Searching for new physics in D0→μ+μ-, e+e-±e at BES and/or the super charm-tau factory

  • In contrast with B0-B0, Bs-Bs mixing where the standard model (SM) contributions overwhelm that of the new physics beyond standard model (BSM), a measured relatively large D0-D0 mixing where the SM contribution is negligible, definitely implies the existence of the new physics BSM. It is natural to consider that the rare decays of D meson might be more sensitive to new physics, and the decay mode D0→μ+μ- could be an ideal area to search for new physics because it is a flavor changing process. In this work we look for a trace of the new physics BSM in the leptonic decays of D0. Concretely we discuss the contributions of unparticle or an extra gauge boson Z' while imposing the constraints set by fitting the D0- D0 mixing data. We find that the long-distance SM effects for D0→l1 still exceed those contributions of the BSM under consideration, but for a double-flavor changing process such as D0→μ±e+, the new physics contribution would be significant.
      PCAS:
  • 加载中
  • [1] Aubert B et al. (BaBar collaboration). Phys. Rev. Lett., 2007, 98: 211802; arXiv: hep-ex/0703020 [HEP-EX][2] Staric M et al. (Belle collaboration). Phys. Rev. Lett., 2007, 98: 211803; arXiv: hep-ex/0703036[3] Aaltonen T et al. (CDF collaboration). Phys. Rev. Lett., 2008, 100: 121802; arXiv: 0712.1567 [hep-ex][4] CHEN C H, GENG C Q, YUAN T C. Phys. Lett. B, 2007, 655: 50; arXiv: 0704.0601 [hep-ph][5] HOU W S, Nagashima M, Soddu A. Phys. Rev. D, 2007, 76: 016004; arXiv: hep-ph/0610385[6] HE X G, Valencia G. Phys. Lett. B, 2007, 651: 135; arXiv: hep-ph/0703270[7] LI X Q, WEI Z T. Phys. Lett. B, 2007, 651: 380; arXiv: 0705.1821 [hep-ph][8] RAaij et al. (LHCb collaboration). Phys. Rev. Lett., 2013, 110: 021801; arXiv: 1211.2674 [hep-ex][9] RAaij et al. (LHCb collaboration). Phys. Rev. Lett., 2013, 111: 101805; arXiv: 1307.5024 [hep-ex][10] Chatrchyan S et al. (CMS collaboration). Phys. Rev. Lett., 2013, 111: 101804; arXiv: 1307.5025 [hep-ex][11] Gorn M. Phys. Rev. D, 1979, 20: 2380[12] Pakvasa S. Chin. J. Phys., 1994, 32: 1163; arXiv: hep-ph/9408270[13] Burdman G, Golowich E, Hewett J L, Pakvasa S. Phys. Rev. D, 2002, 66: 014009; arXiv: hep-ph/0112235[14] Georgi H. Phys. Rev. Lett., 2007, 98: 221601; arXiv: hep-ph/0703260[15] Barger V, CHIANG C W, Langacker P, LEE H S. Phys. Lett. B, 2004, 580: 186; arXiv: hep-ph/0310073[16] HE X G, Valencia G. Phys. Rev. D, 2004, 70: 053003; arXiv: hep-ph/0404229[17] CHEUNG K, CHIANG C W, Deshpande N G, JIANG J. Phys. Lett. B, 2007, 652: 285; arXiv: hep-ph/0604223[18] HE X G, Valencia G. Phys. Rev. D, 2006, 74: 013011; arXiv: hep-ph/0605202[19] CHIANG C W, Deshpande N G, JIANG J. JHEP, 2006, 0608: 075; arXiv: hep-ph/0606122[20] Baek S, Jeon J H, Kim C S. Phys. Lett. B, 2006, 641: 183; arXiv: hep-ph/0607113[21] LI H B, YANG M Z. Sci. China G, 2010, 53: 1953[22] PENG T. (Belle collaboration). PoS ICHEP, 2013, 2012: 357; LI L. arXiv: 1310.6142 [hep-ex][23] RAaij et al. (LHCb collaboration). arXiv: 1309.6534 [hep-ex][24] RAaij et al. (LHCb collaboration). arXiv: 1310.7201 [hep-ex][25] Georgi H. Phys. Lett. B, 2007, 650: 275; arXiv: 0704.2457 [hep-ph][26] CHEUNG K, KEUNG W Y, YUAN T C. Phys. Rev. Lett., 2007, 99: 051803; arXiv: 0704.2588 [hep-ph][27] LUO M, ZHU G. Phys. Lett. B, 2008, 659: 341; arXiv: 0704.3532 [hep-ph][28] Grinstein B, Intriligator K A, Rothstein I Z. Phys. Lett. B, 2008, 662: 367; arXiv: 0801.1140 [hep-ph][29] CHEN S L, HE X G, LI X Q, TSAI H C, WEI Z T. Eur. Phys. J. C, 2009, 59: 899; arXiv: 0710.3663 [hep-ph][30] Burdman G, Shipsey I. Ann. Rev. Nucl. Part. Sci., 2003, 53: 431; arXiv: hep-ph/0310076[31] HE X G, Valencia G. Phys. Rev. D, 2002, 66: 013004; 079901; arXiv: hep-ph/0203036[32] HE X G, Valencia G. Phys. Rev. D, 2003, 68: 033011; arXiv: hep-ph/0304215[33] Lee J P. Phys. Rev. D, 2013, 88: 116003; arXiv: 1303.4858 [hep-ph][34] Beringer J et al. (Particle Data Group collaboration). Phys. Rev. D, 2012, 86: 010001[35] DING G J, YAN M L. Phys. Rev. D, 2008, 77: 014005[36] CHIANG C W, LIN Y F, Tandean J. JHEP, 2011, 1111: 083; arXiv: 1108.3969 [hep-ph][37] Aubert J J et al. (European Muon collaboration). Phys. Lett. B, 1985, 155: 461[38] Biino C, Greenhalgh J F, Louis W C et al. Phys. Rev. Lett., 1986, 56: 1027[39] Riles K, Dorfan J, Abrams G S et al. Phys. Rev. D, 1987, 35: 2914[40] Palka H et al. (ACCMOR collaboration). Phys. Lett. B, 1987, 189: 238[41] Becker J et al. (MARK-Ⅲ collaboration). Phys. Lett. B, 1987, 193: 147; 198: 590[42] Haas P et al. (Cleo collaboration). Phys. Rev. Lett., 1988, 60: 1614[43] Albrecht H et al. (ARGUS collaboration). Phys. Lett. B, 1988, 209: 380[44] Adler J et al. (MARK-Ⅲ collaboration). Phys. Rev. D, 1988, 37: 2023; 1989, 40: 3788[45] Mishra C S et al. (E789 collaboration). Phys. Rev. D, 1994, 50: 9[46] Kodama K et al. (E653 collaboration). Phys. Lett. B, 1995, 345: 85[47] Adamovich M et al. (BEATRICE collaboration). Phys. Lett. B, 1995, 353: 563[48] Freyberger A et al. (CLEO collaboration). Phys. Rev. Lett., 1996, 76: 3065; 77: 2147[49] Alexopoulos T et al. (E771 collaboration). Phys. Rev. Lett., 1996, 77: 2380[50] Adamovich M et al. (BEATRICE collaboration). Phys. Lett. B, 1997, 408: 469[51] Aitala E M et al. (E791 collaboration). Phys. Lett. B, 1999, 462: 401; arXiv: hep-ex/9906045[52] Pripstein D et al. (E789 collaboration). Phys. Rev. D, 2000, 61: 032005; arXiv: hep-ex/9906022[53] Acosta D et al. (CDF collaboration). Phys. Rev. D, 2003, 68: 091101; arXiv: hep-ex/0308059[54] Aubert B et al. (BaBar collaboration). Phys. Rev. Lett., 2004, 93: 191801; arXiv: hep-ex/0408023[55] Abt I et al. (HERA-B collaboration). Phys. Lett. B, 2004, 596: 173; arXiv: hep-ex/0405059[56] Petric M et al. (Belle collaboration). Phys. Rev. D, 2010, 81: 091102; arXiv: 1003.2345 [hep-ex][57] Aaltonen T et al. (CDF collaboration). Phys. Rev. D, 2010, 82: 091105; arXiv: 1008.5077 [hep-ex][58] RAaij et al. (LHCb collaboration). Phys. Lett. B, 2013, 725: 15; arXiv: 1305.5059 [HEP-ex][59] Lees J P et al. (BaBar collaboration). Phys. Rev. D, 2012, 86: 032001; arXiv: 1206.5419 [hep-ex][60] Ablikim M et al. (BESⅢ collaboration). Chin. Phys. C, 2013, 37: 063001; arXiv: 1209.6199 [hep-ex][61] Dobbs S et al. (CLEO collaboration). Phys. Rev. D, 2007, 76: 112001; arXiv: 0709.3783 [hep-ex][62] LI W D et al. The Offine Software for the BESIII Experiment, Proceeding of CHEP06 (Mumbai, India, February 2006)[63] Agostinelli S et al. (GEANT4 collaboration). Nucl. Instrum. Methods A, 2003, 506: 250[64] DENG Zi-Yan, CAO Guo-Fu, FU Cheng-Dong, et al. High Energy Physics and Nuclear Physics, 2006, 30(05): 371-377 (in Chinese)[65] Ablikim M et al. (BESⅢ collaboration). Nucl. Instrum. Methods A, 2010, 614: 345; arXiv: 0911.4960 [physics.ins-det][66] Conrad J, Botner O, Hallgren A, Perez de los Heros C. Phys. Rev. D, 2003, 67: 012002; arXiv: hep-ex/0202013[67] Feldman G J, Cousins R D. Phys. Rev. D, 1998, 57: 3873; arXiv: physics/9711021 [physics.data-an][68] Golowich E, Hewett J, Pakvasa S, Petrov A A. Phys. Rev. D, 2009, 79: 114030; arXiv: 0903.2830 [hep-ph]
  • 加载中

Get Citation
JIA Lian-Bao, ZHAO Ming-Gang, KE Hong-Wei and LI Xue-Qian. Searching for new physics in D0→μ+μ-, e+e-±e at BES and/or the super charm-tau factory[J]. Chinese Physics C, 2014, 38(10): 103101. doi: 10.1088/1674-1137/38/10/103101
JIA Lian-Bao, ZHAO Ming-Gang, KE Hong-Wei and LI Xue-Qian. Searching for new physics in D0→μ+μ-, e+e-±e at BES and/or the super charm-tau factory[J]. Chinese Physics C, 2014, 38(10): 103101.  doi: 10.1088/1674-1137/38/10/103101 shu
Milestone
Received: 2014-01-07
Revised: 1900-01-01
Article Metric

Article Views(2085)
PDF Downloads(303)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Searching for new physics in D0→μ+μ-, e+e-±e at BES and/or the super charm-tau factory

    Corresponding author: JIA Lian-Bao,
  • 1.  School of Physics, Nankai University, Tianjin 300071, China
  • 2.  School of Physics, Tianjin University, Tianjin 300072, China

Abstract: In contrast with B0-B0, Bs-Bs mixing where the standard model (SM) contributions overwhelm that of the new physics beyond standard model (BSM), a measured relatively large D0-D0 mixing where the SM contribution is negligible, definitely implies the existence of the new physics BSM. It is natural to consider that the rare decays of D meson might be more sensitive to new physics, and the decay mode D0→μ+μ- could be an ideal area to search for new physics because it is a flavor changing process. In this work we look for a trace of the new physics BSM in the leptonic decays of D0. Concretely we discuss the contributions of unparticle or an extra gauge boson Z' while imposing the constraints set by fitting the D0- D0 mixing data. We find that the long-distance SM effects for D0→l1 still exceed those contributions of the BSM under consideration, but for a double-flavor changing process such as D0→μ±e+, the new physics contribution would be significant.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return