An approximate solution of the DKP equation under the Hulthén vector potential

  • Using the analytical NU technique as well as an acceptable physical approximation to the centrifugal term, the bound-state solutions of the Duffin-Kemmer-Petiau equation are obtained for arbitrary quantum numbers. The solutions appear in terms of the Jacobi Polynomials. Various explanatory figures and tables are included to complete the study.
      PCAS:
  • 加载中
  • [1] Kemmer N. Proc. R. Soc. A, 1938, 166: 127[2] Duffin R J. Phys. Rev., 1938, 54: 1114[3] Kemmer N. Proc. R. Soc. A, 1939, 173: 91[4] Petiau G. University of Paris thesis , Published in Acad. Roy. de Belg., Classe Sci., Mem in 8o 16, No. 2, 1936[5] Cardoso T R et al. Int. J. Theor. Phys., 2010, 49: 10[6] Chetouani L et al. Int. J. Theor. Phys., 2004, 43: 1147[7] de Castro AS. J. Phys. A: Math. Theor., 2011, 44: 035201[8] Nowakowski M. Phys. Lett. A, 1998, 244: 329[9] Lunardi J T et al. Phys. Lett. A, 2000, 268: 165[10] Riedel M. Relativistische Gleichungen fuer Spin-1-Teilchen, Diplomarbeit. Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Frankfurt/Main, 1979[11] Fischbach E. J. Math. Phys., 1973, 14: 1760[12] Clark B C et al. Phys. Rev. Lett., 1985, 55: 592[13] Kalbermann G. Phys. Rev. C, 1986, 34: 2240[14] Kozack R E et al. Phys. Rev. C, 1988, 37: 2898[15] Kozack R E. Phys. Rev. C, 1989, 40: 2181[16] Mishra V K et al. Phys. Rev. C, 1991, 43: 801[17] Clark B C et al. Phys. Lett. B, 1998, 427: 231[18] Gribov V. Eur. Phys. J. C, 1999, 10: 71[19] Kanatchikov I V. Rep. Math. Phys., 2000, 46: 107[20] Lunardi J T et al. Phys. Lett. A, 2000, 268: 165[21] Lunardi J T et al. Int. J. Mod. Phys. A , 2000, 17 : 205[22] de Montigny M et al. J. Phys. A, 2000, 33: L273[23] Hassanabadi H et al. phys. Rev. C, 2011, 84: 064003[24] Oudi R et al. Commun. Theor. Phys., 2012, 57: 15[25] Hassanabadi S, Rajabi A A, Yazarloo B H, Zarrinkamar S, Hassanabadi H. Advances in High Energy Physics, 2012, 804652 (doi: 10.1155/2012/804652)[26] Nedjadi Y, Barrett R C. J. Phys. G: Nucl. Part. Phys., 1993, 19: 87[27] Nedjadi Y. J. Phys. A: Math. Gen., 1998, 31: 3867[28] Boumali A. J. Math. Phys., 2008, 49: 022302[29] Boztosun I. J. Math. Phys. 2006, 47 : 062301[30] Boutabia-Cheraitia B, Boudjedaa T. Phys. Lett. A, 2005, 338: 97[31] Merad M. Int. J. Theor. Phys., 2007, 46 : 8[32] Chargui Y et al. Phys. Lett. A, 2010, 374 :2907[33] Sogut K, Havare A. J. Phys. A: Math. Theor., 2010, 43: 225204[34] Yasuk F. Phys. Scr., 2005, 71: 340[35] Hulthen L, Sugawara M. Encyclopedia of Physics. Vol. 39. edited by Flugge S. Berlin: Springer-Verlag, 1957[36] Jameelt M. J. Phys. A: Math. Gen., 1986, 19: 1967[37] Barnan R, Rajkumar R. J. Phys. A: Math. Gen., 1987, 20: 3051[38] Richard L H. J. Phys. A: Math. Gen., 1992, 25: 1373[40] Hassanabadi H et al. Commun. Theor. Phys., 2011, 56: 423[39] Nikiforov A F, Uvarov V B. Special Functions of Mathematical Physics. Birkhauser, Basel, 1988[41] Hassanabadi H et al. Chin. Phys. Lett., 2012, 29: 020303
  • 加载中

Get Citation
S. Zarrinkamar, A. A. Rajabi, B. H. Yazarloo and H. Hassanabadi. An approximate solution of the DKP equation under the Hulthén vector potential[J]. Chinese Physics C, 2013, 37(2): 023101. doi: 10.1088/1674-1137/37/2/023101
S. Zarrinkamar, A. A. Rajabi, B. H. Yazarloo and H. Hassanabadi. An approximate solution of the DKP equation under the Hulthén vector potential[J]. Chinese Physics C, 2013, 37(2): 023101.  doi: 10.1088/1674-1137/37/2/023101 shu
Milestone
Received: 2012-03-05
Revised: 2012-05-02
Article Metric

Article Views(1966)
PDF Downloads(467)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

An approximate solution of the DKP equation under the Hulthén vector potential

    Corresponding author: B. H. Yazarloo,

Abstract: Using the analytical NU technique as well as an acceptable physical approximation to the centrifugal term, the bound-state solutions of the Duffin-Kemmer-Petiau equation are obtained for arbitrary quantum numbers. The solutions appear in terms of the Jacobi Polynomials. Various explanatory figures and tables are included to complete the study.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return