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Formation of regular black hole from baryonic matter
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Abstract: We present a family of exact, singularity-free solutions describing the collapse of baryonic matter char-
acterized by a barotropic equation of state whose coefficient a(r,v) varies in both radius and time. By matching these
interior solutions to the Husain exterior metric, we obtain a self-consistent, dynamical spacetime representing a regu-
lar black hole. Although the pressure profile of our models grows with radius and eventually violates the dominant
energy condition beyond a critical surface-necessitating an external junction to ensure a globally well-defined space-
time-the interior solution remains non-singular throughout the collapse. We further analyze the optical properties of
these regular black holes and find that both the photon sphere radius and the corresponding shadow radius increase
monotonically as the local equation of state parameter « is raised. Moreover, the matching interface between the in-
terior and exterior metrics naturally suggests a phase transition in the collapsing fluid, which can postpone the form-
ation of an apparent horizon. Taken together, our results not only highlight novel physical features of horizon forma-
tion in regular collapse models but also identify characteristic shadow signatures that could be tested by future obser-

vations.
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I. INTRODUCTION

Penrose's singularity theorems demonstrate that ap-
parent horizon formation inevitably leads to spacetime
singularities [1, 2], highlighting a fundamental limitation
of general relativity in describing physics at extreme
gravitational scales [3]. The Event Horizon Telescope's
groundbreaking observations of supermassive black holes
in M87 and Sagittarius A* have transformed these theor-
etical objects into observable reality, bringing renewed
urgency to the singularity problem[4—8]. However, the
singularity theorems assume the strong energy condition -
that gravity remains universally attractive. This assump-
tion can be violated by exotic matter states, with dark en-
ergy serving as a cosmic-scale example of repulsive grav-
ity. Such violations could potentially resolve the singular-
ity problem by preventing the formation of infinite dens-
ity states.

The concept that extremely dense matter might trans-
ition into a vacuum state resembling a de Sitter core was
first proposed independently by Gliner [9] and Sakharov
in 1966 [10]. This groundbreaking insight laid the found-
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ation for understanding potential mechanisms to avoid
singularities in black holes. Building on these ideas,
Bardeen made a significant advance in 1968 by construct-
ing the first explicit model of a non-singular black hole
[11]. However, a crucial question remained unresolved
for nearly three decades: what type of matter could phys-
ically support such a regular center? This theoretical
puzzle was finally addressed when Ayon-Beato and Gar-
cia demonstrated that nonlinear electrodynamics could
serve as the source for the Bardeen black hole, providing
a concrete physical mechanism for singularity avoidance
[12, 13].

Nonlinear electrodynamics as a mechanism for regu-
lar black hole formation faces fundamental challenges.
The primary limitation stems from the non-uniqueness of
the theory - there exists a vast family of nonlinear electro-
magnetic theories capable of generating regular centers,
with no clear physical principle to select among them.
This theoretical redundancy suggests that nonlinear elec-
trodynamics may not provide the most fundamental ex-
planation for singularity avoidance [14—18].The exist-
ence of regular centers in black hole solutions has been
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established only under specific conditions: the presence
of magnetic monopoles and the complete absence of elec-
tric charge. This constraint significantly restricts the
physical applicability of these models, particularly given
that magnetic monopoles remain unobserved in nature
[19-21]. Regular black holes supported by nonlinear
electrodynamics rely on charge as a key parameter for
regularization. However, real astrophysical black holes
are generally considered to be electrically neutral. Even if
a regular center were to form, it would likely be transient,
as a singularity would inevitably develop due to the
charged Penrose process [22—24] or through the accre-
tion of matter onto the black hole.

Another fundamental challenge is understanding the
formation of regular black holes. While a regular center
necessitates the presence of exotic matter, regular stars
are composed of ordinary baryonic matter. Consequently,
during gravitational collapse, ordinary matter would have
to undergo a transformation into an exotic form capable
of preventing singularity formation. A recent model [25]
describes the gravitational collapse of dust and radiation,
where dust transitions into radiation—a process that in-
tensifies near the center —potentially facilitating the
formation of a regular core. Additionally, previous stud-
ies have explored the gravitational collapse of dust lead-
ing to the emergence of regular black holes [26]. Numer-
ous studies have been dedicated to investigating the prop-
erties of static and stationary regular black holes [27—71]
(see [72, 73] for a comprehensive review and references
therein). However, comparatively fewer studies have fo-
cused on the problem of their formation [15, 73—78].

In this work, we investigate the gravitational collapse
of baryonic matter characterized by a dynamical equa-
tion of state (EoS) with time- and radius- dependent coef-
ficients. Through rigorous analysis of Einstein's field
equations, we obtain a family of solutions describing reg-
ular black holes spacetimes free from central singularit-
ies. Our solutions provide a unified framework that cap-
tures both the formation mechanism of black holes
through gravitational collapse and their subsequent evolu-
tion through Hawking evaporation.

By establishing an exact matching with metrics de-
scribing collapsing baryonic matter, we construct a com-
prehensive physical model that traces the complete life
cycle of regular black holes from their formation to their
eventual fate. This matching procedure ensures the phys-
ical consistency of our solutions while illuminating the
detailed dynamics of gravitational collapse. Additionally,
we analyze the distinctive shadow characteristics of these
regular black holes, deriving specific observational signa-
tures that could potentially distinguish them from their
singular counterparts in future astronomical observations.

The paper is organized in a systematic progression
through the theoretical framework and its applications. In
Section 2, we establish the mathematical foundations of

regular black holes, presenting the general formalism that
underpins our analysis. This section develops the neces-
sary field equations and derives novel solutions to Ein-
stein's equations that characterize regular black holes with
well-defined properties. Section 3 advances the analysis
by demonstrating the precise matching conditions
between our derived solutions and the Hussain metric, en-
suring mathematical consistency and physical relevance.
Section 4 explores the observable implications of these
solutions through a detailed investigation of black hole
shadow characteristics. The final two sections synthesize
our findings: Section 5 presents a comprehensive discus-
sion of the theoretical results and their physical implica-
tions, while Section 6 concludes with broader insights in-
to the significance of our work and suggests promising
directions for future research.

We use a geometrized system of units in which
¢ =8nG = 1. Also, we adopt the signature — + ++.

II. THEORETICAL FRAMEWORK

In this section, we briefly examine the conditions re-
quired for the formation of a regular black hole. We de-
rive a general formula and identify the criteria under
which a regular black hole can emerge from gravitational
collapse, considering an arbitrary EoS. To begin, we ana-
lyze a metric that represents the most general form of a
spherically symmetric dynamical black hole, expressed
as:

M
ds? = — ( 1- 2M.r) ”) dv? + 2edvdr + rrdQ?. )]
r

Here, M(v,r) is the mass function, which depends on both
the advanced time v and the radial coordinate r. This
function characterizes the dynamical nature of the black
hole, allowing for variations in mass due to processes
such as accretion or radiation. The parameter £ = £1 in-
dicates the direction of the radiation flow, where & = +1
corresponds to ingoing radiation and & = —1 corresponds
to outgoing radiation. The coordinate v represents the ad-
vanced time in Eddington-Finkelstein coordinates, which
are particularly useful for describing causal structures,
such as light rays near the horizon. The angular part of
the metric is given by dQ> =d6@” +sin’0dy?, which de-
scribes the geometry of a unit two-sphere. This metric
setup is essential for studying regular black holes, as it
provides a general framework to analyze the radial and
time-dependent evolution of the system. Its generality
makes it applicable to a wide range of scenarios, includ-
ing gravitational collapse, black hole evaporation, and the
effects of exotic matter fields [79—88]. The metric in Eq.
(1) is supported by an energy-momentum tensor of the
form:
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Ty = (p+ P)(Liny + lny) + Pga + plily, (2)
where p and P denote the energy density and pressure of
the matter, respectively. The parameter 1= &% repres-
ents the total energy flux. The vectors /' and n' are null
vectors with the following properties:

li=5?,
1 2M

n == (1 ——)6?—86},
2 r

lil,' = nini = O, lil’li =-1.

3)

The energy density p and pressure P for this spacetime
are given as follows:

oM
p_ r2 ’

M
P=- (4)

The system of equations (4) consists of two differential
equations and three unknown functions: p(v,r), P(v,r),
and M(v,r). Therefore, an additional equation must be in-
troduced to close the system, providing three equations
for the three unknown functions. A common way to close
the Einstein field equations in a gravitational collapse
scenario is to impose an EoS relating the pressure P to
the energy density p as P = P(p). One of the simplest and
most widely used choices is the barotropic EoS as P = kp,
where k is a constant parameter. In this-linear relation, the
value of k determines the effective type of matter: For ex-
ample: k = 1: Stiff fluid, for which P = p. This EoS is of-
ten invoked in contexts of extremely high density, such as
certain early-universe models or in the study of neutron-
star cores. For k= {: Radiation, corresponding to a re-
lativistic gas satisfying P = %p. This is the appropriate
EoS during a radiation-dominated era. For: k= 0: Dust,
i.e., pressureless matter with P =0. For k =-1: Vacuum
energy (cosmological constant), for which P=—-p and
p = const. In a strictly dynamical collapse scenario, a true
“vacuum fluid” of this form would correspond to adding
a fixed cosmological term rather than a collapsing per-
fect fluid. When one studies self-similar or other classes
of collapse solutions with P = kp, a well-known family of
metrics is due to Husain ef al. (often referred to as “Hu-
sain—Martinez—Nufiez” or simply “Husain”) [89, 90]. For
0 <k <1, most Husain-type solutions lead to the forma-
tion of a covered (i.e., black-hole) singularity. However,
if k is sufficiently small (e.g. 0 <k <0.01 in certain self-
similar ansdtze), it has been shown that a locally naked
singularity can form, thereby providing explicit counter-
examples to strong cosmic censorship in these models

[91, 92]. Consequently, the end state depends sensitively
on k and on the detailed assumptions of the collapse an-
satz. In realistic collapse scenarios, the microphysics of
the fluid may change as density and temperature evolve.
Thus one often promotes the constant k to a dynamical
field k(r,v) depending on the comoving radius r and an
advanced (or retarded) time coordinate v. The general-
ized barotropic EoS then takes the form

P =k(r,v)p, (5)

which accommodates. phase transitions (e.g., from radi-
ation-dominated - to! matter-dominated behavior) or
changes in the degrees of freedom (e.g., hadronization of
a quark-gluon plasma). This generalized EoS allows the
ratio P/p to vary during different stages of collapse,
thereby capturing the evolving properties of the col-
lapsing matter.

This generalization allows the system to account for
transitions between different phases of matter and
provides a more realistic description of gravitational col-
lapse and the potential formation of regular black holes.
From Eq. (4) and energy-momentum conservation
Ti =0, the following relationship between pressure and
energy density can be obtained:

r ’
P=-p-2p. (6)

or

p'r==-2P-2p (7)

denotes the radial derivative of the energy density. Sub-
stituting this expression into the EoS P = kp, one obtains:

p'r=—-2+2k)p. 8)
The solution of this differential equation is given by:
p=Re )R ©)

I

here p, is a positive integration constant. This solution
represents the energy density p as a function of the radial
coordinate r, and its behavior depends on the form of
k = k(v,r). In general, however, the equation (9) cannot be
integrated analytically. To proceed with the analysis, it is
necessary to specify the explicit form of the EoS paramet-
er k(v,r). To ensure a regular solution at the center
(r — 0), the parameter k is expanded as a power series
around r = 0:
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(10)

k= ik,—ri.
i=0

where the coefficients k;(v) are functions of the advanced
time v and are defined as:

1 'k
k(v)= —— 11
) Hax| (11)
Then (9) can be written as
_ Po o5 gk
= e DI (12)

To ensure a regular center, it is necessary to demand that
p(0) = py = const., meaning the energy density must re-
main finite at the center. This requirement imposes the
following constraint on the parameter k;:

ko <—1. (13)

If ko =-1, the center corresponds to a vacuum medium
with a de Sitter core. On the other hand, if ky < —1, the
energy density vanishes, and the central region trans-
itions to a Minkowski spacetime, indicating an absence of
matter. Using Eq. (9), the mass function can be derived in
the following general form:

M@, r) = % / F 2023 KT M), (14)

where M,(v) is an integration function depending on the
advanced time v. This function represents the dynamic
contribution to the mass function from the evolving sys-
tem. One critical property of a regular center is that the
mass function must vanish at the center, i.e., M(v,0) =0.
To satisfy this condition and eliminate M,(v), it must hold
that:

1im 22

r—0

r—2k()e’22;l=1k"r7‘l = —M()(V) (15)

implying no additional contributions to the mass at the
center. This ensures the consistency of the regular center
condition and provides a physically meaningful mass
function.

A. Model 1: k() = —1,k3 = k3(V)

The integral in the formula (14) can be simplified
only for a specific set of parameters k;. In most cases, the
integration leads to expressions involving gamma func-
tions or other special functions, making explicit analysis

challenging. As a result, we were able to identify only
two particular solutions that can be integrated in closed
form without invoking gamma functions, which are
presented in this work. Among these cases, we are partic-
ularly interested in regular solutions with a de Sitter core
at the center. Such solutions correspond to cases where
the parameter choices allow for a finite energy density
and a well-defined spacetime structure at the core. Not-
ably, only a few parameter configurations result in a
tractable form for the mass function. In this study, we fo-
cus on the simplest case where k; =k, =0. This choice
eliminates the higher-order terms in the expansion of
k(v,r), significantly simplifying the calculation. By ap-
plying the method. described in the previous section, the
mass function can be expressed as:

M(v,r) =

PO(V)/e_sz(‘:’)d"dr+Mo(V)’ (16)

2

where po(v) is the central energy density as a function of
advanced time v, and My(v) is an additional integration
function of v, representing the overall black hole mass.
The term My(v) is typically determined by boundary con-
ditions or asymptotic properties of the black hole. This
formulation emphasizes the role of k(v,r) in defining the
structure of the mass function and ensures that the solu-
tion remains regular at the center. The case k; =k, =0 is
particularly relevant as it corresponds to a de Sitter core,
which is a common feature in regular black hole models,
providing a smooth and non-singular interior spacetime.
After calculating the Kretschmann scalar for the general-
ized Vaidya spacetime, it is expressed as:

4
K=—[4(3M*—4rMM’ +2r°M")
r

+4rP M (M — M) +4r* M, (17
. . , oM
where M = M(v,r) is the mass function, M’ = o and
M
M= 572 - To ensure regularity at the center (r — 0), we

require that the Kretschmann scalar remains finite:

limK # oo.

r—0 (18)
This condition ensures that there are no curvature singu-
larities at the center. Substituting the series expansion for
k(v,r)) into the mass function M(v,r) (from Eq. (16)) and
the Kretschmann scalar K, we find that the coefficients
k:(v) must satisfy certain constraints to ensure the finite-
ness of K as r — 0. Specifically, the following condition
must hold:
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My(v) = —1in3p°T(v)/e*2f@d’dr, (19)

where M,(v) is the integration function related to the
black hole mass. This constraint ensures that the central
mass contribution is well-defined and eliminates diver-
gences in the Kretschmann scalar at the center. The con-
dition ties the behavior of the coefficients k;(v) in the ex-
pansion of k(v,r) to the structure of the spacetime,
providing a consistent framework for describing regular
black holes. We begin by assuming the following specif-
ic parameter choices:

ko(v) = -1,
ky(v) = ks(v),

k() = ka(v) = 0. (20)

With these assumptions, the mass function takes the
form:

3.00(V) efé/q(v)ﬁ )

M(v,r) = Mo(v) - ()

(21)

Now we consider different cases of My(v):

e Case 1: My(v) = 2223

In this case, the spacetime described by the metric (1)
with the mass function (21) represents a regular black
hole, which is a dynamical generalization of the well-
known Dymnikova regular black ~hole [93]. The
Kretschmann scalar for this spacetime at r=0 is given
by:

. _ 32 » 2
1r1_r)r01K = EMQ(V) ks (v)~. (22)

This ensures that the spacetime curvature at the center re-
mains finite, consistent with the requirements of a regu-
lar black hole. For this model, the energy density p and
pressure P are expressed as:

2 i ;
p= gMo(v)k3(v)e-§’<3<"’”,
ka(")" 3 _

)

These expressions reveal the distribution of matter and its
dynamics in the spacetime. The exponential term ensures
that both the energy density and pressure decay smoothly
away from the center, contributing to the regularity of the
black hole. The weak and dominant energy conditions
impose the following constraints on the parameters of the

2 1 3
P= 5Mo(v)k3(v)e-6k3<v>" ( (23)

solution:

Po(v) >0, (24)

<(12)§
r —_— .
<(%

This solution exhibits a de Sitter core at the center
(r — 0) and approaches the Schwarzschild limit at infin-
ity (r — o). For specific choices of the functions:

(25)

ks(v) = (u=v)?,

2
po(v) = g/UQ Vv, (26)

we can visualize the behavior of the spacetime by plot-
M®,r)

ting the function F(v,r)=1- Pa 0, which repres-
ents the horizon structure. In Figure 1, F(v,r) =0 is plot-
ted as v(r), with parameters 4 =4 and 2 = 1. Then we also

plot the graph of M =0 in Figure 2.

e Case 2: Mo(v) # ;ngi

In this case, the spacetime described by the metric (1)
with the mass function (21) corresponds to a singular
black hole. The Kretschmann scalar diverges as r — 0, in-
dicating the presence of a curvature singularity at the cen-
ter. It is Igo)ssible that during the evolution, the function

c1\v

M= 55m)

of v, such as vy,v,,v3,.... This implies that the system os-
cillates between states with regular and singular central
regions at discrete instants. Such behavior was first repor-
ted in [94]. At first glance, this behavior at the center ap-
pears absurd, as the singularity alternately forms and dis-
appears. While the disappearance of the singularity is un-
doubtedly linked to the violation of null energy condi-
tions, such violations typically occur during processes
like the accretion of charged particles or Hawking radi-
ation, which do not explain the observed oscillatory beha-
vior of the singularity. The resolution to this paradox lies
in the fact that the singularity in this model is a gravita-
tionally weak. This means that infalling objects do not
experience its presence and are not disrupted until they
reach the exact center. Consequently, the presence or ab-
sence of a gravitationally weak singularity only becomes
significant at the very center, with no observable effects
in its immediate vicinity. The situation would be drastic-
ally different if the singularity were gravitationally
strong. In that case, any object approaching it would be
torn apart into a thin string due to extreme tidal forces. If
such a singularity were to oscillate, it would lead to ab-
surd consequences: at one moment, objects would be des-

—c2(v) becomes zero only at specific values
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v(r)

Fig. 1.  (color online) Setting F(v,r)=0 with u=4 and 1=1
defines the loci of the inner and outer apparent horizons, as
shown in the above figure. This configuration models a black
hole that forms and then evaporates. Initially, the outer appar-
ent horizon is spacelike and grows in radius, while the inner
apparent horizon is timelike and shrinks. At the radial loca-
tion where the energy conditions are first violated, the outer
horizon attains its maximum extent and the inner horizon
reaches its minimum. Beyond this boundary, the outer hori-
zon becomes timelike and begins to shrink, whereas the inner
horizon becomes spacelike and starts to expand. At a critical
value of v, the two horizons coincide forming an extremal
configuration and then vanish entirely, leaving a horizonless,
regular central region. Shortly thereafter, both horizons re-
appear in a regime where the energy conditions are every-
where satisfied. In this later phase, matter accretion domin-
ates: the outer horizon again expands while the inner horizon
contracts, signifying continued growth of the black hole.

troyed, and at another, they would remain intact.
However, as noted earlier, in the case of a gravitationally
weak singularity, these oscillations have no measurable
impact on infalling objects, which is precisely the scen-
ario we are considering here. In Figure 1, the apparent
horizon behavior is illustrated. The first model (Eq. (21))
violates the null energy condition (NEC) near the center.
As shown in [95], the outer apparent horizon is space-
like, while the inner apparent horizon is timelike if the
NEC horizon is located within the inner horizon. The out-
er horizon grows, while the inner horizon shrinks. At the
minimum of the inner horizon, it meets the NEC horizon
and becomes spacelike, resulting in two growing hori-
zons. At the maximum of the outer horizon, it becomes
null, meets the NEC horizon, and transitions to being
timelike. Eventually, the two horizons merge and disap-
pear, leaving behind a horizonless object with a regular
center for a brief period. In Figure 2, the evolution of
NEC horizons is depicted. The NEC horizon meets the
inner horizon at its minimum and the outer horizon at its

v(r)

Fig. 2. (color online) Same as Figure 1, but with

M= e 0 shown by the orange curve. In this case, the min-

imum of the outer apparent horizon and the maximum of the
inner apparent horizon coincide exactly with the NEC hori-
Zon.

maximum.

B. Model 2: ko = —1,k, = k;(v)

In this section, we consider a model where the para-
meters satisfy:

ko(v) = -1,
ki(v) = ki (v),

k3 (v) = ka(v) = 0. 27)

Under these conditions, the mass function takes the form:

_ oo(v)
8k3(v)

+ My(v),

M@,r) = e RO 4 27k, (v) + 277K (V)]

(28)

where k;(v) is an arbitrary function of time, and it must
satisfy k;(v) # 0. This solution generalizes the black hole
solution obtained in [94]. Similar to the previous model,
we analyze different cases of this spacetime.

Po(v)
8k1(v)

1. Regular Black Hole Case: Mo(v) =

In this case, the metric (1) with the mass function (28)

describes a dynamical regular black hole. The
Kretschmann scalar at the center r = 0 is given by:
512
lim K = Tk?(v)Mg(v). (29)
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This ensures that the spacetime curvature remains finite
at the core, satisfying the regularity condition. The en-
ergy density p and pressure P take the following forms:

p = 8My()ki (e 10,

P = 8My(Wk} (v)e 1V (=1 + k; (v)r). (30)

These expressions demonstrate that the energy density
and pressure decrease smoothly away from the center,
contributing to the regular structure of the black hole. The
weak and dominant energy conditions require the follow-
ing constraints:

po(v) >0, (€1Y
2
r< o) (32)

These conditions ensure that the matter distribution satis-
fies physically reasonable energy bounds. At r — 0, the
solution exhibits a de Sitter core, preventing the forma-
tion of a singularity. At r — oo, the solution smoothly
transitions to the Schwarzschild limit, ensuring the expec-
ted asymptotic flatness. This model presents an alternat-
ive scenario for regular black holes, where the choice of
ki(v) determines the dynamical evolution of the solution.
Under the following choices for the arbitrary functions:

ki (v) = (u—v)’,
p1(v) = 43 (), (33)
we can, similar to Model 1, plot the function:
Fory=1- MO0 g (34)
r

In Figure 3, the apparent horizon behavior is illustrated.
In Figure 4, the evolution of NEC horizons is depicted.

We have considered two models of gravitational col-
lapse leading to the formation of a regular black hole. It is
important to note that other combinations of the coeftfi-
cients K;(v) can also be considered. However, further ana-
lysis would be significantly complicated due to the ap-
pearance of gamma functions upon integrating the Ein-
stein equations. The two models presented here are the
simplest from an analytical perspective.

III. MATCHING THE INTERIOR AND EXTERI-
OR SOLUTIONS

While the solutions (21) and (28) describe a regular

Fig. 3. ' (color online) F(v,r)=0 for p=4, 1=1. The behavi-
or ofapparent horizons conside with apparent horizons in pre-
vious model (see 1 for detailed discussion).

5[

Fig. 4. (color online) Same graph as Figure 3, but with

M=0.

center, they are generally valid only in the vicinity of the
center. Even though these solutions correspond to known
models [93, 94], a more realistic approach would be to
match these solutions to an exterior spacetime represent-
ing collapsing matter with a physically realistic EoS. The
simplest dynamical exterior solution is the Vaidya metric,
but matching in this case is only possible if the energy
density in (21) and (28) vanishes at some radius, which is
not observed in our solutions. Instead, we consider a gen-
eralized Vaidya metric, namely the Husain solution,
which corresponds to the barotropic EoS:

P=ap. (35)

The mass function is given by [90, 96]:
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M(v,r) = Ml(v)+p1r1‘2"‘. (36)

The curvature invariants Ricci scalar (R), squared Ricci
scalar (§'), and Kretschmann scalar (K) can be expressed
in terms of the mass function M(v,r), energy density
p(v,r), and pressure P(v,r) as:

R=2p-2P,

S =2p* +2P%,

48M*  16M
K= -

—= (2p— P) +8p* —8pP +4P>.

(37)

73

These expressions indicate that for a smooth matching of
all curvature invariants, it is sufficient to match the mass
function M(v,r), the energy density p(v,r), and the pres-
sure P(v,r) at the matching hypersurface o.

A. Dymnikova Solution

Let us first consider the solution (21), which corres-
ponds to the dynamical Dymnikova black hole solution.
Since we are focusing on regular black hole solutions, we
must ensure the matching conditions hold. From the ex-
pressions for energy density and pressure (23), we ob-
serve that, in terms of k, and k3, the EoS takes the form:

(38)

This EoS behaves like a barotropic EoS P = ap at a spe-
cific matching radius r = r;,, where:

3 6(a+1)
r, = o

(39)

We will use this matching radius r, to match the interior
Dymnikova solution with the exterior Husain solution. In
the Husain solution, the energy density is given by:

p1(v)

pa+2”

PHusain = 2(1 - 2&) (40)

To ensure a smooth transition between the two solutions
at the hypersurface r=r,, we must match the energy
densities and pressures at this radius. This approach
provides a physically consistent model where the regular
interior solution transitions smoothly into an exterior gen-
eralized Vaidya spacetime, allowing for a realistic de-
scription of a collapsing regular black hole. The energy
density from the Husain solution (40) matches the energy
density of the Dymnikova-like solution (23) if:

_ 2atl)
3

P9 = 0 @1)

(1-2a)'"

Similarly, the mass function in (21) transitions smoothly
to the Husain mass function (36) at r = r,, if:

3 _2(n3+1) )
e .
1-2a

Thus, the metric tensor, energy density, and pressure of
solutions (21) and (36) are equal at r=r, if conditions
(41) and (42) hold. This confirms that the Husain solu-
tion can describe the gravitational collapse leading to a
regular black hole formation.

M ()|

(42)

r=ry

= Mo(v) (1 -

B. Black hole with Hagedorn fluid

We now apply the same method to match the regular
black hole solution (28) with the Husain solution (36).
From the energy density (30), the EoS follows:

P=(kr-1)p. (43)

This behaves like a barotropic EoS P = ap at the match-
ing radius r = r,, where:

a+1
1

(44)

At this radius, the energy density (30) transforms into the
Husain energy density (40) if:

AMyk3
_ 0 |r2rt+26—2((1+l).

- 45
1-2a? 43)

P1

Additionally, the mass function in (28) transitions to the
Husain solution (36) at r = r;, if the condition:

9+6a +5a* +2a° e‘z("“))

M, =M, (1-
! °< 1-2a

(46)

is satisfied. Ensuring these conditions, the dynamical col-
lapse of the Husain solution leads to the formation of a
regular black hole with a smooth transition from the in-
terior to the exterior spacetime. The solution (28) is suc-
cessfully matched with the Husain solution (36) at the hy-
persurface r=r, (as defined in (44)) if the conditions
(45) and (46) hold. It is important to note that, in this
case, matching solution (28) with the standard Vaidya
spacetime is not possible because, for any r > 0, the en-
ergy density of the Husain solution remains nonzero:

PHusain * 0. (47)
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If one opts to use the Vaidya spacetime as an exterior
solution for these metrics, it would be necessary to intro-
duce a thin matter layer at the matching hypersurface. In
this case: The interior solutions (21) or (28) must be
matched with a Vaidya spacetime. A thin matter layer
would be required at the matching interface to account for
the discontinuity in the energy density. However, per-
forming such a matching lies beyond the scope of this pa-
per, so we do not explore this possibility further in the
current study.

IV. SHADOW PROPERTIES

When examining observational signatures of our col-
lapse model, one should analyze the shadow properties of
the exterior Husain solution. In principle, the dynamical
shadow of the Husain metric (Eq. (36)) could be com-
puted using the method developed in Ref. [97]. However,
that approach is valid only for slowly evolving space-
times and cannot be applied during rapid gravitational
collapse. For this reason, we instead calculate the black -
hole shadow of the static Husain solution, which de-
scribes the fully formed black hole. This metric can be
written in the form:

-1
ds* = — (1—2—M+%)dt2+ (1—2—M+%) ar’
r re r re

+ P2, (48)
Here, M denotes the black hole mass, and J is a paramet-
er encoding the properties of the baryonic matter (in the
special case a =1, one has J = Q% so-that the metric re-
duces to the Reissner—Nordstrom solution). The constant
a specifies the barotropic equation of state P=ap. To
ensure that the weak, strong, and dominant energy condi-
tions are all satisfied throughout the spacetime, the fol-
lowing inequalities must hold:

1
e[-1,1 —
a€l ,],a¢2,

JsM,J>Oifa>%. (49)
The shadow radius is calculated as follows [57]
r g
Ry = —=& (50)

vV f(rph)’

where the photon sphere radius is calculated by solving
this relation for r,;:

f/(rph)rph = 2f("‘ph) (51)
It should be noted that, in our analysis, both the

photon sphere radius and the black hole shadow are de-
termined by considering only null geodesics confined to
the equatorial plane, thereby neglecting any off plane
light deflection.

From Table 1 and Figures 5, 6, we observe that as the
parameter a increases, both the photon sphere radius ry,
and the shadow radius Ry, increase monotonically. As «a
grows, the most substantial changes occur for moderate
values 1 < a <3, after which both radii begin to saturate
around r,, ~3.0 and Ry, =5.20. Physically, a larger
photon sphere and shadow radius imply enhanced light
bending, allowing photons to orbit at larger radii and
causing a more extended dark region, or "silhouette,’’ as
seen by a distant observer. The near-constant values for
a >4 suggest an asymptotic regime in which further in-
creases in a have diminishing effects on the geometry,
pointing to a limiting configuration for the underlying
spacetime model.

In our collapse model, the non-singular interior solu-
tion is only realized within a finite central region of the
spacetime after the fluid has undergone the phase trans-
ition. Outside this region, one must match continuously
onto the Husain metric to obtain a globally well-defined,
dynamical black hole. Since the photon sphere and shad-
ow observables are determined by null geodesics that
travel through regions well outside the central core, they
are effectively governed by the exterior Husain geometry
in Eq. 48. Consequently, for the purpose of computing
the shadow radius and photon sphere radius, we employ
only the Husain solution.

V. DISCUSSIONS

In this section, we analyze the obtained solutions and
the constraints they must satisfy. Our discussion primar-
ily focuses on the solution:

M(,r) = Mo() (1-73507), (52)

though the conclusions drawn here also apply to the
second model. One of the key observations is that when

Table 1. Photon sphere radius (rp,) and shadow radius (r)
for different values of o with constant M =1 and J =0.5.

a Tph Rsn

1 2.61803 4.70960

2 2.94104 5.14587

3 2.99165 5.19076

4 2.99885 5.19556

5 2.99985 5.19609

6 2.99998 5.19615
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Fig. 5.
photon sphere radius versus a.

(color online) Figure shows the shadow radius and

Accretion Disk (rs, =4.71)

Accretion Disk (rs, =5.20)

1 2 3 a 5 1 2 3 4 5 6

Fig. 6. (color online) Figure shows the spherical accetion
disk around black hole for different shadow radiuses.

the function k3(v) increases, the energy conditions re-
main valid, and the black hole possesses two apparent ho-
rizons: Outer apparent horizon: Spacelike and increasing.
Inner apparent horizon: Timelike and shrinking. This be-
havior follows from the condition:

M = M() - Moe_k3’3 +k3M073€_k3r3 > 0. (53)

However, the dynamics change dramatically when k;(v)
starts decreasing. In this case: The energy conditions are
violated, and the structure of the apparent horizons
changes when the NEC horizon crosses one of the appar-
ent horizons. The region of energy condition violation ex-
pands and extends to infinity as k;(v) — 0. At this point,
the apparent horizons merge and disappear. However, as
shown in the Figures 7 and 8 they reappear later, with the
outer apparent horizon growing and the inner horizon
shrinking. This happens because when the horizons re-
appear, the energy conditions are no longer violated. As
an example, we consider a mass function of the form:

M, r) = My(v) — Mo(v)e™" 5" (54)

This type of function illustrates the periodic nature of ho-
rizon formation and disappearance.

o
T
1

Fig. 7.
apparent horizons under the validity of energy conditions.

(color online) The plot demonstrates the behavior of

Here, My(v) = K3(v) = v. In this case, the energy conditions are
satisfied throughout the entire spacetime: the outer horizon is
a spacelike hypersurface and expanding, while the inner hori-
zon is a timelike hypersurface and contracting.

1af 1
6l ]

J j

(color online) This plot illustrates the behavior of ho-

B

[

Fig. 8.
rizons for the mass function given by (54), where My(v)=v
and K3(v) =sin’v. Since the function K3(v) vanishes at mul-
tiple points, the energy conditions are violated near the center,
and this region expands over time.

The evolution of the apparent horizons is illustrated in
Figure 7 for the regime in which the energy conditions re-
main satisfied. Initially, the inner apparent horizon
shrinks until it reaches a minimum and becomes null; it
then transitions to a spacelike hypersurface and begins to
expand. This change signals that the inner horizon has
entered a region where the energy conditions are violated.
Meanwhile, the outer horizon remains spacelike as it
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grows. Once the outer horizon attains its maximum and
becomes null, it transitions to a timelike hypersurface and
begins to contract. This contraction indicates that the out-
er horizon now lies in a region of violated energy condi-
tions, signaling the onset of black hole evaporation. As a
consequence, the two horizons approach one another and
eventually merge, forming an extremal configuration be-
fore disappearing altogether. The subsequent plots in Fig-
ure 8 display qualitatively similar dynamics. We emphas-
ize that one should focus on horizon behavior only up to
the first horizontal line (i.e., until the first zero of the sine
function in k3;(v)). Beyond that point, the plots reveal an
infinite sequence of apparent horizon formations and dis-
appearances-each time k;(v) vanishes. The vertical lines
in Figures 7 and 8 mark these zeros of k;(v), where the
black hole effectively “disappears.” However, there is no
physically plausible mechanism that could drive a con-
tinuous cycle of black hole formation and disappearance.
Specifically, when k;(v) = 0, the spacetime undergoes a
discontinuous transition: the region that previously viol-
ated the energy conditions suddenly becomes one in
which all energy conditions hold. Such a jump-of the
second kind-is unphysical. Therefore, the evolution must
be truncated at the first moment when k3(v) = 0. Any fur-
ther continuation beyond this point would lead to unex-
plainable and unphysical behavior. This requirement im-
poses a fundamental constraint on our model, ensuring
that the collapse remains physically meaningful.
Moreover, recall that the interior solutions given by Egs.
(21) and (28) were obtained via a near-center expansion
of k(v,r). As a result, they are only valid up to the radius
where the pressure begins to increase with r, which inev-
itably leads to a violation of the dominant energy condi-
tion (DEC). This violation occurs at a critical radius 7;,.
tion» D€yond which the model can not be trusted. In a real-
istic gravitational collapse of baryonic matter, the energy
density and temperature rise sharply; at sufficiently high
temperatures (e.g. T ~ 10K, the grand unification
scale), the description in terms of ordinary baryonic mat-
ter breaks down. One must then consider the collapse of a
different, high-energy matter phase. The transition radius
r, at which the phase change occurs depends both on the
initial baryonic properties (parametrized by «) and on the
parameters k3 or k; that describe the post-transition phase
in models (21) and (28), respectively. For massive stars
collapsing without a supernova explosion, r, can be as
large as ~ 1 km when « = 1 (the Bonnor-Vaidya limit). As
a concrete example, consider the star R136al in the
Tarantula Nebula of the Large Magellanic Cloud, with
Mgis6a1 = 315 M, and Rgise. ~ 35R,. These estimates jus-
tify the necessity of the matching procedure since at radii
on the order of kilometers (well outside the near-center
expansion’s domain of validity), the matter has already
undergone a phase transition and the DEC is violated.
Accordingly, one must join the interior solution to an ap-

propriate exterior geometry at r =r, to construct a glob-
ally consistent collapse model.

VI. CONCLUSIONS

The solutions given by Egs. (21) and (28) yield a reg-
ular black hole, thereby illustrating that singularity form-
ation can be avoided. However, they exhibit a crucial
drawback: the pressure grows with increasing radial co-
ordinate r. This anomalous pressure profile gives rise to
two major problems. First, it is physically implausible for
the pressure to increase toward the outer layers of a col-
lapsing star. Second, at'a critical radius r = ryiglation, the
Dominant Energy Condition (DEC) is violated. The DEC
violation indicates that these interior solutions must be
matched to-an appropriate exterior spacetime beyond
Fviolaion (t0 Maintain a physically consistent global geo-
metry.

Furthermore, the interior solutions given by Eqgs. (21)
and (28) were derived via a power-series expansion of the
EoS-parameter k(v,r) around r=0. As a consequence,
these expressions are valid only in the immediate vicinity
of the regular center and cannot be extended to the entire
spacetime. To obtain a complete, globally well-defined
dynamical black hole model, one must therefore match
the interior solution to a suitable exterior geometry. The
simplest candidate for a radiating, spherically symmetric
exterior is the Vaidya metric. However, demanding a
smooth junction between Eq. (21) and Eq.(28) and the
Vaidya spacetime generally requires inserting a thin shell
of additional matter at the matching surface. This extra
layer complicates the construction and makes the overall
model appear more contrived.

A more natural physical interpretation is that the solu-
tions in Egs. (21) and (28) describe the response of ordin-
ary baryonic matter under critical compression during
collapse. In this view, the exterior region must itself satis-
fy a barotropic EoS P = ap, which is precisely the Hu-
sain solution [90]. By imposing standard junction condi-
tions at some matching radius 7 = 7, W€ smoothly join
our near-center expansions Eq. (21) and Eq. (28) to the
Husain metric. This construction yields a single, globally
well-defined dynamical black hole spacetime in which
the collapse of baryonic matter naturally produces a regu-
lar central core.

To explore potential observational signatures, we
computed the black hole shadow, restricting attention to
the dynamical Husain solution rather than its static limit.
Nevertheless, it remains an open question whether every
collapse leads to a regular center or if a singularity can
still form. From Table 1 and Figures 5 and 6, we find
that, as the EoS parameter « increases, both the photon
sphere radius 7y, and the shadow radius Ry, grow mono-
tonically. Although these enlarged shadows are compat-
ible with either regular or singular end states, the match-
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ing procedure between the interior and exterior solutions
indicates that a phase transition occurs during collapse.
Because this transition takes place as the apparent hori-
zons are forming and may even delay horizon formation
further investigation is necessary to: Identify the micro-
physical mechanisms driving the phase transition in the
collapsing matter. Determine observable signatures of
this transition, in particular any transient energy flux
emitted at the moment of the phase change. In order to
characterize the emitted flux, one must account for
quantum effects during collapse and estimate both its lu-
minosity and spectral properties. Addressing these ques-
tions in future work will clarify whether the ultimate fate
of gravitational collapse is a truly regular black hole or
still a singular configuration.

It is important to address the emission of electromag-
netic radiation during gravitational collapse. As demon-
strated in Ref. [25], when baryonic matter undergoes a
transition to a novel, non-singular phase, a finite amount
of energy is radiated away in the form of electromagnetic
waves. The energy density of this emitted radiation is de-
termined by both the initial baryonic state and the proper-
ties of the final, regular matter phase. Consequently, the
spectrum and total luminosity depend sensitively on the
EoS parameters governing the transition. In particular,
stronger deviations from the standard baryonic EoS or
more rapid phase changes lead to more-intense electro-

magnetic output, thereby providing a potential observa-
tional signature of singularity resolution in collapsing
compact objects.

The gravitational collapse proceeds in three distinct
stages. In the first stage, the entire star is composed of ba-
ryonic matter. As collapse advances and densities in-
crease toward the center, baryonic matter begins to con-
vert into a novel phase that supports a regular core; this
conversion is accompanied by the emission of electro-
magnetic radiation. In the final stage, all baryonic materi-
al has transitioned into the new phase, the electromagnet-
ic emission ceases, and the resulting black hole features a
non-singular central region. It should be emphasized that
this radiation can only escape to an external observer if
the formation of apparent horizons is sufficiently delayed;
consequently, the observable emission lasts for a very
brief interval.
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