Highlights
  • Orientation dichroism effect of proton scattering on deformed nuclei
    Proton-induced scattering of 238U nuclei, with spheroidal deformations at beam energies above 100 MeV, is simulated using an improved quantum molecular dynamics model. The angular distribution of the deflected protons is highly sensitive to the orientation of the symmetrical long axis of the target nuclei with respect to the beam direction. As a result, in reverse kinematic reactions, an orientation dichroism effect is predicted, implying that the absorption rate of the 238U beam by a proton target discerns between the parallel and perpendicular orientations of the deformed 238U nuclei.
  • Gauge dependence of the perturbative QCD predictions under the momentum-space subtraction scheme
    The momentum-space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In this paper, we discuss in detail the gauge dependence of the pQCD predictions obtained under the MOM scheme. Conventionally, a renormalization scale ambiguity exists for the fixed-order pQCD predictions; this assigns an arbitrary range and error for the fixed-order pQCD prediction and makes the discussions on the issue of the gauge dependence much more involved. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant; hence, it determines the effective momentum flow of the process, which is independent of the choice of renormalization scale. Thus, no renormalization scale ambiguity exists in PMC predictions. To focus our attention on the MOM scheme's gauge dependence, we first apply the PMC to deal with the pQCD series. As an explicit example, we adopt the Higgs boson decay width $ \Gamma(H\to gg) $ up to its five-loop QCD contribution, to demonstrate the behavior of the gauge dependence before and after applying the PMC. Interaction vertices are chosen to define five different MOM schemes: mMOM, MOMh, MOMq, MOMg, and MOMgg. Under these MOM schemes, we obtain $ \Gamma(H \to gg)|^{\rm{mMOM}}_{\rm{PMC}} =$$332.8{^{+11.6}_{-3.7}}\pm7.3\; \rm{keV}$, $ \Gamma(H \to gg)|^{\rm{MOMh}}_{\rm{PMC}} = 332.8{^{+27.5}_{-34.6}}\pm7.3\; \rm{keV} $, $ \Gamma(H \to gg)|^{\rm{MOMq}}_{\rm{PMC}} = 332.9{^{+27.4}_{-34.7}}\pm 7.3\; \rm{keV} $, $ \Gamma(H \to gg)|^{\rm{MOMg}}_{\rm{PMC}} = 332.7{^{+27.5}_{-34.6}}\pm7.3\; \rm{keV} $, and $ \Gamma(H \to gg)|^{\rm{MOMgg}}_{\rm{PMC}} = 337.9{^{+1.2}_{-1.7}}\pm 7.7\; \rm{keV} $; here, the central values correspond to the Landau gauge with the gauge parameter $ \xi^{\rm MOM} = 0 $, the first errors correspond to $ \xi^{\rm MOM}\in[-1,1] $, and the second ones arise through taking $ \Delta \alpha_s^{\overline{\rm MS}}(M_Z) = \pm0.0011 $. The uncertainty of the Higgs mass $ \Delta M_H = 0.24\; \rm{GeV} $ causes an extra error of $ \sim \pm1.7 $ (or $ \sim\pm1.8 $) keV for all the aforementioned MOM schemes. It is found that the Higgs decay width $ \Gamma (H\to gg) $ depends very weakly on the choice of MOM scheme, which is consistent with renormalization group invariance. It is found that the gauge dependence of $ \Gamma(H\to gg) $ under the $ \rm{MOMgg} $ scheme is less than ±1%, which is the smallest gauge dependence among all the aforementioned MOM schemes.
  • Cross-section measurements for 58,60,61Ni(n, α)55,57,58Fe reactions in the 4.50 – 5.50 MeV neutron energy region
    The cross sections at 5 energy points of the 58Ni(n, α)55Fe reaction were measured in the 4.50 MeV ≤ En ≤ 5.50 MeV region while those for the 60Ni(n, α)57Fe and 61Ni(n, α)58Fe reactions were measured at En = 5.00 and 5.50 MeV using the 4.5 MV Van de Graaff accelerator at Peking University. A gridded twin ionization chamber (GIC) was used as the detector, and enriched 58Ni, 60Ni, and 61Ni foil samples were prepared and mounted at the sample changer of the GIC. Three highly enriched 238U3O8 samples inside the GIC were used to determine the relative and absolute neutron fluxes. The neutron energy spectra were obtained through unfolding the pulse height spectra measured by the EJ-309 liquid scintillator. The interference from the low-energy neutrons and impurities in the samples has been corrected. The present data of the 60Ni(n, α)57Fe reaction are the first measurement results below 6.0 MeV, and those of the 61Ni(n, α)58Fe reactions are the first measurement results in the MeV region. The present results have been compared with existing measurements, evaluations, and TALYS-1.9 calculations.
In Press
More >
  • Expansion of EYM amplitudes in gauge invariant vector space
    Published: 2020-10-27, doi: 10.1088/1674-1137/abb4ce
    Show Abstract
    Motivated by the problem of expanding the single-trace tree-level amplitude of Einstein-Yang-Mills theory to the BCJ basis of Yang-Mills amplitudes, we present an alternative expansion formula in gauge invariant vector space. Starting from a generic vector space consisting of polynomials of momenta and polarization vectors, we define a new sub-space as a gauge invariant vector space by imposing constraints on the gauge invariant conditions. To characterize this sub-space, we compute its dimension and construct an explicit gauge invariant basis from it. We propose an expansion formula in this gauge invariant basis with expansion coefficients being linear combinations of the Yang-Mills amplitude, manifesting the gauge invariance of both the expansion basis and coefficients. With the help of quivers, we compute the expansion coefficients via differential operators and demonstrate the general expansion algorithm using several examples.
  • Flat limit of the de Sitter QFT in the rest frame vacuum
    Published: 2020-10-26
    Show Abstract
    The problem of the flat limits of the scalar and spinor fields on the de Sitter expanding universe is considered in the traditional adiabatic vacuum and in the new rest frame vacuum we proposed recently, in which the frequencies are separated in the rest frames as in special relativity. It is shown that only in the rest frame vacuum can the Minkowskian flat limit be reached naturally for any momentum, whereas in the adiabatic vacuum, this limit remains undefined in rest frames in which the momentum vanishes. An important role is played by the phases of the fundamental solutions in the rest frame vacuum, which must be regularized to obtain the desired Minkowskian flat limits. This procedure fixes the phases of the scalar mode functions and Dirac spinors, resulting in their definitive expressions derived here. The physical consequence is that, in the rest frame vacuum, the flat limits of the one-particle operators are simply the corresponding operators of special relativity.
  • Towards gauge unified, supersymmetric hidden strong dynamics
    Published: 2020-10-22
    Show Abstract
    We consider a class of models with extra complex scalars that are charged under both the Standard Model and a hidden strongly coupled $SU(N)_H$ gauge sector and discuss the scenarios in which the new scalars are identified as the messenger fields that mediate the spontaneously broken supersymmetries from the hidden sector to the visible sector. The new scalars are embedded into 5-plets and 10-plets of an $SU(5)_V$ gauge group that potentially unifies the Standard Model gauge groups. The Higgs bosons remain as elementary particles. In the supersymmetrized version of this class of models, vector-like fermions whose left-handed components are superpartners of the new scalars are introduced. Owing to the hidden strong force, the new low-energy scalars hadronize before decaying and thus evade the common direct searches of the supersymmetric squarks. This can be seen as a gauge mediation scenario with the scalar messenger fields forming low-energy bound states. We also discuss the possibility that in the tower of bound states formed under hidden strong dynamics (of at least the TeV scale), there exist a dark matter candidate and the collider signatures (e.g. diphoton, diboson, or dijet) of models that may show up in the near future.
Archive