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Abstract: Understanding nuclear shape, behavior, and stability, as well as improving nuclear models, depends on
the precise  determination of  ground-state nuclear  charge radii.  Existing experimental  techniques are  limited to  ex-
tremely narrow regions of the nuclear chart; theoretical models, including relativistic Hartree-Bogoliubov (RHB) and
Hartree-Fock-Bogoliubov (HFB), predict  broad trends of nuclear properties but miss fine isotopic features such as
odd-even staggering effects and shell-closure kinks. High computational time and cost are other obstacles to theoret-
ical  approaches.  Although  machine-learning  algorithms  have  made  significant  progress  in  predicting  charge  radii,
they are still hindered by a lack of balanced data and characteristics, primarily centered around   and  .
In the present study, we present the first application of CatBoost regression to compute nuclear charge radii. We in-
tegrated two experimental datasets with RHB-calculated point-coupling interaction (PC-X) theoretical features and
extended our study range to  ,  . We found the best hyperparameters using Optuna’s Tree-structured Par-
zen Estimator (TPE) sampler with 10-fold cross-validation (CV), achieving a CV root-mean-square error (RMSE) of
0.0106 fm and hold-out RMSE of 0.0102 fm, with only three features, i.e., neutron number (N), proton number (Z),
and RHB theoretical  binding energy (BE),  outperforming nine other ML models:  random forest  (RF),  quantile RF
(QRF), Cubist, Gaussian process regression with polynomial kernel (GPPK), multivariate adaptive regression splines
(MARS),  SVR,  ANN,  convolutional  neural  network  (CNN),  and  Brussels-Skyrme-on-a-grid  3  (BSkG3).  SHapley
Additive exPlanations (SHAP) analysis confirms the highest global influence of BE in the model's predictions, fol-
lowed by proton number and neutron number.  The proposed model can accurately reproduce the   kink and
odd-even staggering effects in krypton and strontium chains. These results establish CatBoost as a robust and not-
ably promising model for charge-radius prediction and beyond, with the potential to impact r-process modeling and
future theoretical development.
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I.  INTRODUCTION

RcNuclear charge radius ( ) is  one of the most  funda-
mental features  of  atomic  nuclei  and  has  been   extens-
ively  investigated  in  nuclear  physics  [1]. It  provides   in-
sights  into  the  charge  distribution  within  the  nucleus,
overall  nuclear  shape,  and nuclear  stability  and behavior
[2]. Ford et al. [3] emphasized the importance of nuclear
charge radius in understanding nuclear shape and behavi-
or. There are a number of experimental techniques to cal-
culate charge radii, some of which have been in use since
the mid-20th century. For example, one of the most pre-
cise experimental techniques is based on electron scatter-
ing experiments for the determination of charge distribu-
tion of nuclei, or more specifically, electron scattering ex-

periments  of  6Li,  7Li,  12C,  and  16O  [4,  5].  Muonic  atom
spectroscopy  and  Kα  X-ray  isotope  shift  (KIS)  are  also
extensively used [6]. However, limitations in experiment-
al  techniques restrict  their  application to specific regions
of the nuclear chart.

Rc

For this reason, a wide variety of nuclear models have
been developed.  They  can  analyze  ground  state   proper-
ties,  including  , with  much  greater  accuracy.   Macro-
scopic models, including the liquid drop model [7, 8] and
Garvey-Kelson  relation  [9]  are  the  simplest  approaches.
They  provide  preliminary  insights  into  nuclear  structure
and its properties. For better predictions, phenomena such
as isospin dependence and shell effects have also been in-
corporated [10]. Microscopic models further enhance the-
oretical accuracy by delving into the nucleus at the nucle-
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on level, focusing on individual interactions between pro-
tons  and  neutrons.  The  Skyrme-Hartree-Fock-Bogoli-
ubov (HFB) models use the Skyrme interaction to model
nucleon-nucleon forces,  approximate  the  average   poten-
tial experienced by each nucleon by using the Hartree-Fo-
ck approximation, and handle pairing correlations by the
Bogoliubov transformation  for  accurate  calculations  [11,
12].  The  relativistic  effects  on  Skyrme-Hartree-Fock  are
studied  in  the  RMF  model  [13]. Apart  from  these   ap-
proaches,  empirical  formulae  have  also  been  derived  by
capturing  the  local  relations,  for  example,  ,  i.e.,  the
charge radii  difference  of  two  isotopes  of  a  single   ele-
ment  [14].  Advanced  mean  field  models, e.g.,  deformed
relativistic  Hartree-Bogoliubov, offer  a  further  deep   de-
scription  by  adding  properties  such  as  deformation  and
superfluidity  [15−17].  Furthermore,  ab  initio  no-core
shell  models  consider  direct  interaction  of  nucleons
without  core  approximations  [18,  19].  Lastly,  the
Weizsäcker-Skyrme (WS*) model integrates both micro-
scopic and  macroscopic  parameters  for  a  better   descrip-
tion of nuclear properties of exotic as well as stable nuc-
lei [10].

Machine learning (ML) and deep learning (DL) offer
high potential  in their application to both theoretical and
experimental  nuclear  physics  [20]. For  example,   predic-
tions of  nuclear mass using support  vector and Gaussian
process regressors exhibit  good performance both within
and beyond the training set  [21].  ML algorithms applied
over AME2020 data [22, 23], outperformed the semi-em-
pirical  Bethe-Weisäker  formula  [24]. Similarly,  the   im-
pact parameter in heavy-ion collisions can be determined
using neural networks (NNs) [25]. Predictive modeling of
ground  state  energies  of  even-even nuclei  can  be   imple-
mented using ANNs over a theoretical dataset calculated
from  the  Hartree-Fock-Bogoliubov  (HFB)  model  [26].
The  study  of  unstable  nuclei  relies  heavily  on  the α  de-
cay.  An  approach  integrating  the  sophisticated  α-decay
model with  a  Bayesian  neural  network  (BNN)  is   em-
ployed  to  enhance  the  prediction  accuracy  of  α-decay
half-lives. According to global and extrapolated analyses,
model-based  predictions  of α  decay can  be  more   effect-
ively described by the BNN approach [27].  The extreme
gradient Boosting (XGBoost) framework is used to study
the  α-decay  energy  and  half-life  of  superheavy  nuclei,
which are optimized using Bayesian hyperparameters. By
incorporating  key  nuclear  structural  features,  including
mass  number,  proton-to-neutron  ratio,  magic  number
proximity, and  angular  momentum  transfer,  the   optim-
ized model  captures  essential  physical  mechanisms  gov-
erning  the  α decay  [28].  On  the  basis  of  WKB  barrier
penetrability, an  improved  formula  considering  the   de-
formation effect for the α-decay half-lives was proposed.
The  improved  empirical  formula  and  XGBoost  models
were used to predict the α-decay half-lives of nuclei with
Z = 117, 118, 119, and 120. You et al. [29], combined the

empirical formulas with ML techniques to explore the ef-
fect of nuclear deformation on α decay half-lives, enhan-
cing  predictive  performance  within  deformed  regions.
The α-decay energies and half-lives have also been stud-
ied using a Gaussian process algorithm [30].

B(E2)

RC

A  recent  and  most  comprehensive  exploration  of
modern  ML  models  applied  to  charge  radii  predictions,
Bayram et  al.  [31], showed  high  potential  of  both  mod-
ern  tree-based  algorithms  (XgBoost,  Cubist)  along  with
conventional  ML.  These  models  have  a  relatively  low
RMSE (0.03992-0.0119) fm. Jalili et al. [32] have extens-
ively  explored  Support  Vector  Regression  (SVR)  over  a
diverse range of Z. They pointed out the impact of includ-
ing A as a feature on the model performance. Their most
prominent  contribution  includes  the  novel  application  of
RBF  (Radial  Basis  Function)  with  SVR,  a  decrease  in
RMSE from 0.045 fm to 0.016 fm for over 1000 isotopes,
as  well  as  improved  extrapolation  ability  of  the  model.
Wu et  al.  [33] applied feed-forward networks with Z, N,
and    inputs  to  capture  magic-number  kinks  and
study  symmetry-energy  links.  Utama  et  al.  [34]  bridged
BNNs with  density  functional  theory  to  substantially   re-
duce prediction errors by a factor of three. Ma et al. [35]
used naive Bayes classifiers to refine HFB and semi-em-
pirical  radii,  with  notable  gains  in  terms  of  accuracy.
Dong et  al.  [36] reduced errors  significantly by combin-
ing Bayesian networks with the NP formula, and Dong et
al.  [37]  later  included  physics-driven features  to   over-
come overfitting. Recently, Jian et al. [38] implemented a
continuous  Bayesian  probability  (CBP)  estimator  and
Bayesian model averaging (BMA) to enhance the predic-
tions of charge radii from sophisticated theoretical nucle-
ar  structure  models.  They  combined  the  CBP  estimator
and  BMA  to  refine  charge  radii  predictions  from  the
HFB, RHB, and semi-empirical liquid-drop models. Their
method  pushed  the  standard  deviation  in  predictions  of

  below  0.02  fm,  demonstrating  a  strong  potential  for
CBP and BMA in accurate predictions of nuclear charge
radii.

A ≥ 40 Z ≥ 20

Despite the broad scope of theoretical and ML-based
studies,  two prominent  gaps persist.  First,  global  models
such  as  RHB  reproduce  broad  charge-radius  trends  but
fail  to  capture  fine  features  at  the  isotopic  chain  level
such  as  odd-even  staggering  and  exotic-isotope  kinks
across the nuclear chart. Second, ML approaches (ANNs,
Bayesian NNs, SVR) achieve competitive RMSEs but re-
main constrained by limited data and imbalanced experi-
mental data,  narrow  feature  sets,  and  a  lack  of   inter-
pretability. Moreover, most of the ML studies are limited
to    and  .  To  the  best  of  our  knowledge,  no
previous study  has  leveraged  CatBoost's  ordered   boost-
ing  with  Optuna-TPE optimization,  combined   comple-
mentary experimental datasets and RHB-based theoretic-
al  features  of  PC-X  data,  and  used  SHAP  analysis  to
provide  feature-level  insights  both  globally  and  at  the
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chain level around N=50.

RC

A ≥ 17 Z ≥ 8
A ≥ 40

Z ≥ 20

N = 50

In  this  study,  CatBoost  regression  was  employed  for
predicting    .  The  model  was  trained  on  merged  and
processed data extracted from three data tables: (Li et al.
[39], Angeli et al. [40], and PC-X [41]. These tables sys-
tematically  pushed  our  study  range  to    and 
below  the  previously  reported  range,  i.e.,    and

. For the best possible performance, the hyperpara-
meters  were  efficiently  searched  with  Optuna’s  TPE
sampler,  and  model's  interpretation  was  conducted  with
SHAP analysis. The Kr and Sr chains were reproduced to
assess  the  model's  ability  to  capture  the  characteristic
''kink''  at    and  odd-even  staggering  effects.  We
demonstrate that our approach outperforms the theoretic-
al  model  (Skyrme-Hartree-Fock-Bogoliubov  model)  and
established  ML  techniques  in  rigorously  cross-validated
tests.  The  main  contribution  of  our  study  is  the  higher
predictive performance achieved by the first implementa-
tion of CatBoost,  which is systematically combined with
Optuna-driven Bayesian hyperparameter adjustment.

The paper is organized as follows. Section II presents
a  quick  overview  of  the  theoretical  background  of  the
CatBoost  algorithm,  Optuna’s  Bayesian  optimization
with TPE sampler, SHAP values, and RHB-derived phys-
ics  features.  Section  III  describes  dataset  merging  and
preprocessing,  feature  selection,  hyperparameter  tuning,
and model evaluation protocol. Section IV reports cross-
validation and hold-out performance, comparative bench-
marking, optimization  history,  SHAP  insights,  and   iso-
topic-chain  kink  reproduction.  Section  V  concludes  the
manuscript  by  highlighting  the  main  findings  of  this
study and outlining directions for future research. 

II.  THEORY
 

A.    CatBoost

Fm−1

The CatBoost algorithm works on the gradient boost-
ing framework using functional gradient descent to iterat-
ively improve an ensemble predictor [42]. After every it-
eration  m,  the  current  approximation    is  updated
simply as 

Fm(x) = Fm−1(x)+ pm h
(

x;am
)
, (1)

pm h(x;am)
am

where    is  the step size and    is a chosen binary
decision  tree  parameterized  by  , which  is  used  to   es-
timate  the negative gradient  of  the loss  over  the training
data [42]. Each tree segregates the feature space into dis-
joint regions and fits constant values on the leaves, which
builds its structure greedily to minimize residual error.

CatBoost  fits  gradient-boosted  decision  trees  using  a
second-order expansion of a regularized loss [43], which
is  itself  an  implementation  of  Prokhorenkova et  al.  [42]

wt

and the  original  gradient  boosting  framework  of   Fried-
man [44] on the CatBoost model. At iteration t, new tree
 is chosen to minimize 

L =
n∑

i=1

[
gi,t wt(xi)+ 1

2 hi,t wt(xi)2
]
+u(wt), (2)

gi,t = ∂Wt−1ℓ
(
yi,Wt−1(xi)

)
hi,t = ∂

2
Wt−1
ℓ
(
yi,Wt−1(xi)

)
u(wt)

where  ,  ,
and    denotes  a  regularization  term  to  penalize  the
complexity of the tree. The distinct and powerful feature
of  CatBoost  is  ordered  boosting.  The  standard  gradient
boosting  approaches,  such  as  XGBoost,  LightGBM,  and
AdaBoost  [45−47],  are  prone  to  overfitting  on  small  or
skewed  datasets.  These  models  are  prone  to  overfitting
the training set  by learning from their  residuals.  This   is-
sue is addressed in the CatBoost using ordered boosting.
Rather  than  building  each  tree  using  the  entire  training
data, ordered boosting draws on progressively larger pre-
fixes of data.  For each new split,  only previous observa-
tions (not those that are being split) are used to calculate
gradients, preserving unbiasedness and independence (for
further  details,  see  Ref.  [43]).  CatBoost’s ability  to   per-
form unbiased ordered boosting and effective categorical
feature  handling  accelerates  training  and  improves  its
generalization ability in relation to that of other boosting
models. 

B.    Bayesian hyperparameter optimization with
Optuna

Hyperparameter  tuning  is  crucial  for  achieving  high
model accuracy, but all the possible configurations can be
extremely expensive given that each combination of para-
meters requires full model training and validation. To ad-
dress time and cost issues, we applied Optuna's Bayesian
framework [48], which leverages past trial results to dir-
ect subsequent search and lower the total number of eval-
uations. Hyperparameter tuning is formulated as 

min
x∈X

f (x), (3)

x ∈ X
f (x)
where   denotes a hyperparameter configuration and

 is  the K-fold cross-validated loss.  Optuna [48] con-
structs the search space dynamically within the objective
using calls  and allows conditional  and hierarchical  para-
meter  definitions.  It  employs  the  tree-structured  Parzen
estimator  (TPE) sampler  [49], which models  two densit-
ies: 

p(x | y) =


ℓ(x), y < y∗,

g(x), y ≥ y∗,
(4)
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ℓ(x) {x(i)}
f (x(i)) < y∗ g(x)

y∗

P(y < y∗) = γ

ℓ(x)/g(x)

where    is  the  density  formed  by  observations 
with  , and   is formed by the remaining ob-
servations.  The  TPE  algorithm  depends  on    to  the
quantile γ of the observed y-values, so that  .
New potential  best  combinations  of  hyperparameters  are
then  drawn  by  maximizing  the  ratio  ,  focusing
the search  only  on  the  promising  regions  of  the   hyper-
parameter  space.  This  complete  package  of  dynamic
search-space definition,  Bayesian TPE sampling,  and ef-
fective metadata storage provides efficient exploration of
complex,  high-dimensional  hyperparameter  space  in  a
short time and reduced computational cost. 

C.    SHAP value analysis
SHAP  (SHapley  Additive  exPlanations)  [50]  is  a

technique based on game theory and used to interpret the
output of ML models by determining the contribution of
each  feature  to  the  model's  performance.  SHAP  values
use  Lloyd Shapley’s  original  cooperative  game theoretic
solution  [51] to  feature  attribution  in  ML.  The   explana-
tion model  is  given  by  a  linear  function  of  binary   vari-
ables, 

g(z′) = ϕ0 +

M∑
i=1

ϕi z′i , (5)

{ϕi}

which uniquely satisfies the axioms of local consistency,
accuracy,  and  missingness  [50]. Then,  KernelSHAP   ap-
proximates   using a single weighted regression; on the
other  hand,  TreeSHAP  calculates  them  exactly  for  tree
ensembles in polynomial time [52]. 

D.    Physics-driven features from RHB (PC-X)
In  the  present  analysis,  we  employed  the  physics-

driven  features  computed  in  [41]  using  the  relativistic
Hartree-Bogoliubov  framework  with  separable  pairing
force incorporating the latest PC-X parameterization. The
nonlinear point-coupling PC-X functional within the cov-
ariant  density  functional  theory  of  nuclear  structure
provides  a  self-consistent  description  of  bulk  saturation,
shell  effects,  and pairing effects.  Instead of  recomputing
theoretical features, we used Sn, S2n, and BE directly from
[41]. The reason behind our choice of features computed
using  PC-X  functional  was  the  large  data  volume,  i.e.,
9162  nuclei  (ensuring  BE  values  for  virtually  all  of  our
experimental  entries),  and  its  demonstrated  high  fidelity
in  reproducing  the  experimental  ground  state  properties,
including BE and nuclear charge radii across the nuclear
chart.  These  properties  make  it  a  reliable  physics-driven
feature source, encoding saturation properties, symmetry-
energy effects, shell-closure behavior, and pairing correl-
ations, establishing  a  theoretical  foundation  for  our  Cat-
Boost model. 

III.  METHODOLOGY
 

A.    Data acquisition and preprocessing
We  used  three  state-of-the-art  datasets  [39−41]  to

build  this  CatBoost  model  of  nuclear  charge  radii.  The
first data source [40] is an updated compilation of experi-
mental charge  radii  that  contains  experimentally   meas-
ured charge radii of 909 isotopes ranging from hydrogen
(Z = 1) to curium (Z = 96).  The second data source [10]
contains 257 samples of nuclear charge radii from berylli-
um (Z = 4) to radium (Z = 88), where 236 of them were
measured using laser spectroscopy. The third data source
is a set of theoretical ground state properties of 9162 iso-
topes  calculated  using  the  relativistic  Hartree-Bogoli-
ubov framework with separable pairing forces along with
the  latest  point  coupling  density  functional  PC-X  [41].
First, we integrated Angeli and Marinova’s with the latest
data table compiled by Li, Luo, and Wang. In the case of
clashes,  i.e.,  repetition  of  the  charge  radius  of  a  single
isotope in both datasets, we retained the latest charge ra-
dius  compiled  by  Li,  Luo,  and  Wang.  This  integrated
dataset was then introduced with new columns of theoret-
ical  ground  state  properties  from the  third  dataset. A, N,
and  Z  were  used  as  identifiers  for  adding  new  features
from the theoretical dataset. After the integration, Tukey’
s ''1.5 × IQR'' rule [53] was used to find and eliminate po-
tential  outliers.  The  Tukey’s  Interquartile  Range  (IQR)
method is a robust, distribution-agnostic technique that is
widely used  in  exploratory  data  analysis  and  outlier   re-
moval.  In this method, first  quartile (25th percentile) Q1
and third quartile (75th percentile) Q3 values were calcu-
lated  using  the  pandas  library,  and  then  the  interquartile
range  was  established,  followed  by  the  calculation  of
lower and  upper  fences.  The  complete  calculation  is   ex-
pressed as follows: 

Q1 = 4.2144 fm, (6) 

Q3 = 5.3640 fm, (7) 

IQR = Q3−Q1 = 1.1496 fm, (8) 

Lower fence = Q1−1.5IQR = 2.4901 fm, (9)
 

Upper fence = Q3+1.5IQR = 7.0884 fm. (10)

Based  on  this  technique,  17  out  of  1040  nuclei  fell
outside the lower fence. Figure 1 shows the resulting box
plot with outliers highlighted in red, and Table 1 lists the
corresponding nuclides.

The  theoretical  ground  state  properties  were  only
available for the nuclides ranging from oxygen (Z = 8) to
darmstadtium (Z = 110), and 26 nuclides had missing val-
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A = N +Z

ues of theoretical ground state properties. We simply ex-
cluded these  isotopes  from our  study,  which  became   re-
stricted to the range between oxygen (Z = 8) and curium
(Z = 96). The reasons behind exclusion are that 17 nuclei
of them were flagged as outliers, and the remaining 9 iso-
topes  were  also  removed  to  keep  our  data  complete
(without  missing  entries).  Finally,  we ended up  with  the
consolidated  data  table  of  charge  radii  of  1014  isotopes
with  predictors  N,  Z,  theoretical  BE,  S2n  (two-neutron
separation  energy),  and  Sn  (one-neutron separation   en-
ergy). Including mass number (A) would add perfect mul-
ticollinearity  with  neutron  number  and  proton  number
(given that  ); moreover, it would provide no in-
dependent  information.  Our  preliminary tests  showed no
improvement in  predictive  performance.  Thus,  its  exclu-
sion  can  enhance  the  model  stability  and  preserve  the
clarity  for  SHAP-based  feature  importance  analysis.
However,  as  detailed  in  Section  III.B,  Sn  and  S2n  were
subsequently  removed  from  the  feature  set  for  the  final
model. 

B.    Feature selection and model implementation
In the  feature  selection  phase,  a  significantly   light-

weight CatBoost model was trained with iterations = 500,
learning_rate  =  0.1  for  quick  insight  into  the  candidate
features and selection of the most promising ones. A ran-
dom seed of 42 was maintained to ensure the reproducib-
ility of the feature selection process. Rather than training
on a single random test/train split, we k-fold cross-valid-
ated (described in Section III.D) on shuffled 10-folds but
with a  fixed  random seed  of  42.  In  this  exploratory   fea-
ture  score  of  a  lightweight  model  (illustrated  in  Fig.  2),
neutron  number,  BE,  and  proton  number  were  the  most
influential  features,  with  mean  importances  of  36.8%,
28.1%, and 26.7,%. Based on these insights, we dropped
less important features,  i.e., Sn and S2n,  corresponding to
theoretical  Sn  and  S2n,  which  demonstrated  notably  low
mean importances (4.6% and 3.8%, respectively). There-
fore, they were dropped from the final model. Using only
the three  features  mentioned  above,  we  achieved   prom-
ising  predictive  performance.  Consequently,  we  reduced
our feature set to these three features to demonstrate that
CatBoost performs well even with a limited feature set. 

C.    Hyperparameter optimization
The model  was  then  tuned  for  the  best  possible  pre-

dictive performance by searching for  optimal  hyperpara-
meters. Hyperparameters were selected via Optuna’s TPE
sampler.  The  search  was  performed  with  10-fold  cross-
validation  by  targeting  the  minimum  average  RMSE
across all folds. In total, 200 Optuna trials were executed,
and  the  metadata  of  each  trial  was  stored  in  a  relational
database  file,  which  we  queried  later  to  analyze  search
history  using  the  Optuna  ''best-so-far''  plot  (Fig.  3). Hy-
perparameter  interactions  were  studied  using  a  parallel-

 

RcFig. 1.    (color online) Box-plot of   using 1.5×IQR rule.

 

Rc

Table 1.    Nuclides flagged as outliers by Tukey’s 1.5 × IQR
rule on  .

Sr.# A N Z Rc /fm

1 1 0 1 0.8783

2 2 1 1 2.1421

3 3 2 1 1.7591

4 3 1 2 1.9661

5 4 2 2 1.6755

6 6 4 2 2.0660

7 8 6 2 1.9239

8 7 4 3 2.4440

9 8 5 3 2.3390

10 9 6 3 2.2450

11 11 8 3 2.4820

12 10 6 4 2.3612

13 11 7 4 2.4669

14 10 5 5 2.4277

15 11 6 5 2.4060

16 12 6 6 2.4702

17 13 7 6 2.4614
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coordinate plot (Fig. 4). The full search space is summar-
ized in Table 2. 

D.    Model evaluation protocol
To assess the predictive performance and reliability of

our model,  we  rigorously  evaluated  our  model  in  a   sys-
tematic protocol.

Error  Metrics: Three  standard  regression  metrics  for
performance evaluation were used on both 10-fold cross-
validation and unseen hold-out sets: 

MAE =
1
N

N∑
i=1

∣∣yi− ŷi

∣∣, (11)

 

RMSE =

Ã
1
N

N∑
i=1

(yi− ŷi)2, (12)

 

MAPE =
100%

N

N∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣ , (13)

yi ŷi

where N denotes the number of samples (isotopes in our
case),   is the true (experimental) charge radius, and   is
the predicted charge radius by Catboost.
 

●  Mean  absolute  error  (MAE):  It  represents  the
simple  average  absolute  deviation.  Given  that  it  weighs
all values equally, it is robust and relatively less sensitive

to large errors.
 

●  Root  mean  squared  error  (RMSE):  It  is  the  most
commonly  used  metric  in  regression  studies.  It  squares
errors,  computing  averages.  This  penalizes  larger  errors
more heavily, thus making it robust to highlight signific-
ant prediction failures.
 

● Mean  absolute  percentage  error  (MAPE)  :  It   de-
scribes  errors  as  percentages  of  real  values,  allowing
scale-independent comparison  between  different   meas-
urement  ranges.  Moreover,  percentage  error  is  always
more intuitive than all other metrics.
 

Cross-Validation: The whole training dataset (80% of
the total, i.e., 811 nuclides) was segregated into ten equal
samples via random sampling, and then training and test-
ing were performed on these ten samples. Each time, nine
samples were used to train, and the remaining sample was
used  as  part  of  the  validation  set.  This  10-fold  CV  was
used  both  for  hyperparameter  tuning  and  to  report  error
metrics  (with  standard  deviation)  over  all  folds  (see
Table  3  in  Section  (4)  for  fold-wise  RMSE,  MAE,  and
MAPE, plus mean ± SD and hold-out results).

Hold-Out Test: To ensure the robustness and reliabil-
ity, the final hyperparameter-tuned model was tested on a
fully unseen holdout test set of 203 nuclei. The final per-
formance  was  reported  on  the  203-nuclide  test  set.  This
procedure diagnoses overfitting and allows robust assess-
ment of model accuracy for real-world predictions.

Comparative  Benchmarking:  The results  were   com-
pared  against  nine  recently  reported  ML  methods  (RF,

 

Fig.  2.      (color online) Preliminary  feature-importance  bar
plot of selected candidates.

 

Fig.  3.      (color online) Optuna CV-RMSE progress  over  200
trials.  (a)  Full-range  CV-RMSE  history  for  all  trials.  (b)
Zoomed-in view (outliers clipped).

 

Fig. 4.      (color online) Parallel-coordinates plot of the top 50
Optuna  trials,  showing  the  sampled  hyperparameter  values
and their corresponding 10-fold CV-RMSE (color-coded).

 

Table 2.    Search space for CatBoost hyperparameters.

Hyperparameter Type Search Range Scale

iterations integer 1000−3000 linear

learning_rate float 10−4 10−1− log

depth integer 6−12 linear

l2_leaf_reg float 10−3–10 log

random_strength float 0.0−2.0 linear

bagging_temperature float 0.0−1.0 linear

min_data_in_leaf integer 5−20 linear
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QRF, Cubist, XGBoost, GPPK, MARS, SVR, ANN, and
CNN) [31, 54] and the BRUSLIB BSkG3 [55] theoretic-
al  data  library  for  ground  state  properties  based  on
Hartree-Fock-Bogoliubov  (HFB)  with  Skyrme  Energy-
Density Functional.  All  the  models  were  compared   as-
suming experimental measurements as the gold standard.

Interpretability:  The performance  of  CatBoost  is   in-
terpreted using residual analysis, parallel-coordinate plot,
and SHAP summary analysis.
 

●  Residual  Analysis:  Discrepancy plots  and   pre-
dicted-vs-true scatter (Fig. 5) were used for residual ana-
lysis and to highlight any systematic biases.
 

● Hyperparameter  Insights:  The  Optuna  ''best-so-
far''  plot  (Fig.  3)  was  used  to  track  convergence  history,
while  parallel-coordinate  plots  (Fig.  4) revealed  key   in-
sights into hyperparameter interactions.
 

● Feature  Contributions:  SHAP values  were   com-
puted on  the  training  data,  and  a  beeswarm SHAP sum-
mary plot was used to rank feature importances and to in-
terpret our model.
 

This rigorous,  systematic,  and  comprehensive   evalu-
ation  protocol  ensures  that  our  conclusions  about  model
performance and our claim of superiority over other mod-
els are both physically meaningful and statistically sound. 

IV.  RESULTS AND DISCUSSION

In this  section,  we  analyze  the  accuracy  of  our  Cat-
Boost model and its performance on charge radii predic-
tions. First, we present a summary of 10-fold cross-valid-

ation  results  on  the  training  set  by  using  RMSE,  MAE,
and MAPE as performance metrics to examine the over-
all  stability  across  10-fold isotopic  splits.  Then,  we ana-
lyze  the  model's  performance  on  hold-out  unseen  tests
and quantitatively compare the predictive abilities of our
model  with  recently  reported  ML  algorithms.  Then,  we
analyze the outcome of hyperparameter  tuning,  followed
by a study of feature interactions and SHAP analysis. Fi-
nally,  we  use  our  trained  model  to  predict  krypton  and
strontium isotopic  chains  to  compare  our  CatBoost   pre-
dictions with theoretical  models  (BSkG3 and PC-X) and
previously reported ML algorithms. 

A.    10-fold cross-validation and hold-out test
Table  4  summarizes  error  metrics  of  the  CatBoost

model,  while  Table  3  presents  detailed  fold-wise  error
metrics.  The  hold-out  RMSE test  was  0.0102  fm,  which
is notably  low,  demonstrating  a  considerably  high   pre-
dictive  performance  on  unseen  real-world  predictions.
The mean RMSE of 10 folds was 0.0106 fm with a stand-
ard deviation of 0.0030 fm. The fold-wise RMSE ranged
between 0.0070 fm and 0.0182 fm, where the upper value
is  still  lower  than  the  average  of  10-fold  error  for  many
models  (Table  5).  The  10-fold  average  of  MAE  and
MAPE  was  0.0067  fm  with  a  standard  deviation  of
0.0011  fm  and  0.157%  with  a  standard  deviation  of
0.033%, respectively,  demostrating  remarkable   predict-
ive accuracy. In K-fold CV, we found that eight out of 10
folds demonstrated RMSE below 0.012 fm. This consist-
ently low error  suggests  that  the model  is  stable  and not
sensitive  to  variations  in  training-validation  splitting.  In
summary,  consistently  low  error  is  evidence  that  our
model  captures  the  underlying  relations  between  the
charge radius and our features (N, Z, BE).

In  Fig.  5,  we  present  a  two-way  perspective  on  the

 

Table 3.      Fold-wise metrics (RMSE, MAE, MAPE) for 10-
fold CV on the training set, along with mean ± SD and hold-
out test results.

Fold RMSE MAE MAPE (%)

1 0.0079 0.0058 0.135

2 0.0095 0.0053 0.124

3 0.0094 0.0060 0.139

4 0.0182 0.0089 0.228

5 0.0099 0.0065 0.153

6 0.0126 0.0079 0.198

7 0.0070 0.0056 0.127

8 0.0108 0.0068 0.155

9 0.0119 0.0078 0.180

10 0.0091 0.0058 0.131

Mean CV 0.0106 ± 0.0030 0.0067 ± 0.0011 0.157 ± 0.033

Test 0.0102 0.0067 0.154

 

Rc Rc

Rc

Fig. 5.    (color online) (a) Discrepancy Plot of Residuals (Pre-
dicted    - True  )  vs  mass number A.  (b)  Predicted versus
true  .

 

Table 4.    10-fold CV and hold-out test errors.

Metric Mean (CV) SD (CV) Test

RMSE/fm 0.0106 0.0030 0.0102

MAE/fm 0.0067 0.0011 0.0067

MAPE (%) 0.157 0.033 0.154
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generalization performance of the model. In panel (a), re-
siduals  ( )  are  represented  against
atomic mass number A,  and color encoding indicates the
magnitude of residuals. This plot reveals that most of the
points  are  tightly  concentrated  at  the  central  zero  error
line, with very few outliers. The inset quantifying the re-
sidual distribution is added, which shows that 90%, 95%,
and  98%  of  the  absolute  errors  are  below  0.0167  fm,
0.0227 fm, and 0.0288 fm, respectively. This proves that
the errors of the model are consistently low, and very few
predictions  have  errors  beyond  0.03  fm.  Importantly,  no
systematic bias over the whole range of mass numbers is
observed. A few outliers can be seen with relatively high-
er residuals, suggesting the limitation of the model in the
scarce  light-nuclei  region  of  the  nuclear  chart.  Panel  (b)
illustrates  the  correlation  between  predicted  and  true
charge radii, which presents an excellent agreement along
the ideal   line. The inset in panel (b) shows the per-
formance  metrics:  RMSE  =  0.0102  fm,  MAE  =  0.0067
fm, MAPE = 0.154%, and   = 0.9998, which means that
our model can explain approximately 99.98% of the vari-
ance in the nuclear charge radius. 

1.    Comparison with Previous ML Studies

In Table  5,  we  compare  the  10-fold  cross-validation
of our model as well as hold-out test errors with a range
of  alternative  data-driven  algorithms  [31,  54].  Notably,
CatBoost  outperforms  all  other  algorithms  by  delivering
the smallest  10-fold CV with RMSE equal  to 0.0106 fm
and MAE equal  to  0.0067 fm,  as  well  as  the  lowest  test
RMSE  (0.0102  fm)  and  MAE  (0.0067  fm).  The  closest
competitor  of  CatBoost  is  Cubist,  which achieves a  CV-
RMSE of 0.0120 fm with the same test RMSE. XGBoost,
Random Forest,  and Quantile  Random Forest  rank third,
fourth, and fifth in the competition, respectively, with CV
errors  that  exceed  those  of  CatBoost  by  approximately
15%−30%. Gaussian process polynomial kernel (GPPK),

multivariate adaptive  regression  splines  (MARS),   sup-
port vector  regression  (SVR),  and  artificial  neural   net-
works (ANN) exhibit relatively larger errors (CV-RMSE
up to 0.04286 fm and RMSE test up to 0.0564 fm), while
the  CNN  exhibits  a  RMSE  test  of  0.0156  fm.  In  other
words, GPPK,  MARS,  SVR,  and  ANN  are   approxim-
ately three to four times less accurate than CatBoost (see
Table  5).  These  results  establish  the  fact  that  CatBoost
excels  in  nuclear  charge-radii  modeling,  combining  the
lowest  errors  in  both  cross-validation  and  hold-out  test-
ing.  Its  consistently  superior  performance,  especially
against modern algorithms such as Cubist and XGBoost,
demonstrates the  robust  generalization  ability  of   Cat-
Boost. This highlights the potential of CatBoost in nucle-
ar science, particularly in ground state properties and nuc-
lear structure, leading to efficient and more accurate mod-
eling of nuclear structure and even nucleosynthesis. 

B.    Hyperparameter tuning history and interactions
In Fig. 3, we present a full-scale optimization history

(panel a) and a zoomed-in view of the best-so-far traject-
ory (panel b) of Optuna-driven 10-fold CV hyperparamet-
er search over 200 trials. If we discuss the first 50 trials in
panel (a), trial 0 begins at 0.012849 fm, then for explora-
tion  it  spikes  at  trials  1  (0.060102  fm)  and  2  (0.574825
fm),  and then settles  back to  0.012948 fm at  trial  3.  We
observe  a  prominent  improvement  at  trial  5,  where  CV-
RMSE falls  to  0.011198 fm.  In  subsequent  trials  (6-49),
CV-RMSE oscillates  mostly  between  0.010880  fm (trial
38)  and  0.015588  fm  (trial  24),  with  occasional  higher
values  at  trials  10  (0.139897  fm),  14  (0.289320  fm),  35
(0.024157 fm), and 39 (0.035871 fm) as the sampler ini-
tially explores various hyperparameter regions.

Panel  (b),  downscaled  on  the  best-so-far  CV-RMSE
trajectory, which  is  also  present  in  panel  (a),  shows   ex-
treme outliers clipped off to illustrate the evolution of op-
timization  effectively.  The  best-so-far  curve  descends  as

 

Table 5.    Cross-validation and RMSE/MAE (in fm) test for our CatBoost framework compared with other data-driven models on the
charge-radius dataset.

Model CV-RMSE CV MAE Test RMSE Test MAE

CatBoost (this study) 0.0106 0.0067 0.0102 0.0067

Cubist [31] 0.01199 0.00770 0.0102 0.0075

Extreme Gradient Boosting (XGBoost) [31] 0.01533 0.01114 0.0125 0.0093

Random Forest (RF) [31] 0.01746 0.01173 0.0138 0.0102

Quantile Regression Forest (QRF) [31] 0.01791 0.01232 0.0140 0.0104

Gaussian Process Predictive Kernel (GPPK) [31] 0.03715 0.02901 0.0346 0.0273

Multivariate Adaptive Regression Splines (MARS) [31] 0.03462 0.02745 0.0346 0.0277

Support Vector Regression (SVR) [31] 0.04286 0.03300 0.0439 0.0336

Artificial Neural Network (ANN) [31] 0.03992 0.03174 0.0564 0.0494

Convolutional Neural Network (CNN) [54] – – 0.0156 –
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the trials proceed until trial 188, which achieves a minim-
um CV-RMSE of approximately 0.0104 fm. This trial re-
mains the best  through trial  200.  This  evolution of  rapid
early  descent  followed  by  continuous  fine-tuning  con-
firms that our 200-trial search was both efficient and suf-
ficient  to  search  the  optimal  CatBoost  hyperparameters
for the prediction of nuclear charge radii. We observe that
additional  trials  might  slightly  reduce  CV-RMSE,  but
given  that  we  achieved  the  desired  performance,  and  it
stabilized by trial 200, we limited our search to 200 trials
to balance accuracy and computational cost. To study the
interactions  among  the  hyperparameters,  we  filtered  out
the top 50 trials (with the lowest CV-RMSE) and visual-
ized  them  using  the  parallel-coordinates  plot  among  the
CV-RMSE  and  all  the  hyperparameters.  Fig.  4  shows  a
parallel-coordinates plot  of  the 50 Optuna trials  with the
lowest  10-fold  CV-RMSE. Each  line  tracks  the   hyper-
parameter  settings  of  one  trial,  i.e., the  number  of   itera-
tions, learning rate, tree depth,  -leaf regularization, bag-
ging  temperature,  minimum  data  in  leaf,  and  random
strength;  note  that  it  is  color-encoded by  its  correspond-
ing  CV-RMSE.  Interestingly,  all  the  best  configurations
use a single depth of 10 and learning rates between 0.008
and 0.018.  Moreover,  the  iteration  counts  evolve  toward
the  upper  end  of  the  search  range,  and  mostly  spread
between  2300  and  2985.  In  addition,  -  leaf  regulariza-
tion mostly remains below 0.15, the bagging temperature
falls in a moderate range, i.e., between 0.4 and 0.55, and
the  minimum data  in  leaf  is  clustered  on  5,  6,  7,  and  8.
The  random  strength  is  almost  equally  spread  between
0.8 and 1.4. In Table 6, we report the best hyperparamet-
er values obtained from trial 188 in Optuna. Using these
parameters on our processed data, one can reproduce the
CatBoost  model  with  exact  predictions  and  evaluation
metrics.  This  highlights  the  full  reproducibility  of  this
study. 

C.    SHAP analysis
In  Fig.  6, we  present  a  SHapley  Additive   exPlana-

tions (SHAP) beeswarm plot that quantitatively analyzes
how each input feature impacts the predictions of nuclear
charge  radii  by  the  CatBoost  model.  The  features  are
ordered  from  top  to  bottom  based  on  the  mean  SHAP
value. This highlights that PC-X BE is the most influen-
tial  feature,  followed by Z and N.  Each point  in  the  plot
corresponds to an individual nuclide from the training set,
horizontally  positioned  based  on  its  SHAP value,  which
reflects  its  specific  impact  on  the  predicted  radius.  It  is
color-encoded to show the real value or magnitude of the
corresponding  feature  value  from  blue  to  red  (low  to
high). Note that all three features demonstrate both posit-
ive and negative SHAP contributions: nuclei with higher
BEs, proton numbers, or neutron numbers systematically
exhibit  positive  SHAP  values,  corresponding  to  larger
predicted radii. This outcome is obvious and aligned with

R ≈ A1/3,

the  established  nuclear  theory,  where  greater  proton  and
neutron  numbers  naturally  lead  to  larger  nuclear  sizes
owing to  increased  nucleon occupancy in  nuclear  shells.
Likewise, total BE grows with mass number A; and giv-
en  that  the  charge  radius  scales  as    nuclei  with
higher BE usually produce positive SHAP contributions.
Therefore,  in  general  (for  local  chain-level,  see  Section
IV.C.1),  charge  radius  increases  with  an  increase  in  BE.
Conversely,  lower  BE  corresponds  to  a  negative  SHAP
value, reflecting smaller charge radii.

Z ≈ 3×
10−5 N ≈ 1.4×10−3 ≈ −1.5×10−3

Quantitatively (see Table 7), BE achieves the highest
mean absolute SHAP (0.223), followed by Z (0.213) and
N  (0.176),  demonstrating  that  it  drives  the  model  output
more  strongly  on  average.  Z  exhibits  the  largest  SHAP
range  (–0.83  to  +0.39),  showing  that  extreme  atomic
numbers can  both  strongly  increase  and  decrease   pre-
dicted  radii.  The  near-zero  mean  SHAP  values  (

,  ,  BE ) indicate that  posit-
ive  and  negative  effects  balance  each  other  across  the
training set. This implies that the model is well balanced
and  does  not  overly  overestimate  or  underestimate  the
predictions.  In  conclusion,  this  SHAP  analysis  confirms
that  BE is  the most influential  feature overall,  consistent
with  its  fundamental  role  in  nuclear  structure,  followed
by  neutron  and  proton  numbers.  This  highlights  that  the
inclusion of theoretical BE in the dataset as a feature has
helped the model to generalize well over the data and in-
crease prediction accuracy. 

1.    Localized SHAP near N = 50 shell closure

We also explored the localized SHAP for Sr (Z = 38)
and Kr (Z = 36) chains, computed using an interventional

 

Table 6.    Optimal CatBoost hyperparameters.

Hyperparameter Value

iterations 2916

learning_rate 0.00912

depth 10

l2_leaf_reg 0.04002

bagging_temperature 0.48469

min_data_in_leaf 5

random_strength 1.16468

 

Fig. 6.    (color online) Beeswarm plot of SHAP values for the
CatBoost charge-radius model.
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TreeExplainer on a global background sampled from the
whole  training  set.  This  common  baseline  stabilizes  the
sign  and  scale  of  attributions,  and  we  interpret  results
within each chain.

SHAP(N)
N≈50 N < 50

N > 50

BE
BE

SHAP(N) N≈50

The  chain-level  beeswarms  (Fig.  7)  show that  at  the
chain  level,  neutron  number  N  is  the  dominant  feature
(largest  horizontal  spread),  i  is  negligible  inside  each
chain (constant value), and BE is a secondary, often neg-
ative, contributor  in  this  local  neutron  window.  The   de-
pendence  plot  of    on N  (Fig.  8)  shows  a  sharp
minimum  at  .  For  ,  adding  more  neutrons
yields negative contributions (model predicts charge radi-
us below the global expectation), whereas for  , the
contributions evolve  toward  zero,  indicating  a  trend   re-
versal across the shell closure. When   is included as a
feature,  color-coding  shows  that  although    rises  with
N,  the  most  negative    appears  near  ,
demonstrating that  at  magic  number,  the  local  shell   ef-
fects can override the global trends. 

D.    Isotopic chains prediction
Variations  in  the  charge  radii  within  isotopic  chains

encode the deformation, shell effects, and pairing proper-
ties, making isotopic chain patterns a cornerstone of nuc-
lear  structure  investigations.  Reproducing  these  isotopic
chain  trends  with  high  accuracy  can  be  used  as  a  litmus
test to assess any predictive model, ranging from a basic
empirical model to a complex mean field model and even
data-driven  algorithms.  To  further  claim  the  superiority
of our model over others, we focused on krypton (72-96Kr)
and  strontium  (78-100Sr),  which  exhibit  the  shell-closure
“kink” at N = 50 and odd-even staggering due to pairing
effects.  This  comparison  allows  us  to  critically  assess
how  our  model  captures  the  underlying  physics  behind
nuclear charge-radius variations. Moreover, these isotop-
ic  chains  lie  on  or  near  potential  astrophysical  r-process
pathways.  Therefore,  an  accurate  description  of  these
chains  can  improve  the  nucleosynthesis  models  and  our
understanding of  heavy  element  formation  in  the   uni-
verse.

In  Fig.  9(a),  we  present  a  comparison  of  CatBoost
with Cubist,  Random Forest  (RF),  and  Quantile  Regres-
sion Forest (QRF), using experimental data as a standard
benchmark.  The  prediction  data  points  of  CatBoost  not
only  follow  the  overall  trend  but  also  coincide  with  the
experimental  points  (except A  =  75)  across A  =  72−96,

accurately  reproducing  the N  =  50  shell-closure  kink  at
A  =  86.  RF  and  QRF  also  follow  the  overall  trend  but
consistently  overestimate  the  charge-radius  values,  with
several larger deviations. Cubist shows a prominent error
at A  =  78,  and  after  the  shell-closure kink  point,  it   be-
comes  excessively  steep  and overshoots  the  charge-radi-
us  values.  By  contrast,  CatBoost  provides  predictions  of
both  even  and  odd  masses,  and  its  odd-A  predictions
faithfully align with the experimental odd-A charge radii
values.

In  Fig.  9(b),  we  compare  CatBoost  with  extreme
gradient boosting  (XGBoost),  Gaussian  process   predict-
ive  kernel  (GPPK),  and  multivariate  adaptive  regression
splines (MARS).  Similar  to RF and QRF, XGBoost  also
consistently  overpredicts  the  charge  radii  values  and
shows a steep slope after A = 50, producing a larger devi-
ation from the experimental  values.  GPPK underpredicts
with  notably  large  errors  below A  = 80  and  then   over-
smoothes the data points, producing a too flat curve. This
shows  its  inability  to  reproduce  actual  chain  trends  and
capture  odd-even  staggering  and  kinks  at  shell  closure.
MARS, while  closer  to  the  experimental  slope,  underes-

 

Table 7.    SHAP value summary: mean SHAP, mean absolute SHAP, span, and min-max range, ordered by descending mean absolute
impact.

Feature Mean SHAP Mean |SHAP| Span (max–min) Range (min to max)

Binding energy (BE) −0.00145 0.2234 0.9990 −0.5898 +0.4092 to 

Proton number (Z) 0.00003 0.2132 1.2248 −0.8305 +0.3942 to 

Neutron number (N) 0.00142 0.1759 0.9955 −0.5977 +0.3978 to 

 

Fig.  7.      (color online) Localized  SHAP  (beeswarm)  for  Sr
(Z=38) and Kr (Z=36) with a single global background. With-
in each chain, N dominates; Z is near zero (constant locally).

 

SHAP(N) N = 50
N≈50 N < 50

N > 50

Fig. 8.    (color online)   versus N with   marked.
Both chains show a minimum near   (negative for  ,
recovery for  ).
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timates  several  points  between A  =  74  to  82.  Overall,  it
follows the trend and captures the kink at shell closure re-
latively  better  than  tree-based models.  Despite  this,  Cat-
Boost predictions are still superior to those of MARS, as
demonstrated by precise overlapping of experimental data
points and capture of the chain trend.

In Fig. 9(c), support vector regression (SVR) underes-
timates  the  radii  predictions  at  the  low-A  end.  At
A = 82, it shows an almost constant slope, deviating sig-
nificantly from experimental values, demonstrating its in-
ability to capture both trend and shell-closure kink. Like-
wise, the ANN underpredicts the overall trend but accur-
ately predicts in the mid-A range, as shown in the figure.
The CNN produces both even and odd A predictions, ac-
curately captures N = 50 kinks, and slightly overpredicts
radii in the neutron-rich end.

In Fig. 9(d), we compare our model with the theoret-
ical  BSkG3  model  (Skyrme-Hartree-Fock-Bogoliubov).
We extracted  these  data  from  the  Brussels  Nuclear  Lib-
rary for  Astrophysical  Applications  (BRUSLIB).  It   cap-
tures the chain trend effectively and precisely predicts the
odd-even  oscillations  as  well  as  the  kink  at  N  =  50.
However, it underestimates the charge radii values in the
lighter half of the chain until A = 82, which highlights its
limited performance for the neutron-deficient range.

A = 78−100
In  Fig.  10,  we  present  the  same  comparison  for  the

strontium  chain.  In  the  strontium  chain  ( ),

classical tree  models  (Cubist,  RF,  QRF)  show  a   relat-
ively good fit with shell-closure kink but also exhibit loc-
alized deviations at multiple points larger than Catboost's
predictions.  XGBoost  follows the  overall  trend,  captures
the kink at shell closure, but yet overestimates beyond A
= 96, performing worse than CatBoost concerning predic-
tions.  GPPK and MARS underestimate at  both the light-
and heavy-mass ends and produce overly smooth, too-flat
profiles that diverge from experimental values. SVR also
demonstrates  a  too-flat  line  and  misses  the N  =  50  kink
and overall trend pattern, while ANN underestimates both
heavy-mass  and  light-mass end  radii  and  only  fits   relat-
ively well in the mid-range (A = 86 to 97). Among all ap-
proaches (except CatBoost),  CNN exhibits the closest fit
but still deviates from A=95 to 97. The BSkG3 model re-
produces  the  kink  and  accurate  charge  radii  between
A=85 and 95 but underestimates radii below A = 80.

The CatBoost  model  consistently outperforms all  the
models  in  the  prediction  of  both  krypton  and  strontium
chains,  simultaneously  capturing  the  shell-closure  kink
and the subtle odd-even oscillations while accurately fol-
lowing  the  overall  trend.  Although  individual  models
(tree models, boosting, ANN, CNN, and BSkG3) [31, 54,
55] excel in one or two aspects, none is best in all at once.
CatBoost  excels  at  all  these  qualities  simultaneously,
which proves its predictive superiority against these mod-
els and  suggests  that  it  can  be  a  highly  promising   ap-

 

72-96Kr
A = 73
Fig. 9.      (color online) Charge-radius predictions for the   chain. CNN and experimental data cover both even and odd-A (note

  is  unavailable  experimentally).  Therefore, A =  73  data  point  was  dropped.  Other  models  (RF,  QRF,  Cubist,XgBoost,  GPPK,
MARS, SVR, ANN and PC-X) report only even-A values, hence gaps visible at odd-A.
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proach for ground state predictions of properties,  includ-
ing  charge  radii,  error  quantification,  and  refinement  of
nuclear models. 

V.  CONCLUSIONS

In the  present  analysis,  we  reported  the  first   utiliza-
tion of  the  CatBoost  model  for  more  accurate   computa-
tions  of  ground-state  nuclear  charge  radii  across  1014
nuclides.  To  create  a  high-quality  dataset  that  is  larger
than prior  research,  we  combined  two  extensive   experi-
mental  compilations (Angeli  & Marinova;  Li et  al.).  We
also  incorporated  physics-informed  features  from  PC-X
computations.  An  Optuna  driven  hyperparameter  search
was conducted to minimize the average 10-fold cross-val-
idation  RMSE  to  0.0106  fm,  and  (MAE  =  0.0067  fm,
MAPE  =  0.154%)  yielded  a  hold-out  RMSE  test  of

0.0102 fm (MAE = 0.0067 fm, MAPE = 0.154%). SHAP
analysis indicated that BE has an advantageous influence
on the  model's  performance  and appeared  as  the  leading
predictor, which is consistent with nuclear theory. The re-
sidual  analysis  revealed  no  significant  consistent  bias
throughout nearly  entire  atomic mass  range.  When com-
pared to nine established ML methods and the BRUSLIB
library (BSkG3),  CatBoost  exhibited  higher  global   pre-
dictive power and stability. Notably, the proposed model
accurately modeled isotopic properties including the N =
50 shell-closure kink and odd even staggering in Kr and
Sr  chains,  demonstrating  its  excellent  generalizability.
These findings  establish  CatBoost  as  a  powerful,   inter-
pretable  tool  for  nuclear  radius  prediction,  paving  the
path  for  future  enhancements  such  as  enlarged  feature
sets, uncertainty  quantification,  and hybrid  modeling  us-
ing ab initio techniques.
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