Highlights
In Press
More >
  • Effects of an odd particle on shape phase transitions in odd-even systems
    Published: 2021-06-22, doi: 10.1088/1674-1137/ac05a0
    Show Abstract
    A scheme to solve the Hamiltonian in the interacting boson-fermion model in terms of the SU(3) coupling basis is introduced, through which the effects of an odd particle on shape phase transitions (SPTs) in odd-A nuclei are examined by comparing the critical behaviors of some selected quantities in odd-even and even-even systems. The results indicate that the spherical to prolate (U(5)-SU(3)) SPT and spherical to $ \gamma $-soft (U(5)-O(6)) SPT may clearly occur in the odd-even system with the SPT signatures revealed by various quantities including the excitation energies, energy ratio, $ B(E2) $ ratio, quadrupole moments, and one-particle-transfer spectroscopic intensities. In particular, the results indicate that the spherical to prolate SPT in the odd-even system can even be strengthened by the effects of the odd particle with the large fluctuations of the quadrupole deformations appearing near the critical point.
  • Hawking radiation received at infinity in higher dimensional Reissner-Nordström black hole spacetimes
    Published: 2021-06-22, doi: 10.1088/1674-1137/ac0419
    Show Abstract
    In this study, we investigate the Hawking radiation in higher dimensional Reissner-Nordström black holes as received by an observer located at infinity. The frequency-dependent transmission rates, which deform the thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. In addition to those in four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordström metrics, and the results are observed to be sensitive to the spacetime dimension to an extent. Generally, we observe that the transmission coefficient practically vanishes when the frequency of the emitted particle approaches zero. It increases with frequency and eventually saturates to a certain value. For four-dimensional spacetime, the above result is demonstrated to be mostly independent of the metric's parameter and the orbital quantum number of the particle, when the location of the event horizon, $ r_h$, and the product of the charges of the black hole and the particle qQ are known. However, for higher-dimensional scenarios, the convergence becomes more gradual. Moreover, the difference between states with different orbital quantum numbers is observed to be more significant. As the magnitude of the product of charges qQ becomes more significant, the transmission coefficient exceeds 1. In other words, the resultant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relationship of the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.
  • Chiral phase transition and equation of state in chiral imbalance
    Published: 2021-06-18, doi: 10.1088/1674-1137/ac0329
    Show Abstract
    The chiral phase transition and equation of state are studied within a novel self-consistent mean-field approximation of the two-flavor Nambu-Jona-Lasinio model. In this newly developed model, modifications to the chemical μ and chiral chemical $\mu_5$ potentials are naturally included by introducing vector and axial-vector channels from Fierz-transformed Lagrangian to the standard Lagrangian. In the proper-time scheme, the chiral phase transition is a crossover in the $T-\mu$ plane. However, when $\mu_5$ is incorporated, our study demonstrates that a first order phase transition may emerge. Furthermore, the chiral imbalance will soften the equation of state of quark matter. The mass-radius relationship and tidal deformability of quark stars are calculated. The maximum mass and radius decrease as $\mu_5$ increases. Our study also indicates that the vector and axial-vector channels exhibit an opposite influence on the equation of state.
Archive