## Just Accepted

Display Method:

Published:
, doi: 10.1088/1674-1137/43/10/104103

**Abstract:**

In this piece of writing, we look into the structural properties of super-heavy nuclei with

*Z*= 130 by adopting the relativistic mean-field (RMF) theory within an axially deformed oscillator basis with the NL3 force parameter set. We study the binding energies, quadrupole deformation, nuclear radii, neutron separation energies, and other bulk properties. Also, we analyze the favorable decay modes for clear cognitive content of nuclei such as alpha decay by using different formulae like Viola-Seaberg, the analytical formula of Royer, Universal curve formula, Universal decay law and compared with the corresponding fission process. The spontaneous fission of super-heavy nuclei with

*Z*= 130. With this appraisal, we also investigate the possible shell/sub-shell closure for the super-heavy nuclei adjacent by decay chains of alpha and other radioactive decay particles.

Published:
, doi: 10.1088/1674-1137/43/10/103103

**Abstract:**

In this exploratory study, near-threshold scattering of

*D*and

Study of $ \bar{B}_{u,d,s}^* \to D_{u,d,s}^* V\,(V = D_{d,s}^{*-}\,,K^{*-}\,,{\rho}^-) $ weak decays

Published:
, doi: 10.1088/1674-1137/43/10/103104

**Abstract:**

Motivated by the rapid development of heavy flavor physics experiment, we study the tree-dominated nonleptonic

Published:
, doi: 10.1088/1674-1137/43/10/105104

**Abstract:**

As a charged fermion drop into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are checked in both the normal phase space and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first law, second law, and the weak cosmic censorship are valid. While in the extended phase space, though the first law and weak cosmic censorship conjecture are still valid, the second law is dependent on the variation of the renormalization energy d

*K*. In addition, in the extended phase space, the configurations of the extremal and near-extremal black holes will not be changed for they are stable while in the normal phase space, the extremal and near-extremal black holes will evolve into non-extremal black holes.

Published:
, doi: 10.1088/1674-1137/43/10/104102

**Abstract:**

Excited states of odd-odd nucleus

^{92}Nb and odd-A nucleus

^{93}Nb were populated by the

^{6}Li+

^{89}Y reaction with an incident energy of 34 MeV. By combining the measurements of light-charged particles and gamma rays, the processes producing

^{92,93}Nb are discussed. 20 new transitions are observed and 8 new levels are constructed in

^{92}Nb, and additionally, 2 new transitions are added to the level scheme of

^{93}Nb. Following shell model calculations, the low-lying structure of

^{92}Nb is investigated and compared with experimental results.

Published:
, doi: 10.1088/1674-1137/43/10/103001

**Abstract:**

We study the sensitivity of constraining the model independent Higgs-Z-Z coupling based on effective theory up to dimension-6 operators at the future Higgs factory. Utilizing the current conceptual design parameters of the Circular Electron Positron Collider, we give the experimental limits for the model independent operators by the total Higgsstrahlung cross section and angular distribution of Z boson decay in the Higgs factory. Especially, we give very small sensitivity limit for the CP violation parameter

Published:
, doi: 10.1088/1674-1137/43/10/105102

**Abstract:**

Neutrinos produced from gamma-ray bursts (GRBs) carry rich physical information. The electron density in the GRBs outflow is very large. In this paper we calculate the matter effect on neutrinos when they propagate through such a dense region. The average survival probability and the flavor ratio of neutrino are shown. The ratio of resonant neutrino energy from different spherical shells gives the information of power index

*N*for the power-law distribution of electron in the hot fireball model. Electron density in the magnetic jet model are sufficient lower than the one in the hot fireball model. The matter effect on neutrinos can be used to distinguish these two models. The coherent effect of strongly lensed PeV neutrinos is also discussed. The average survival probability of strongly lensed electron neutrinos in the normal hierarchical case and inverted hierarchical case are presented. The results show that such coherent effect could be used to determine the mass hierarchical of neutrinos.

Published:
, doi: 10.1088/1674-1137/43/10/105101

**Abstract:**

It is widely believed that the screening mechanism is an essential feature for the modified gravity theory. Although this mechanism has been examined thoroughly in the past decade, their analyses are based on a conventional fluid prescription for the matter-sector configuration. In this paper, we demonstrate a new formulation of the chameleon mechanism in

*F*(

*R*) gravity theory, to shed light on quantum-field theoretical effects on the chameleon mechanism as well as the related scalaron physics, induced by the matter sector. We show a possibility that the chameleon mechanism is absent in the early Universe based on a scale-invariant-extended scenario beyond the standard model of particle physics, in which a realistic electroweak phase transition, yielding the right amount of baryon asymmetry of Universe today, simultaneously breaks the scale invariance in the early Universe. We also briefly discuss the oscillation of the scalaron field and indirect generation of non-tensorial gravitational waves induced by the electroweak phase transition.

Published:
, doi: 10.1088/1674-1137/43/10/103102

**Abstract:**

We study the phenomenology of a model that addresses the neutrino mass, dark matter and generation of the electroweak scale in one framework. The electroweak symmetry breaking is realized via the Coleman-Weinberg mechanism in a classically scale invariant theory, while the neutrino mass is generated radiatively through interactions with dark matter in a typically scotogenic manner. The model introduces a scalar triplet and singlet and a vector-like fermion doublet that carry an odd parity of Z2, and an even parity scalar singlet that helps preserve classical scale invariance. We sample over parameter space by taking into account various experimental constraints from dark matter relic density and direct detection, direct scalar searches, neutrino mass and charged lepton flavor violating decays. We then examine by detailed simulations possible signatures at the LHC for some benchmark points of the free parameters. We find that the future high-luminosity LHC will have a significant potential of detecting new physics signals in the dilepton channel.

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- The 2019 summer holiday-Office closure
- Editor Recruitment
- 2018 Impact Factor 5.861
- CPC Joins Committee on Publication Ethics (COPE)
- Chinese New Year-Office closure

Meet Editor