMSE. Each line tracks the hyper-
parameter settings of one trial, i.e., the number of itera-
tions, learning rate, tree depth, [,-leaf regularization, bag-
ging temperature, minimum data in leaf, and random
strength; note that it is color-encoded by its correspond-
ing CV-RMSE. Interestingly, all the best configurations
use a single depth of 10 and learning rates between 0.008
and 0.018. Moreover, the iteration counts evolve toward
the upper end of the search range, and mostly spread
between 2300 and 2985. In addition, - leaf regulariza-
tion mostly remains below 0.15, the bagging temperature
falls in a moderate range, i.e., between 0.4 and 0.55, and
the minimum data in leaf is clustered on 5, 6, 7, and 8.
The random strength is almost equally spread between
0.8 and 1.4. In Table 6, we report the best hyperparamet-
er values obtained from trial 188 in Optuna. Using these
parameters on our processed data, one can reproduce the
CatBoost model with exact predictions and evaluation
metrics. This highlights the full reproducibility of this
study.

C. SHAP analysis

In Fig. 6, we present a SHapley Additive exPlana-
tions (SHAP) beeswarm plot that quantitatively analyzes
how each input feature impacts the predictions of nuclear
charge radii by the CatBoost model. The features are
ordered from top to bottom based on the mean SHAP
value. This highlights that PC-X BE is the most influen-
tial feature, followed by Z and N. Each point in the plot
corresponds to an individual nuclide from the training set,
horizontally positioned based on its SHAP value, which
reflects its specific impact on the predicted radius. It is
color-encoded to show the real value or magnitude of the
corresponding feature value from blue to red (low to
high). Note that all three features demonstrate both posit-
ive and negative SHAP contributions: nuclei with higher
BEs, proton numbers, or neutron numbers systematically
exhibit positive SHAP values, corresponding to larger
predicted radii. This outcome is obvious and aligned with

Table 6. Optimal CatBoost hyperparameters.

Hyperparameter Value
iterations 2916
learning_rate 0.00912
depth 10
12_leaf reg 0.04002
bagging_temperature 0.48469
min_data_in_leaf 5
random_strength 1.16468

BE -“Mo
e e« 1
< opmee—

—6.8 —(I).G —6.4 —(I).Z 0?0 0j2 014
SHAP value (impact on model output)

Feature value

N - ) |

Low

Fig. 6.
CatBoost charge-radius model.

(color online) Beeswarm plot of SHAP values for the

the established nuclear theory, where greater proton and
neutron numbers naturally lead to larger nuclear sizes
owing to increased nucleon occupancy in nuclear shells.
Likewise, total BE grows with mass number 4, and giv-
en that the charge radius scales as R~ A'”, nuclei with
higher BE usually produce positive SHAP contributions.
Therefore, in general (for local chain-level, see Section
IV.C.1), charge radius increases with an increase in BE.
Conversely, lower BE corresponds to a negative SHAP
value, reflecting smaller charge radii.

Quantitatively (see Table 7), BE achieves the highest
mean absolute SHAP (0.223), followed by Z (0.213) and
N (0.176), demonstrating that it drives the model output
more strongly on average. Z exhibits the largest SHAP
range (—0.83 to +0.39), showing that extreme atomic
numbers can both strongly increase and decrease pre-
dicted radii. The near-zero mean SHAP values (Z ~ 3x
1075, N~ 1.4x107%, BE~ —-1.5x 107%) indicate that posit-
ive and negative effects balance each other across the
training set. This implies that the model is well balanced
and does not overly overestimate or underestimate the
predictions. In conclusion, this SHAP analysis confirms
that BE is the most influential feature overall, consistent
with its fundamental role in nuclear structure, followed
by neutron and proton numbers. This highlights that the
inclusion of theoretical BE in the dataset as a feature has
helped the model to generalize well over the data and in-
crease prediction accuracy.

1. Localized SHAP near N = 50 shell closure

We also explored the localized SHAP for Sr (Z = 38)
and Kr (Z = 36) chains, computed using an interventional

024109-9



Mudassar Ahmed, Abdul Kabir, Jameel-Un Nabi et al.

Chin. Phys. C 50, 024109 (2026)

Table 7. SHAP value summary: mean SHAP, mean absolute SHAP, span, and min-max range, ordered by descending mean absolute
impact.
Feature Mean SHAP Mean [SHAP]| Span (max—min) Range (min to max)
Binding energy (BE) —-0.00145 0.2234 0.9990 —0.5898 to +0.4092
Proton number (2) 0.00003 0.2132 1.2248 —0.8305 to +0.3942
Neutron number (N) 0.00142 0.1759 0.9955 -0.5977 to +0.3978

TreeExplainer on a global background sampled from the
whole training set. This common baseline stabilizes the
sign and scale of attributions, and we interpret results
within each chain.

The chain-level beeswarms (Fig. 7) show that at the
chain level, neutron number N is the dominant feature
(largest horizontal spread), i is negligible inside each
chain (constant value), and BE is a secondary, often neg-
ative, contributor in this local neutron window. The de-
pendence plot of SHAP(N) on N (Fig. 8) shows a sharp
minimum at N~50. For N <50, adding more neutrons
yields negative contributions (model predicts charge radi-
us below the global expectation), whereas for N > 50, the
contributions evolve toward zero, indicating a trend re-
versal across the shell closure. When BE is included as a
feature, color-coding shows that although BE rises with
N, the most negative SHAP(N) appears near N =50,
demonstrating that at magic number, the local shell ef-
fects can override the global trends.

D. Isotopic chains prediction

Variations in the charge radii within isotopic chains
encode the deformation, shell effects, and pairing proper-
ties, making isotopic chain patterns a cornerstone of nuc-
lear structure investigations. Reproducing these isotopic
chain trends with high accuracy can be used as a litmus
test to assess any predictive model, ranging from a basic
empirical model to a complex mean field model and even
data-driven algorithms. To further claim the superiority
of our model over others, we focused on krypton ("**°Kr)
and strontium ("*'%Sr), which exhibit the shell-closure
“kink” at N = 50 and odd-even staggering due to pairing
effects. This comparison allows us to critically assess
how our model captures the underlying physics behind
nuclear charge-radius variations. Moreover, these isotop-
ic chains lie on or near potential astrophysical r-process
pathways. Therefore, an accurate description of these
chains can improve the nucleosynthesis models and our
understanding of heavy element formation in the uni-
verse.

In Fig. 9(a), we present a comparison of CatBoost
with Cubist, Random Forest (RF), and Quantile Regres-
sion Forest (QRF), using experimental data as a standard
benchmark. The prediction data points of CatBoost not
only follow the overall trend but also coincide with the
experimental points (except 4 = 75) across 4 = 72-96,

Sr (Z=38, N=40-62) Kr (Z=36, N=36-60)
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BE  « seditat.
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z ==
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Fig. 7.  (color online) Localized SHAP (beeswarm) for Sr
(Z=38) and Kr (Z=36) with a single global background. With-
in each chain, N dominates; Z is near zero (constant locally).

Sr: SHAP(N) vs N (N=50 dashed) Kr: SHAP(N) vs N (N=50 dashed)
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Fig. 8. (color online) SHAP(N) versus N with N = 50 marked.
Both chains show a minimum near N~ 50 (negative for N < 50,

recovery for N > 50).

accurately reproducing the N = 50 shell-closure kink at
A = 86. RF and QRF also follow the overall trend but
consistently overestimate the charge-radius values, with
several larger deviations. Cubist shows a prominent error
at 4 = 78, and after the shell-closure kink point, it be-
comes excessively steep and overshoots the charge-radi-
us values. By contrast, CatBoost provides predictions of
both even and odd masses, and its odd-4 predictions
faithfully align with the experimental odd-4 charge radii
values.

In Fig. 9(b), we compare CatBoost with extreme
gradient boosting (XGBoost), Gaussian process predict-
ive kernel (GPPK), and multivariate adaptive regression
splines (MARS). Similar to RF and QRF, XGBoost also
consistently overpredicts the charge radii values and
shows a steep slope after 4 = 50, producing a larger devi-
ation from the experimental values. GPPK underpredicts
with notably large errors below 4 =80 and then over-
smoothes the data points, producing a too flat curve. This
shows its inability to reproduce actual chain trends and
capture odd-even staggering and kinks at shell closure.
MARS, while closer to the experimental slope, underes-
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(c) Kernel & NN models: SVR, ANN, CNN vs
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(b) Boosting & hybrid methods:XgBoost,
GPPK, MARS vs CatBoost and experiment.
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(d)  Theoretical: Skyrme-Hartree-Fock-
Bogoliubov BSkG3 model (BRUSLIB) and
PC-X [41] vs CatBoost and experiment.

(color online) Charge-radius predictions for the 7>°°Kr chain. CNN and experimental data cover both even and odd-4 (note

A =73 is unavailable experimentally). Therefore, 4 = 73 data point was dropped. Other models (RF, QRF, Cubist,XgBoost, GPPK,
MARS, SVR, ANN and PC-X) report only even-4 values, hence gaps visible at odd-A.

timates several points between 4 = 74 to 82. Overall, it
follows the trend and captures the kink at shell closure re-
latively better than tree-based models. Despite this, Cat-
Boost predictions are still superior to those of MARS, as
demonstrated by precise overlapping of experimental data
points and capture of the chain trend.

In Fig. 9(c), support vector regression (SVR) underes-
timates the radii predictions at the low-4 end. At
A =82, it shows an almost constant slope, deviating sig-
nificantly from experimental values, demonstrating its in-
ability to capture both trend and shell-closure kink. Like-
wise, the ANN underpredicts the overall trend but accur-
ately predicts in the mid-4 range, as shown in the figure.
The CNN produces both even and odd A predictions, ac-
curately captures N = 50 kinks, and slightly overpredicts
radii in the neutron-rich end.

In Fig. 9(d), we compare our model with the theoret-
ical BSKG3 model (Skyrme-Hartree-Fock-Bogoliubov).
We extracted these data from the Brussels Nuclear Lib-
rary for Astrophysical Applications (BRUSLIB). It cap-
tures the chain trend effectively and precisely predicts the
odd-even oscillations as well as the kink at N = 50.
However, it underestimates the charge radii values in the
lighter half of the chain until 4 = 82, which highlights its
limited performance for the neutron-deficient range.

In Fig. 10, we present the same comparison for the
strontium chain. In the strontium chain (A =78-100),

classical tree models (Cubist, RF, QRF) show a relat-
ively good fit with shell-closure kink but also exhibit loc-
alized deviations at multiple points larger than Catboost's
predictions. XGBoost follows the overall trend, captures
the kink at shell closure, but yet overestimates beyond A
= 96, performing worse than CatBoost concerning predic-
tions. GPPK and MARS underestimate at both the light-
and heavy-mass ends and produce overly smooth, too-flat
profiles that diverge from experimental values. SVR also
demonstrates a too-flat line and misses the N = 50 kink
and overall trend pattern, while ANN underestimates both
heavy-mass and light-mass end radii and only fits relat-
ively well in the mid-range (4 = 86 to 97). Among all ap-
proaches (except CatBoost), CNN exhibits the closest fit
but still deviates from 4=95 to 97. The BSkG3 model re-
produces the kink and accurate charge radii between
A=85 and 95 but underestimates radii below 4 = §0.

The CatBoost model consistently outperforms all the
models in the prediction of both krypton and strontium
chains, simultaneously capturing the shell-closure kink
and the subtle odd-even oscillations while accurately fol-
lowing the overall trend. Although individual models
(tree models, boosting, ANN, CNN, and BSkG3) [31, 54,
55] excel in one or two aspects, none is best in all at once.
CatBoost excels at all these qualities simultaneously,
which proves its predictive superiority against these mod-
els and suggests that it can be a highly promising ap-
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proach for ground state predictions of properties, includ-
ing charge radii, error quantification, and refinement of
nuclear models.

V. CONCLUSIONS

In the present analysis, we reported the first utiliza-
tion of the CatBoost model for more accurate computa-
tions of ground-state nuclear charge radii across 1014
nuclides. To create a high-quality dataset that is larger
than prior research, we combined two extensive experi-
mental compilations (Angeli & Marinova; Li et al.). We
also incorporated physics-informed features from PC-X
computations. An Optuna driven hyperparameter search
was conducted to minimize the average 10-fold cross-val-
idation RMSE to 0.0106 fm, and (MAE = 0.0067 fm,
MAPE = 0.154%) yielded a hold-out RMSE test of
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(color online) Same as Fig. 9, but for the "*'%Sr chain.

0.0102 fm (MAE = 0.0067 fm, MAPE = 0.154%). SHAP
analysis indicated that BE has an advantageous influence
on the model's performance and appeared as the leading
predictor, which is consistent with nuclear theory. The re-
sidual analysis revealed no significant consistent bias
throughout nearly entire atomic mass range. When com-
pared to nine established ML methods and the BRUSLIB
library (BSkG3), CatBoost exhibited higher global pre-
dictive power and stability. Notably, the proposed model
accurately modeled isotopic properties including the N =
50 shell-closure kink and odd even staggering in Kr and
Sr chains, demonstrating its excellent generalizability.
These findings establish CatBoost as a powerful, inter-
pretable tool for nuclear radius prediction, paving the
path for future enhancements such as enlarged feature
sets, uncertainty quantification, and hybrid modeling us-
ing ab initio techniques.
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