## In Press

Display Method:

Published:
, doi: 10.1088/1674-1137/ac1b9a

**Abstract:**

The one-loop contributions to the chromomagnetic dipole moment

Published:
, doi: 10.1088/1674-1137/ac1e09

**Abstract:**

In this study, we investigated the cosmological implications of a complex singlet scalar

Published:
, doi: 10.1088/1674-1137/ac1fe1

**Abstract:**

The elastic-scattering angular distributions and total reaction cross sections of

Published:
, doi: 10.1088/1674-1137/ac1e83

**Abstract:**

Recently, a de-Sitter epoch has been found in the new model of loop quantum cosmology, which is governed by the scalar constraint with both Euclidean and Lorentz terms. The singularity free bounce in the new LQC model and the emergent cosmology constant strongly suggest that the effective stress-energy tensor induced by quantum corrections must violate the standard energy conditions. In this study, we perform an explicit calculation to analyze the behaviors of specific representative energy conditions, i.e., average null, strong, and dominant energy conditions. We reveal that the average null energy condition is violated at all times, while the dominant energy condition is violated only at a period around the bounce point. The strong energy condition is violated not only at a period around the bounce point but also in the whole period from the bounce point to the classical phase corresponding to the de Sitter period. Our results will shed some light on the construction of a wormhole and time machine, which usually require exotic matter to violate energy conditions.

Published:
, doi: 10.1088/1674-1137/ac1d9c

**Abstract:**

A strong background field drastically changes the vacuum structure and proper basis of a system in both classical and quantum mechanics, e.g., the Landau levels in a background magnetic field. This is true even for a rotating system. In such a system, the usual set of plane-wave states would no longer be suitable as a starting point of perturbation. Alternatively and straightforwardly, in a rapidly and globally rotating system, it is better to reformulate the perturbation computation in principle. In this study, we completed the first step for the spin-1 field, which includes solving the Proca equation in the presence of a background rotation and completing its canonical quantization. We show that because of the symmetry, the eigen states are actually the same as those of Maxwell equations in cylindrical coordinates. The propagator as well as the near-central approximation were obtained by assuming that the vorticity areas are very small in the relativistic QGP.

Published:
, doi: 10.1088/1674-1137/ac1c67

**Abstract:**

The matrix elements along the reduction chain

*Sp*(12,

*R*)

*SU*(1,1)

*SO*(6)

*U*(1)

*SU*

*SO*(2)

*SO*(3) of the proton-neutron symplectic model (PNSM) are considered. Closed analytical expressions are obtained for the matrix elements of the basic building blocks of the PNSM and the

*Sp*(12,

*R*) symplectic generators, allowing the computation of matrix elements of other physical operators as well. The computational technique developed in the present study generally provides us with the required algebraic tool for performing realistic symplectic-based shell-model calculations of nuclear collective excitations. Utilizing two simple examples, we illustrate the application of the theory.

Published:
, doi: 10.1088/1674-1137/ac1c65

**Abstract:**

Supernova remnants are supposed to be the most possible sources of cosmic rays. However, alternative sources of cosmic rays, such as an active galactic nucleus, gamma-ray bursts, and pulsars, have not be excluded. In this study, we investigate the possibility of cosmic rays being generated by pulsars. The pulsar is simply described as a rotational magnetic dipole, the so-called Hertzian magnetic dipole, an exact solution of the d'Alembert equations. In the rotational magnetic dipole field, charged particles experience an accelerated electric field with their radiation reaction. The particles, which are initially static out of the light cylinder radius, can be accelerated up to a high energy.

Published:
, doi: 10.1088/1674-1137/ac1bfd

**Abstract:**

In this study, we calculate the

Published:
, doi: 10.1088/1674-1137/ac1c66

**Abstract:**

Without contamination from the final state interactions, the calculation of the branching ratios of semileptonic decays

Published:

**Abstract:**

A flavor-dependent kernel is constructed based on the rainbow-ladder truncation of the Dyson-Schwinger and Bethe-Salpeter equation approach of quantum chromodynamics. The quark-antiquark interaction is composed of a flavor-dependent infrared part and a flavor-independent ultraviolet part. Our model gives a successful and unified description of the light, heavy, and heavy-light ground pseudoscalar and vector mesons. For the first time, our model shows that the infrared-enhanced quark-antiquark interaction is stronger and wider for lighter quarks.

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- Notification of CPC website outage
- The 2021 summer holiday-Office closure
- The Most Influential Paper Award of Chinese Physics Society in 2021
- The 2021 Chinese New Year-Office closure
- 2020 CPC Top Reviewer Awards

Meet Editor