Hard X-ray optics simulation using the coherent mode decomposition of the Gaussian Schell model

  • The propagation of a hard X-ray beam from a partially coherent synchrotron source is simulated by using the novel method based on the coherent mode decomposition of Gaussian Schell model and wave-front propagation. We investigate how the coherency properties and intensity distributions of the beam are changed by propagation through optical elements. Here, we simulate and analyze the propagation of the partially coherent radiation transmitted through an ideal slit. We present the first simulations for focusing partially coherent synchrotron hard X-ray beams using this novel method. And when compared with the traditional method which assumes the source is a totally coherent point source or completely incoherent, this method is proved to be more reasonable and can also demonstrate the coherence properties of the focusing beam. We also simulate the Young's double slit experiment and the simulated results validate the academic analysis.
      PCAS:
  • 加载中
  • [1] Morgan K S, Irvine S C, Suzuki Y et al. Opt. Commun., 2010, 283: 216[2] Nugent K A. Adv.Phys., 2010, 59: 8732[3] Geloni G, Saldin E, Schneidmille E et al. arXiv: physics. optics 0506231[4] Geloni G, Saldin E, Schneidmiller E et al. Nucl. Instrum. Methods A, 2008, 588: 463[5] Vartanyants I A, Singer A. New J. Phys., 2010, 12: 035004[6] Pelliccia D, Nikulin A Y, Moser H O et al. Opt. Express, 2011, 19: 8073[7] Alaimo M D, Potenza M A C, Manfredda M et al. Phys. Rev. Lett., 2009, 103: 194805[8] Tran C Q, Williams G J, Roberts A et al. Phys. Rev. Lett., 2007, 98: 224801[9] Kohn V, Snigireva I, Snigirev A. Phys. Rev. Lett., 2000, 85: 2745[10] LIN J J A, Paterson D, Peele A G et al. Phys. Rev. Lett., 2003, 90: 074801[11] Pfeiffer F, Bunk O, Schulze-Briese C et al. Phys. Rev. Lett., 2005, 94: 164801[12] CHANG C, Naulleau P, Anderson E et al. Opt. Commun., 2000, 182: 25[13] Paterson D, Allman B E, McMahon P J et al. Opt. Commun., 2001, 195: 79[14] Leitenberger W, Wendrock H, Bischoff L et al. J. Synchrot. Radiat., 2004, 11:190[15] Tsuji T, Koyama T, Takano H et al. J. Phys. Conference Series, 2009, 186: 012061[16] Suzuki Y. Rev. Sci. Instrum., 2004, 75: 1026[17] Tran C Q, Peele A G, Roberts A et al. Opt. Lett., 2005, 30: 204[18] Yabashi M, Tamasaku K, Ishikawa T. Phys. Rev. Lett., 2001, 87: 140801[19] Vartanyants I A, Mancuso A P, Singer A et al. J. Phys. B: At. Mol. Opt. Phys., 2010, 43: 194016[20] Fezzaa K, Comin F, Marchesini S et al. J. of X-ray ST, 1997, 7: 12[21] Cosson R, Marchesini S. J. Synchrot. Radiat., 1997, 4: 263[22] Flewett S, Quiney H M, Tran C Q et al. Opt. Lett., 2009, 34: 2198[23] Idir M, Cywiak M, Morales A et al. Opt. Express, 2011, 19: 19050[24] Singer A, Vartanyants I A. arXiv: physics. optics/1108.6008[25] HUA Wen-Qiang, BIAN Feng-Gang, SONG Li et al. Photonics and Optoelectronics (SOPO), IEEE Symposium on, 2012, Shanghai.1-6[26] Vartanyants I A, Robinson I K. Opt. Commun., 2003, 222: 29[27] Robinson I K, Kenney-Benson C A, Vartaniants I A. Physica B, 2003, 336: 56[28] Nugent K A, Tran C Q, Roberts A. Opt. Express, 2003, 11: 2323[29] Yabashi M, Tamasaku K, Goto S et al. J. Phys. D: Appl. Phys., 2005, 38: A11[30] Nesterets Y I. Opt. Commun., 2008, 281: 533[31] Yamauchi K, Yamamura K, Mimura H et al. Appl. Opt., 2005, 44: 6927[32] Kewish C M, Assoufid L, Macrander A T et al. Appl. Opt., 2007, 46: 2010[33] Barty A, Soufli R, McCarville T et al. Opt. Express, 2009, 17: 15508[34] Born M, Wolf E. Principles of Optics. seventh edition. Cambridge: Cambridge University Press, 1999. 491[35] Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995. 160[36] Gori F. Opt. Commun., 1983, 46: 149[37] Vlieg E, De Vries S A, Alvarez J et al. J. Synchrot. Radiat., 1997, 4: 210[38] Kewish C M, Macrander A T, Assoufid L et al. Nucl. Instrum. Methods A, 2007, 582: 138[39] Souvorov A, Yabashi M, Tamasaku K et al. J. Synchrot. Radiat. 2002, 9: 223
  • 加载中

Get Citation
HUA Wen-Qiang, BIAN Feng-Gang, SONG Li, LI Xiu-Hong and WANG Jie. Hard X-ray optics simulation using the coherent mode decomposition of the Gaussian Schell model[J]. Chinese Physics C, 2013, 37(6): 068001. doi: 10.1088/1674-1137/37/6/068001
HUA Wen-Qiang, BIAN Feng-Gang, SONG Li, LI Xiu-Hong and WANG Jie. Hard X-ray optics simulation using the coherent mode decomposition of the Gaussian Schell model[J]. Chinese Physics C, 2013, 37(6): 068001.  doi: 10.1088/1674-1137/37/6/068001 shu
Milestone
Received: 2012-07-09
Revised: 2012-12-05
Article Metric

Article Views(1270)
PDF Downloads(234)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Hard X-ray optics simulation using the coherent mode decomposition of the Gaussian Schell model

    Corresponding author: WANG Jie,

Abstract: The propagation of a hard X-ray beam from a partially coherent synchrotron source is simulated by using the novel method based on the coherent mode decomposition of Gaussian Schell model and wave-front propagation. We investigate how the coherency properties and intensity distributions of the beam are changed by propagation through optical elements. Here, we simulate and analyze the propagation of the partially coherent radiation transmitted through an ideal slit. We present the first simulations for focusing partially coherent synchrotron hard X-ray beams using this novel method. And when compared with the traditional method which assumes the source is a totally coherent point source or completely incoherent, this method is proved to be more reasonable and can also demonstrate the coherence properties of the focusing beam. We also simulate the Young's double slit experiment and the simulated results validate the academic analysis.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return