In-situ EXAFS study on the thermal decomposition of TiH2

  • Thermal decomposition behaviors of TiH2 powder under a owing helium atmosphere and in a low vac- uum condition have been studied using an in situ EXAFS technique. By an EXAFS analysis containing the multiple scattering paths including H atoms, the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained. The results demonstrate that the initial decomposition temperature is dependent on experi- mental conditions, which occurs, respectively, at about 300 and 400℃ in a low vacuum condition and under a owing helium atmosphere. During the decomposition process of TiH2 in a low vacuum condition, the sample experiences a phase change process:δ(TiH2)→δ (TiHx)→δ(TiHx)+β(TiHx)→δ(TiHx)+β(TiHx)+α(Ti)→β(TiHx)+α(Ti)→α(Ti)+β(Ti). This study o ers a way to detect the structural information of hydrogen. A detailed discussion about the decomposition process of TiH2 is given in this paper.
      PCAS:
    • 61.05.cj(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
  • [1] Antonov V E, Bashkin I O, Fedotov V K et al. Physical Review B, 2006, 73(5): 6[2] Beeferman D, Lucas W F. United States Patent, vol. 5340012, 1994[3] Dillon A C, Gennett T, Alleman J L et al. Carbon Nanotube Materials for Hydrogen Storage. Proceedings of the 1999 U.S DOE Hydrogen Program Review. NREL/CP-570-26938, 1999[4] JIA F Q, Tsang S C. Fuel, 2006, 85(14-15): 2141[5] Reilly J J, Wiswall R H. Inorganic Chemistry, 1974, 13(1): 218[6] Moon K I, Lee K S. Journal of Alloys and Compounds, 1998, 264: 258[7] Bhosle V, Baburaj E G, Miranova M et al. Materials Science and Engineering A, 2003, 356(1-2): 190[8] Bhosle V, Baburaj E G, Miranova M et al. Metallurgical and Materials Transactions A, 2003, 34: 2793[9] Jiménez C, Garcia-Moreno F, Pfretzschner B et al. Acta Materialia, 2011, 59(16): 6318[10] Jiménez C, Garcia-Moreno F, Rack A et al. Scripta Materialia, 2012, 66(10): 757[11] Lengeler B. Physical Review Letters, 1984, 53(1): 74[12] Yakel H L. Acta Crystallographica, 1958, 11(1): 46[13] LI J, Sheshin G A, Roggatz I et al. Journal of Low Temperature Physics, 1996, 102(1-2): 61[14] Schoenfelder C W, Swisher J H. Journal of Vacuum Science and Technology, 1973, 10(5): 862[15] FRAHM R. Nuclear Instruments and Methods in Physics Research A, 1988, 270: 578[16] Ravel B, Newville M. Journal of Synchrotron Radiation, 2005, 12(Pt 4): 537[17] Rehr J J, Albers R C. Reviews of Modern Physics, 2000, 72(3): 621[18] Alefeld G, Vlkl J. Hydrogen in Metals I. Topics in Applied Physics v 28, Berlin, New York: Springer-Verlag, 1978. 19[19] Numakura H, Koiwa M. Hydride Precipitation in Titanium. Acta Metallurgica, 1984. 32(10): 1799-1807[20] Woo O T, Weatherly G C, Coleman C E et al. Acta Metallurgica, 1985, 33(10): 1897[21] San-Martin A, Manchester F D. Bulletin of Alloy Phase Diagrams, 1987, 8(1): 30[22] XU Q C, Van der Ven A. Physical Review B, 2007, 76(6): 064207[23] Matysina Z A, Shchur D V. Russian Physics Journal, 2001, 44(1): 1237[24] Bashkin I O, Malyshev V Y, Ponyatovsky E G. Zeitschrift Fur Physikalische Chemie, 1993, 179: 119[25] Spreadborough J, Christian J W. Proceedings of the Physical Society of London, 1959, 74(479): 609
  • [1] Antonov V E, Bashkin I O, Fedotov V K et al. Physical Review B, 2006, 73(5): 6[2] Beeferman D, Lucas W F. United States Patent, vol. 5340012, 1994[3] Dillon A C, Gennett T, Alleman J L et al. Carbon Nanotube Materials for Hydrogen Storage. Proceedings of the 1999 U.S DOE Hydrogen Program Review. NREL/CP-570-26938, 1999[4] JIA F Q, Tsang S C. Fuel, 2006, 85(14-15): 2141[5] Reilly J J, Wiswall R H. Inorganic Chemistry, 1974, 13(1): 218[6] Moon K I, Lee K S. Journal of Alloys and Compounds, 1998, 264: 258[7] Bhosle V, Baburaj E G, Miranova M et al. Materials Science and Engineering A, 2003, 356(1-2): 190[8] Bhosle V, Baburaj E G, Miranova M et al. Metallurgical and Materials Transactions A, 2003, 34: 2793[9] Jiménez C, Garcia-Moreno F, Pfretzschner B et al. Acta Materialia, 2011, 59(16): 6318[10] Jiménez C, Garcia-Moreno F, Rack A et al. Scripta Materialia, 2012, 66(10): 757[11] Lengeler B. Physical Review Letters, 1984, 53(1): 74[12] Yakel H L. Acta Crystallographica, 1958, 11(1): 46[13] LI J, Sheshin G A, Roggatz I et al. Journal of Low Temperature Physics, 1996, 102(1-2): 61[14] Schoenfelder C W, Swisher J H. Journal of Vacuum Science and Technology, 1973, 10(5): 862[15] FRAHM R. Nuclear Instruments and Methods in Physics Research A, 1988, 270: 578[16] Ravel B, Newville M. Journal of Synchrotron Radiation, 2005, 12(Pt 4): 537[17] Rehr J J, Albers R C. Reviews of Modern Physics, 2000, 72(3): 621[18] Alefeld G, Vlkl J. Hydrogen in Metals I. Topics in Applied Physics v 28, Berlin, New York: Springer-Verlag, 1978. 19[19] Numakura H, Koiwa M. Hydride Precipitation in Titanium. Acta Metallurgica, 1984. 32(10): 1799-1807[20] Woo O T, Weatherly G C, Coleman C E et al. Acta Metallurgica, 1985, 33(10): 1897[21] San-Martin A, Manchester F D. Bulletin of Alloy Phase Diagrams, 1987, 8(1): 30[22] XU Q C, Van der Ven A. Physical Review B, 2007, 76(6): 064207[23] Matysina Z A, Shchur D V. Russian Physics Journal, 2001, 44(1): 1237[24] Bashkin I O, Malyshev V Y, Ponyatovsky E G. Zeitschrift Fur Physikalische Chemie, 1993, 179: 119[25] Spreadborough J, Christian J W. Proceedings of the Physical Society of London, 1959, 74(479): 609
  • 加载中

Get Citation
ZHOU Ying-Li, ZHENG Li-Rong, CHU Sheng-Qi, WU Min, AN Peng-Fei, ZHANG Jing and HU Tian-Dou. In-situ EXAFS study on the thermal decomposition of TiH2[J]. Chinese Physics C, 2014, 38(3): 038001. doi: 10.1088/1674-1137/38/3/038001
ZHOU Ying-Li, ZHENG Li-Rong, CHU Sheng-Qi, WU Min, AN Peng-Fei, ZHANG Jing and HU Tian-Dou. In-situ EXAFS study on the thermal decomposition of TiH2[J]. Chinese Physics C, 2014, 38(3): 038001.  doi: 10.1088/1674-1137/38/3/038001 shu
Milestone
Received: 2013-04-22
Revised: 1900-01-01
Article Metric

Article Views(2684)
PDF Downloads(269)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

In-situ EXAFS study on the thermal decomposition of TiH2

    Corresponding author: ZHOU Ying-Li,
    Corresponding author: HU Tian-Dou,

Abstract: Thermal decomposition behaviors of TiH2 powder under a owing helium atmosphere and in a low vac- uum condition have been studied using an in situ EXAFS technique. By an EXAFS analysis containing the multiple scattering paths including H atoms, the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained. The results demonstrate that the initial decomposition temperature is dependent on experi- mental conditions, which occurs, respectively, at about 300 and 400℃ in a low vacuum condition and under a owing helium atmosphere. During the decomposition process of TiH2 in a low vacuum condition, the sample experiences a phase change process:δ(TiH2)→δ (TiHx)→δ(TiHx)+β(TiHx)→δ(TiHx)+β(TiHx)+α(Ti)→β(TiHx)+α(Ti)→α(Ti)+β(Ti). This study o ers a way to detect the structural information of hydrogen. A detailed discussion about the decomposition process of TiH2 is given in this paper.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return