Bound Dirac states for pseudoscalar Cornell potential:3+1 dimensions

  • The Cornell potential consists of Coulomb and linear potentials, i.e.-a/r+br, that it has received a great deal of attention in particle physics. In this paper, we present exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits in 3+1 dimensions. The energy eigenvalues and corresponding eigenfunctions are given in explicit forms.
      PCAS:
  • 加载中
  • [1] Ginocchio J N. Phys. Rep., 2005 414(4-5): 165[2] Bohr A, Hamamoto I, Mottelson B R. Phys. Scr., 1982, 26: 267[3] Dudek J, Nazarewicz W, Szymanski Z, Leander G A. Phys. Rev. Lett., 1987, 59: 1405[4] Troltenier D, Bahri C, Draayer J P. Nucl. Phys. A, 1995, 586: 53[5] Page P R, Goldman T, Ginocchio J N. Phys. Rev. Lett., 2001, 86: 204[6] Hecht K T, Adler A. Nucl. Phys. A, 1969, 137: 129[7] Arima A, Harvey M, Shimizu K. Phys. Lett. B, 1969, 30: 517[8] Ginocchio J N, Leviatan A, MENG J, ZHOU S G. Phys. Rev. C, 2004, 69: 034303[9] Ginocchio J N. Phys. Rev. Lett., 1997, 78(3): 436[10] Castro L B, de Castro A S, Hott M. Int. J. Mod. Phys. E, 2007, 16: 3002[11] Castro L B, de Castro A S, Hott M. Europhys. Lett., 2007, 77: 20009[12] Alhaidari A D. Phys. Lett. B, 2011, 699: 309[13] Alhaidari A D. Int. J. Mod. Phys. A, 2010, 25: 3703[14] Alhaidari A D. Found. Phys., 2010, 40: 1088[15] McKeon D G C, Van Leeuwen G. Mod. Phys. Lett., 2002, 17: 1961[16] de Castro A S. Phys. Lett. A, 2003, 318: 40[17] de Castro A S. Ann. Phys., 2004, 311: 170[18] YAO Qian-Kai, LI De-Min, JIA Yu, MA Guang-Wen. Int. J. Theor. Phys., 2005, 44: 1621[19] Haouat S, Chetouani L. Int. J. Theor. Phys., 2007, 46: 1528[20] Haouat S, Chetouani L. J. Phys. A: Math. Theor., 2007, 40: 10541[21] Haouat S, Chetouani L. Phys. Scr., 2008, 78: 065005[22] Thylwe K E, Linnus S. Phys. Scr., 2011, 84: 025006[23] Quigg C, Rosner J L. Phys. Rep., 1979, 56: 167[24] Chaichian M, Kokerler R. Ann. Phys. (N.Y.), 1980, 124: 61[25] Bykov A A, Dremin I M, Leonidov A V. Sov. Phys. Usp., 1984, 27: 321[26] Plante G, Antippa A. F. J. Math. Phys., 2005, 46: 062108[27] Stack J. D. Phys. Rev. D, 1984, 29: 1213[28] Bali G S, Schilling K, Wachter A. Phys. Rev. D, 1997, 56: 2566[29] Bessis D, Vrscay E R, Handy C R. J. Phys. A: Math. Gen., 1987, 20: 419[30] Ghalenovi Z, Rajabi A A, Hamzavi M. Acta Phys. Pol. B, 2011, 42: 1849[31] Thylwe K E. Phys. Scr., 2008, 77: 065005[32] ZHOU S G, MENG J, RING P. Phys. Rev. Lett., 2003, 91: 262501[33] HE X T, ZHOU S G, MENG J, ZHAO E G, Scheid W. Eur. Phys. J. A, 2006, 28: 265[34] SONG C Y, YAO J M, MENG J. Chin. Phys. Lett., 2009, 26: 122102[35] SONG C Y, YAO J M. Chinese Physics C (HEP NP), 2010, 34: 1425[36] Nikiforov A F, Uvarov V B. Special Functions of Mathematical Physics. Berlin: Birkhausr, 1988[37] Hamzavi M, Rajabi A A, Hassanabadi H. Int. J. Mod. Phys. A, 2011, 26: 1363[38] Aydoğdu O, Sever R. Phys. Scr., 2009, 80: 015001[39] Ginocchio J N. Nucl. Phys. A, 1999, 654: 663c[40] Ginocchio J N. Phys. Rep., 1999, 315: 231[41] MENG J, Tanabe K S, Yamaji S, RING P, Arima A. Phys. Rev. C, 1998, 58: R628[42] MENG J, Tanabe K S, Yamaji S, Arima A. Phys. Rev. C, 1999, 59: 154
  • 加载中

Get Citation
A. A. Rajabi. Bound Dirac states for pseudoscalar Cornell potential:3+1 dimensions[J]. Chinese Physics C, 2013, 37(10): 103102. doi: 10.1088/1674-1137/37/10/103102
A. A. Rajabi. Bound Dirac states for pseudoscalar Cornell potential:3+1 dimensions[J]. Chinese Physics C, 2013, 37(10): 103102.  doi: 10.1088/1674-1137/37/10/103102 shu
Milestone
Received: 2012-12-11
Revised: 2013-03-22
Article Metric

Article Views(2036)
PDF Downloads(223)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Bound Dirac states for pseudoscalar Cornell potential:3+1 dimensions

Abstract: The Cornell potential consists of Coulomb and linear potentials, i.e.-a/r+br, that it has received a great deal of attention in particle physics. In this paper, we present exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits in 3+1 dimensions. The energy eigenvalues and corresponding eigenfunctions are given in explicit forms.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return