Towards a gravitation theory in Berwald-Finsler space

  • Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is
    nonsymmetric in general. This indicates that the local Lorentz invariance is violated.

  • 加载中
  • [1] . Cohen A G, Glashow S L. Phys. Rev. Lett., 2006, 97:0216012. Kostelecky V A, Samuel S. Phys. Rev. D, 1989, 39: 6833. Damour T, Polyakov A M. Nucl. Phys. B, 1994, 423: 5324. Amelino-Camelia G, Ellis J R, Mavromatos N E, Nanopou-los D V, Sarkar S. Nature, 1998, 393: 7635. Gambini R, Pullin J. Phys. Rev. D, 1999, 59: 1240216. Alfaro J, Morales-Tecotl H A, Urrutia L F. Phys. Rev.Lett., 2000, 84: 2318; Phys. Rev. D, 2002, 65: 1035097. Hayakawa M. Phys. Lett. B, 2000, 478: 394; hep-th/99121678. Mocioiu I, Pospelov M, Roiban R. Phys. Lett. B, 2000, 489:3909. Carroll S M, Harvey J A, Kostelecky V A, Lane C D,Okamoto T. Phys. Rev. Lett., 2001, 87: 14160110. Anisimov A, Banks T, Dine M, Graesser M. Phys. Rev. D,2002, 65: 08503211. Burgess C P, Cline J, Filotas E, Matias J, Moore G D. J. High Energy Phys., 2002, 03: 04312. Girelli F, Liberati S, Sindoni L. Phys. Rev. D, 2007, 75:06401513. Gibbons G W, Gomis J, Pope C N. hep-th/0707.217414. Battistoni G et al. Phys. Lett. B, 2005, 615: 1415. Randers G. Phys. Rev., 1941, 59: 19516. Yasuda H, Shimada H. Rep. on Math. Phys., 1977, 11: 34717. BAO D, Lackey B. Nonlinear Analysis, 1999, 38: 2718. Hrimiuc D, Shimada H. Nolinear World, 1996, 3: 613; Ten-sor, N.S., 1996, 58: 4819. Sabau V S, Shimada H. Rep. Math. Phy., 2001, 47: 3120. CHANG Z, LI Xin. hep-th/0711.005621. Kostelecky V A. Phys. Rev. D, 2004, 69: 10500922. Chern S S. Sci. Rep. Nat. Tsing Hua Univ. Ser. A, 1948,5: 95; Selected Papers, vol. /, 194, New York: Springer,198923. BAO D, Chern S S, SHEN Z. An introduction to Riemann-Finsler geometry, Graduate Texts in Mathmatics, 200:New York: Springer, 200024. Akbar-Zadeh H. Acad. Roy. Belg. Bull. Cl. Sci., 1988,74(5): 28125. Kikuchi S. Tensor, N.S., 1979, 33: 242
  • 加载中

Get Citation
LI Xin and CHANG Zhe. Towards a gravitation theory in Berwald-Finsler space[J]. Chinese Physics C, 2010, 34(1): 28-34. doi: 10.1088/1674-1137/34/1/005
LI Xin and CHANG Zhe. Towards a gravitation theory in Berwald-Finsler space[J]. Chinese Physics C, 2010, 34(1): 28-34.  doi: 10.1088/1674-1137/34/1/005 shu
Milestone
Received: 2009-02-26
Revised: 2009-03-09
Article Metric

Article Views(2804)
PDF Downloads(709)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Towards a gravitation theory in Berwald-Finsler space

    Corresponding author: LI Xin,

Abstract: 

Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by the Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is
nonsymmetric in general. This indicates that the local Lorentz invariance is violated.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return