Defects and hyperfine interactions in binary Fe-Al alloys studied by positron annihilation and Mössbauer spectroscopies

  • The defects, the behavior of 3d electrons and the hyperfine interactions in binary Fe-Al alloys with different Al contents have been studied by measurements of positron lifetime spectra, coincidence Doppler broadening spectra of positron annihilation radiation and Mössbauer spectra. The results show that on increasing the Al content in Fe-Al alloys, the mean positron lifetime of the alloys increase, while the mean electron density of the alloys decrease. The increase of Al content in binary Fe-Al alloys will decrease the amount of unpaired 3d electrons; as a consequence the probability of positron annihilation with 3d electrons and the hyperfine field decrease rapidly. Mössbauer spectra of binary Fe-Al alloys with Al content less than 25 at.% show discrete sextets and these alloys make a ferromagnetic contribution at room temperature. The Mössbauer spectrum of Fe70Al30 shows a broad singlet. As Al content higher than 40 at.%, the Mössbauer spectra of these alloys are singlet, that is, the alloys are paramagnetic. The behavior of a 3d electron and its effect on the hyperfine field of the binary Fe-Al alloy has been discussed.
      PCAS:
  • 加载中
  • [1] Vedula K. Intermetallic Compounds-Principles and Practice, volume 2-Practice. Eds. Westbrook J H, Fleischer R L. Chichester. New York Brisbane Toronto Singapore: John Wiley son. 1994. 199[2] DENG W, ZHONG X P, HUANG Y Y et al. Science in China A (English Edition), 1999, 42(1): 87-92[3] Vedula K, Stephens J R. High-Temperature Ordered Intermetallic Alloys Ⅱ. Eds. Stoloff N S, Koch C C, Liu C T, Izumi O. MRS, Pittsburgh PA, 1987, 81: 381-391[4] FU C L, YE Y Y, Yoo M H et al. Phys. Rev. B, 1993, 48(9): 6712-6715[5] Shull R D, Okamoto H, Beck P A. Solid State Commun, 1976, 20: 863-868[6] Cable J W, David L, Parra R. Phys. Rev. B, 1977, 16: 1132-1137[7] Apianiz E, Plazaola F, Garitaonandia J S. Eur. Phys. J B, 2003, 31: 167-177[8] Bandyopadhaya D, Suwas S, Singru R M et al. J Mater. Sci., 1998, 33: 109-116[9] WANG J C, LIU D G, CHEN M X et al. Scripta Metallurgica, 1991, 25(11): 2581-2583[10] El#380;bieta Jartych, Jan K. #379;urawicz, Dariusz Oleszak et al. J Magn. Magn. Mater., 1998, 186: 299-305[11] Yelsukov E P, Voronina E V, Barinov V A. J Magn. Magn. Mater., 1992, 115: 271-280[12] FU C L, Yoo M H. Mat. Res. Soc. Symp. Proc., 1991, 213: 667-672[13] FU C L. Phys. Rev. B, 1995, 52(5): 3151-3158[14] Mayer J, Meyer B, Oehrens J S et al. Intermetallics, 1997, 5: 597-600[15] Bornsen N, Bester G, Meyer B et al. Journal of Alloys and Compounds, 2000, 308: 1-14[16] Pérez Alcázar G A, Zamora Ligia E, Betancur-Ríos J D et al. Physica B 2006, 384: 313-315[17] Spru#353;il B, Chalupa B. Intermetallics 1999, 7(6): 635-639[18] Sebastian V, Lakshmi N, Venugopalan K. Intermetallics, 2007, 15(8): 1006-1012[19] Enzo S, Frattini Z R, Gupta R et al. Acta. Mater., 1996, 44(8): 3105-3113[20] Gialanella S, Amils X, Baroá M D et al. Acta. Mater., 1998, 46(9): 3305-3316[21] Verma H C, Satyam Suwas. J Magn. Magn. Mater., 2000, 212: 361-367[22] D'Angelo L, D'Onofrio L, Gonzalez G. Journal of Alloys and Compounds, 2009, 483: 154-158[23] Legarra E, Apinaniz E, Plazaola F. Intermetallics, 2010, 18: 1288-1292[24] MA X G, JIANG J J, BIE S W et al. Intermetallics, 2010, 18: 2399-2403[25] DENG W, CHEN Z Y, JIANG H F et al. Science in China G (English Edition), 2008, 38(8): 1016-1022[26] Alatalo M, Kauppinen H, Saarinen K et al. Phys. Rev. B, 1995, 51(7): 4176-4185[27] Brusa R S, DENG W, Karwasz G P et al. Nuclear Instruments and Methods Section B, 2002, 194: 519-531[28] DENG W, HUANG Y Y, Brusa R S et al. Journal of Alloys and Compounds, 2006, 421: 228-231[29] MacKenzie I K. Positron Solid-State Physics. Eds. Brandt W, Dupasqiuer A. North Holland, Amsterdam, 1983, 196-264[30] Seeger A, Barnhart F, Bauer W. Positron Annihilation. Eds. Dorikens-Vanpraet L, Dorikens M, Seeger D. Singapore: World Scientific, 1988. 275-277[31] Wolff J, Franz M, Broska A et al. Materials Science and Engineering A, 1997, 239-240: 213-219[32] Gialanella S, Brusa R S, DENG W et al. Journal of Alloys and Compounds, 2001, 317-318: 485-496[33] DENG W, HUANG Y Y, Brusa R S et al. Journal of Alloys and Compounds, 2005, 386(1-2): 103-106
  • 加载中

Get Citation
DENG Wen, SUN Xiao-Xiang, TAN Shao-Xi, LI Yu-Xia, XIONG Ding-Kang and HUANG Yu-Yang. Defects and hyperfine interactions in binary Fe-Al alloys studied by positron annihilation and Mössbauer spectroscopies[J]. Chinese Physics C, 2013, 37(12): 128201. doi: 10.1088/1674-1137/37/12/128201
DENG Wen, SUN Xiao-Xiang, TAN Shao-Xi, LI Yu-Xia, XIONG Ding-Kang and HUANG Yu-Yang. Defects and hyperfine interactions in binary Fe-Al alloys studied by positron annihilation and Mössbauer spectroscopies[J]. Chinese Physics C, 2013, 37(12): 128201.  doi: 10.1088/1674-1137/37/12/128201 shu
Milestone
Received: 2013-03-04
Revised: 2013-07-08
Article Metric

Article Views(1678)
PDF Downloads(210)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Defects and hyperfine interactions in binary Fe-Al alloys studied by positron annihilation and Mössbauer spectroscopies

    Corresponding author: DENG Wen,

Abstract: The defects, the behavior of 3d electrons and the hyperfine interactions in binary Fe-Al alloys with different Al contents have been studied by measurements of positron lifetime spectra, coincidence Doppler broadening spectra of positron annihilation radiation and Mössbauer spectra. The results show that on increasing the Al content in Fe-Al alloys, the mean positron lifetime of the alloys increase, while the mean electron density of the alloys decrease. The increase of Al content in binary Fe-Al alloys will decrease the amount of unpaired 3d electrons; as a consequence the probability of positron annihilation with 3d electrons and the hyperfine field decrease rapidly. Mössbauer spectra of binary Fe-Al alloys with Al content less than 25 at.% show discrete sextets and these alloys make a ferromagnetic contribution at room temperature. The Mössbauer spectrum of Fe70Al30 shows a broad singlet. As Al content higher than 40 at.%, the Mössbauer spectra of these alloys are singlet, that is, the alloys are paramagnetic. The behavior of a 3d electron and its effect on the hyperfine field of the binary Fe-Al alloy has been discussed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return