Processing math: 100%

Bipartite entanglement in spin-1/2 Heisenberg model

  • The bipartite entanglement of the two- and three-spin Heisenberg model was investigated by using the concept of negativity. It is found that for the ground-state entanglement of the two-spin model, the negativity always decreases as B increases if Δ<γ-1, and it may keep a steady value of 0.5 in the region of B<J[(Δ+1)2-γ2]1/2 if Δ>γ-1, while for that of the three-spin model, the negativity exhibits square wave structures if γ=0 or Δ=0. For thermal states, there are two areas showing entanglement, namely, the main region and the sub-region. The main region exists only when Δ>Δcc=γ-1 and (γ2-1)/2 for the 2- and 3-spin model respectively) and extends in terms of B and T as Δ increases, while the sub-region survives only when γ≠0 and shrinks in terms of B and T as Δ increases.

  • [1] . Ekert A K. Phys. Rev. Lett., 1991, 67(6): 661-6632. Bennett C H, Brassard G, Crépeau C et al. Phys. Rev.Lett., 1993, 70: 1895-18993. DiVincenzo D P et al. Nature, 2000, 408: 339-3424. Bennett C H, Wiesner S J. Phys. Rev. Lett., 1992, 69(20):2881-28845. Bennett C H, DiVincenzo D P. Nature, 2000, 404: 2476. Arnesen M C, Bose S, Vedral V. Phys. Rev. Lett., 2001,87: 0179017. Kamta G L, Starace A F. Phys. Rev. Lett., 2002, 88:1079018. WANG X G. Phys. Rev. A, 2001, 64: 0123139. WANG X G. Phys. Rev. A, 2002, 66: 04430510. ZHOU L et al. Phys. Rev. A, 2003, 68: 02430111. SUN Y et al. Phys. Rev. A, 2003, 68: 04430112. Asoudeh M, Karimipour V. Phys. Rev. A, 2005, 71: 02230813. CAO M, ZHU S Q. Phys. Rev. A, 2005, 71: 03431114. ZHANG G F, LI S S. Phys. Rev. A, 2005, 72: 03430215. WANG X G. Phys. Lett. A, 2001, 281: 101-10416. WANG X G, Zanardi P. Phys. Lett. A, 2002, 301: 1-617. HU Ming-Liang, TIAN Dong-Ping. Science in China G,2007, 50(2): 208-21418. HU Ming-Liang, TIAN Dong-Ping. HEP NP, 2006,30(11): 1132-113619. TIAN Dong-Ping, HU Ming-Liang. HEP NP, 2007,31(5): 509-51220. Venuti L C, Boschi C D E, Roncaglia M. Phys. Rev. Lett.,2006, 96: 24720621. XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue et al. Phys.Lett. A, 2002, 297: 291-29922. WANG X G. Phys. Rev. E, 2004, 69: 06611823. WANG X G et al. J. Phys. A, 2005, 38: 870324. SUN Z, WANG X G, LI Y Q. New. J. Phys., 2005, 7: 8325. WANG X G, WANG Z D. Phys. Rev. A, 2006, 73: 06430226. Canosa N, Rossignoli R. Phys. Rev. A, 2006, 73: 02234727. ZHANG Jing-Fu, LONG Gui-Lu, ZHANG Wei et al. Phys.Rev. A, 2005, 72: 01233128. ZHANG Yong, LIU Dan, LONG Gui-Lu. Chin. Phys., 2007,16: 324-32829. LIU Dan et al. Chin. Phys. Lett., 2007, 24: 8-1030. ZHANG Yong, LONG Gui-Lu, WU Yu-Chun et al. Commun. Theor. Phys., 2007, 47: 787-79031. Bose S. Phys. Rev. Lett., 2003, 91: 20040332. Christandl M, Datta N, Ekert A et al. Phys. Rev. Lett.,2004, 92: 18790233. Subrahmanyam V. Phys. Rev. A, 2004, 69: 03430434. Benjamin S C, Bose S. Phys. Rev. Lett., 2003, 90: 24790135. Loss D, DiVincenzo D P. Phys. Rev. A, 1998, 57: 120-12636. Vidal G, Werner R F. Phys. Rev. A, 2002, 65: 032314
  • [1] . Ekert A K. Phys. Rev. Lett., 1991, 67(6): 661-6632. Bennett C H, Brassard G, Crépeau C et al. Phys. Rev.Lett., 1993, 70: 1895-18993. DiVincenzo D P et al. Nature, 2000, 408: 339-3424. Bennett C H, Wiesner S J. Phys. Rev. Lett., 1992, 69(20):2881-28845. Bennett C H, DiVincenzo D P. Nature, 2000, 404: 2476. Arnesen M C, Bose S, Vedral V. Phys. Rev. Lett., 2001,87: 0179017. Kamta G L, Starace A F. Phys. Rev. Lett., 2002, 88:1079018. WANG X G. Phys. Rev. A, 2001, 64: 0123139. WANG X G. Phys. Rev. A, 2002, 66: 04430510. ZHOU L et al. Phys. Rev. A, 2003, 68: 02430111. SUN Y et al. Phys. Rev. A, 2003, 68: 04430112. Asoudeh M, Karimipour V. Phys. Rev. A, 2005, 71: 02230813. CAO M, ZHU S Q. Phys. Rev. A, 2005, 71: 03431114. ZHANG G F, LI S S. Phys. Rev. A, 2005, 72: 03430215. WANG X G. Phys. Lett. A, 2001, 281: 101-10416. WANG X G, Zanardi P. Phys. Lett. A, 2002, 301: 1-617. HU Ming-Liang, TIAN Dong-Ping. Science in China G,2007, 50(2): 208-21418. HU Ming-Liang, TIAN Dong-Ping. HEP NP, 2006,30(11): 1132-113619. TIAN Dong-Ping, HU Ming-Liang. HEP NP, 2007,31(5): 509-51220. Venuti L C, Boschi C D E, Roncaglia M. Phys. Rev. Lett.,2006, 96: 24720621. XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue et al. Phys.Lett. A, 2002, 297: 291-29922. WANG X G. Phys. Rev. E, 2004, 69: 06611823. WANG X G et al. J. Phys. A, 2005, 38: 870324. SUN Z, WANG X G, LI Y Q. New. J. Phys., 2005, 7: 8325. WANG X G, WANG Z D. Phys. Rev. A, 2006, 73: 06430226. Canosa N, Rossignoli R. Phys. Rev. A, 2006, 73: 02234727. ZHANG Jing-Fu, LONG Gui-Lu, ZHANG Wei et al. Phys.Rev. A, 2005, 72: 01233128. ZHANG Yong, LIU Dan, LONG Gui-Lu. Chin. Phys., 2007,16: 324-32829. LIU Dan et al. Chin. Phys. Lett., 2007, 24: 8-1030. ZHANG Yong, LONG Gui-Lu, WU Yu-Chun et al. Commun. Theor. Phys., 2007, 47: 787-79031. Bose S. Phys. Rev. Lett., 2003, 91: 20040332. Christandl M, Datta N, Ekert A et al. Phys. Rev. Lett.,2004, 92: 18790233. Subrahmanyam V. Phys. Rev. A, 2004, 69: 03430434. Benjamin S C, Bose S. Phys. Rev. Lett., 2003, 90: 24790135. Loss D, DiVincenzo D P. Phys. Rev. A, 1998, 57: 120-12636. Vidal G, Werner R F. Phys. Rev. A, 2002, 65: 032314
  • 加载中

Get Citation
HU Ming-Liang and TIAN Dong-Ping. Bipartite entanglement in spin-1/2 Heisenberg model[J]. Chinese Physics C, 2008, 32(4): 303-307. doi: 10.1088/1674-1137/32/4/013
HU Ming-Liang and TIAN Dong-Ping. Bipartite entanglement in spin-1/2 Heisenberg model[J]. Chinese Physics C, 2008, 32(4): 303-307.  doi: 10.1088/1674-1137/32/4/013 shu
Milestone
Received: 2007-07-16
Revised: 2007-11-16
Article Metric

Article Views(4161)
PDF Downloads(669)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Bipartite entanglement in spin-1/2 Heisenberg model

    Corresponding author: HU Ming-Liang,

Abstract: 

The bipartite entanglement of the two- and three-spin Heisenberg model was investigated by using the concept of negativity. It is found that for the ground-state entanglement of the two-spin model, the negativity always decreases as B increases if Δ<γ-1, and it may keep a steady value of 0.5 in the region of B<J[(Δ+1)2-γ2]1/2 if Δ>γ-1, while for that of the three-spin model, the negativity exhibits square wave structures if γ=0 or Δ=0. For thermal states, there are two areas showing entanglement, namely, the main region and the sub-region. The main region exists only when Δ>Δcc=γ-1 and (γ2-1)/2 for the 2- and 3-spin model respectively) and extends in terms of B and T as Δ increases, while the sub-region survives only when γ≠0 and shrinks in terms of B and T as Δ increases.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return