AdS/QCD and light front holography: A new approximation to QCD

  • The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti—de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distributions of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M2 = 4κ2(n+L+S/2 ); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable ζ. The space-like pion and nucleon form factors are also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time τ. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

  • 加载中
  • [1] . Dirac P A M. Rev. Mod. Phys. , 1949, 21: 3922. de Teramond G F, Brodsky S J. Phys. Rev. Lett., 2009,102: 081601 [arXiv:0809.4899 [hep-ph]]3. Amsler C et al (Particle Data Group). Phys. Lett. B, 2008,667: 14. Baldini R, Dubnicka S, Gauzzi P, Pacetti S, Pasqualucci E,Srivastava Y. Eur. Phys. J. C, 1999, 11: 7095. Tadevosyan V et al (Je erson Lab F(pi) collaboration).Phys. Rev. C, 2007, 75: 055205 [arXiv:nucl-ex/0607007]6. Horn T et al (Fpi2 collaboration). Phys. Rev. Lett., 2006,97: 192001 [arXiv:nucl-ex/0607005]7. Maldacena J M. Adv. Theor. Math. Phys., 1998, 2:231; Int. J. Theor. Phys., 1999, 38: 1113 [arXiv:hep-th/9711200]8. Deur A, Burkert V, CHEN J P, Korsch W. Phys. Lett. B,2008, 665: 349 [arXiv:0803.4119 [hep-ph]]9. Brodsky S J, Shrock R. Phys. Lett. B, 2008, 666: 95[arXiv:0806.1535 [hep-th]]10. Polchinski J, Strassler M J. Phys. Rev. Lett. , 2002, 88:031601. [arXiv:hep-th/0109174]11. Karch A, Katz E, Son D T, Stephanov M A. Phys. Rev. D,2006, 74: 015005 [arXiv:hep-ph/0602229]12. de Teramond G F, Brodsky S J arXiv:0909.3900 [hep-ph]13. Andreev O, Zakharov V I. Phys. Rev. D, 2006, 74: 025023[arXiv:hep-ph/0604204]14. ZUO F. arXiv:0909.4240 [hep-ph]15. Glazek S D, Schaden M. Phys. Lett. B, 1987, 198: 4216. Hoyer P. arXiv:0909.3045 [hep-ph]17. Craig N J, Green D. JHEP, 2009, 0909: 113[arXiv:0905.4088 [hep-ph]]18. Polchinski J, Strassler M J. JHEP, 2003, 0305: 012[arXiv:hep-th/0209211]19. Brodsky S J, de Teramond G F. Phys. Rev. Lett., 2006,96: 201601 [arXiv:hep-ph/0602252]20. Brodsky S J, de Teramond G F. Phys. Rev. D, 2008, 77:056007. [arXiv:0707.3859 [hep-ph]]21. Brodsky S J, de Teramond G F. Phys. Rev. D, 2008, 78:025032. [arXiv:0804.0452 [hep-ph]]22. Abidin Z, Carlson C E. Phys. Rev. D, 2008, 77:095007. [arXiv:0801.3839 [hep-ph]]23. Brodsky S J, de Teramond G F. Phys. Lett. B, 2004, 582:211. [arXiv:hep-th/0310227]24. Erlich J, Katz E, Son D T, Stephanov M A. Phys. Rev.Lett., 2005, 95: 261602 [arXiv:hep-ph/0501128]25. Da Rold L, Pomarol A. Nucl. Phys. B, 2005, 721: 79[arXiv:hep-ph/0501218]26. Klempt E, Zaitsev A. Phys. Rept., 2007, 454: 1[arXiv:0708.4016 [hep-ph]]27. Boschi-Filho H, Braga N R F. JHEP, 2003, 0305: 009[arXiv:hep-th/0212207]28. Boschi-Filho H, Braga N R F, Carrion H L. Phys. Rev. D,2006, 73: 047901 [arXiv:hep-th/0507063]29. Evans N, Tedder A. Phys. Lett. B, 2006, 642: 546[arXiv:hep-ph/0609112]30. HONG D K, Inami T, Yee H U. Phys. Lett. B, 2007, 646:165. [arXiv:hep-ph/0609270]31. Colangelo P, de Fazio F, Jugeau F, Nicotri S. Phys. Lett.B, 2007, 652: 73 [arXiv:hep-ph/0703316]32. Forkel H. Phys. Rev. D, 2008, 78: 025001 [arXiv:0711.1179[hep-ph]]33. Vega A, Schmidt I. Phys. Rev. D, 2008, 78: 017703[arXiv:0806.2267 [hep-ph]]34. Nawa K, Suganuma H, Kojo T. Mod. Phys. Lett. A, 2008,23: 2364 [arXiv:0806.3040 [hep-th]]35. de Paula W, Frederico T, Forkel H, Beyer M. Phys. Rev.D, 2009, 79: 075019 [arXiv:0806.3830 [hep-ph]]36. Colangelo P, de Fazio F, Giannuzzi F, Jugeau F, Nicotri S.Phys. Rev. D, 2008, 78: 055009 [arXiv:0807.1054 [hep-ph]]37. Forkel H, Klempt E. Phys. Lett. B, 2009, 679: 77[arXiv:0810.2959 [hep-ph]]38. Ahn H C, HONG D K, Park C, Siwach S. Phys. Rev. D,2009, 80: 054001 [arXiv:0904.3731 [hep-ph]]39. SUI Y Q, WU Y L, XIE Z F, YANG Y B. arXiv:0909.3887[hep-ph]40. Kwee H J, Lebed R F. JHEP, 2008, 0801: 027 [arXiv:0708.4054 [hep-ph]]; Phys. Rev. D, 2008, 77: 11500[arXiv:0712.1811 [hep-ph]]41. Grigoryan H R, Radyushkin A V. Phys. Rev. D, 2007, 76:115007. [arXiv:0709.0500 [hep-ph]]; Phys. Rev. D, 2009, 78:115008. [arXiv:0808.1243 [hep-ph]]42. The SU(6) 70-plet of light baryons is not well described inthis simple model, and further investigation is necessary.See: [37]43. de Teramond G F, Brodsky S J. Phys. Rev. Lett., 2005,94, 201601 [arXiv:hep-th/0501022]44. Brodsky S J, de Teramond G F. arXiv:0802.0514 [hep-ph]45. Grigoryan H R, Radyushkin A V. Phys. Rev. D, 2007, 76:095007. [arXiv:0706.1543 [hep-ph]]46. Diehl M. Nucl. Phys. Proc. Suppl., 2006, 161: 49[arXiv:hep-ph/0510221]47. Vary J P et al. arXiv:0905.1411 [nucl-th]48. Brodsky S J, de Teramond G F, Shrock R. AIP Conf. Proc.,2008, 1056: 3 [arXiv:0807.2484 [hep-ph]]49. Brodsky S J, Deur A, de Teramond G F, to be published50. Brodsky S J, Hwang D S, Schmidt I. Phys. Lett. B, 2002,530: 99 [arXiv:hep-ph/0201296]51. Collins J C. Phys. Lett. B, 2002, 536: 43 [arXiv:hep-ph/0204004]52. Boer D, Brodsky S J, Hwang D S. Phys. Rev. D, 2003, 67:054003. [arXiv:hep-ph/0211110]53. Brodsky S J, Hoang A H, Kuhn J H, Teubner T. Phys.Lett. B, 1995, 359: 355 [arXiv:hep-ph/9508274]54. Collins J, QIU J W. Phys. Rev. D, 2007, 75: 114014[arXiv:0705.2141 [hep-ph]]55. Brodsky S J, Shrock R. arXiv:0803.2541 [hep-th]56. Brodsky S J, Shrock R. arXiv:0803.2554 [hep-th]57. Casher A, Susskind L. Phys. Rev. D, 1974, 9: 43658. Maris P, Roberts C D, Tandy P C. Phys. Lett. B, 1998,420: 267 [arXiv:nucl-th/9707003]59. Maris P, Roberts C D. Phys. Rev. C, 1997, 56: 3369[arXiv:nucl-th/9708029]60. Io e B L, Zyablyuk K N. Eur. Phys. J. C, 2003, 27: 229[arXiv:hep-ph/0207183]61. Davier M, Hocker A, ZHANG Z. Nucl. Phys. Proc. Suppl.,2007, 169: 22 [arXiv:hep-ph/0701170]62. Davier M, Descotes-Genon S, Hocker A, Malaescu B,ZHANG Z. Eur. Phys. J. C, 2008, 56: 305 [arXiv:0803.0979[hep-ph]]
  • 加载中

Get Citation
Stanley J. Brodsky and Guy F. de Teramond. AdS/QCD and light front holography: A new approximation to QCD[J]. Chinese Physics C, 2010, 34(9): 1229-1235. doi: 10.1088/1674-1137/34/9/015
Stanley J. Brodsky and Guy F. de Teramond. AdS/QCD and light front holography: A new approximation to QCD[J]. Chinese Physics C, 2010, 34(9): 1229-1235.  doi: 10.1088/1674-1137/34/9/015 shu
Milestone
Received: 2010-03-04
Revised: 1900-01-01
Article Metric

Article Views(2662)
PDF Downloads(500)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

AdS/QCD and light front holography: A new approximation to QCD

    Corresponding author: Stanley J. Brodsky,

Abstract: 

The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti—de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distributions of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M2 = 4κ2(n+L+S/2 ); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable ζ. The space-like pion and nucleon form factors are also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time τ. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return