Holographic cusped Wilson loops in q-deformed AdS5× S5 spacetime

  • In this paper, a minimal surface in q-deformed AdS5× S5 with a cusp boundary is studied in detail. This minimal surface is dual to a cusped Wilson loop in dual field theory. We find that the area of the minimal surface has both logarithmic squared divergence and logarithmic divergence. The logarithmic squared divergence cannot be removed by either Legendre transformation or the usual geometric subtraction. We further make an analytic continuation to the Minkowski signature, taking the limit such that the two edges of the cusp become light-like, and extract the anomalous dimension from the coefficient of the logarithmic divergence. This anomalous dimension goes back smoothly to the results in the undeformed case when we take the limit that the deformation parameter goes to zero.
      PCAS:
  • 加载中
  • [1] Beisert N, Ahn C, Alday L F et al. Lett. Math. Phys., 2012, 99: 3[2] Pestun V. Commun. Math. Phys., 2012, 313: 71[3] Maldacena J M. Adv. Theor. Math. Phys., 1998, 2: 231[4] Gubser S S, Klebanov I R, Polyakov A M. Phys. Lett. B, 1998, 428: 105[5] Witten E. Adv. Theor. Math. Phys., 1998, 2: 253[6] Beisert N, Eden B, Staudacher M. J. Stat. Mech., 2007, 0701: 01021[7] Freyhult L. Lett. Math. Phys., 2012, 99: 255[8] Polyakov A M. Nucl. Phys. B, 1980, 164: 171[9] Brandt R A, Neri F, Sato M A. Phys. Rev. D, 1981, 24: 879[10] Gross D J, Wilczek F. Phys. Rev. D, 1974, 9: 980[11] Georgi H, Politzer H D. Phys. Rev. D, 1974, 9: 416[12] Korchemsky G P. Mod. Phys. Lett. A, 1989, 4: 1257[13] Korchemsky G P, Marchesini G. Nucl. Phys. B, 1993, 406: 225[14] Bassetto A, Korchemskaya I A, Korchemsky G P et al. Nucl. Phys. B, 1993, 408: 62[15] Gubser S S, Klebanov I R, Polyakov A M. Nucl. Phys. B, 2002, 636: 99[16] Rey S J, Yee J T. Eur. Phys. J. C, 2001, 22: 379-394[17] Maldacena J M. Phys. Rev. Lett., 1998, 80: 4859-4862[18] Kruczenski M. JHEP, 2002, 0212: 024[19] Makeenko Y. JHEP, 2003, 0301: 007[20] Drukker N, Gross D J, Ooguri H. Phys. Rev. D, 1999, 60: 125006[21] Kruczenski M, Roiban R, Tirziu A et al. Nucl. Phys. B, 2008, 791: 93[22] Ideguchi K. JHEP, 2004, 0409: 008[23] Beisert N, Roiban R. JHEP, 2005, 0511: 037[24] Solovyov A. JHEP, 2008, 0804: 013[25] Roiban R. JHEP, 2004, 0409: 023[26] Berenstein D, Cherkis S A. Nucl. Phys. B, 2004, 702: 49[27] Beisert N, Roiban R. JHEP, 2005, 0508: 039[28] Frolov S. JHEP, 2005, 0505: 069[29] CHEN B, WANG X J, WU Y S. JHEP, 2004, 0402: 029[30] CHEN B, WANG X J, WU Y S. Phys. Lett. B, 2004, 591: 170[31] Erler T, Mann N. JHEP, 2006, 0601: 131[32] Mann N, Vazquez S E. JHEP, 2007, 0704: 065[33] Zoubos K. Lett. Math. Phys., 2012, 99: 375[34] Pando Zayas L A, Terrero-Escalante C A. JHEP, 2010, 1009: 094[35] Basu P, Pando Zayas L A. Phys. Lett. B, 2011, 700: 243[36] Basu P, Pando Zayas L A. Phys. Rev. D, 2011, 84: 046006[37] Basu P, Das D, Ghosh A et al. JHEP, 2012, 1205: 077[38] Stepanchuk A, Tseytlin A A. J. Phys. A, 2013, 46: 125401[39] Chervonyi Y, Lunin O. JHEP, 2014, 1402: 061[40] David J R, Sadhukhan A. JHEP, 2014, 1410: 49[41] Delduc F, Magro M, Vicedo B. Phys. Rev. Lett., 2014, 112: 051601[42] Arutyunov G, Borsato R, Frolov S. JHEP, 2014, 1404: 002[43] Hoare B, Roiban R, Tseytlin A A. JHEP, 2014, 1406: 002[44] Arutyunov G, de Leeuw M, van Tongeren S J. arXiv:hepth/1403.6104[45] Kameyama T, Yoshida K. JHEP, 2014, 1408: 110[46] Ahn C, Bozhilov P. Phys. Lett. B, 2014, 737: 293[47] Arutyunov G, van Tongeren S J. arXiv:hepth/1406.2304[48] Arutyunov G, Medina-Rincon D. JHEP, 2014, 1410: 50[49] Banerjee A, Panigrahi K L. JHEP, 2014, 1409: 048[50] Delduc F, Magro M, Vicedo B. JHEP, 2014, 1410: 132[51] Hollowood T J, Miramontes T J, Schmidtt D M. JHEP, 2014, 1411: 009[52] Kameyama T, Yoshida K. arXiv:hepth/1408.2189[53] Frolov S, Roiban R. Workshop on Integrability in Gauge and String Theory, 2014[54] Arutyunov G, Borsato R, Frolov S. Workshop on Integrability in Gauge and String Theory, 2014[55] Kameyama T, Yoshida K. arXiv:hepth/1410.5544[56] Hoare B. arXiv:hepth/1411.1266[57] Lunin O, Roiban R, Tseytlin A A. arXiv:hepth/1411.1066[58] Engelund O T, Roiban R. arXiv:hepth/1412.5256[59] Ahn C, Bozhilov P. arXiv:hepth/1412.6668[60] Drukker N, Giombi S, Ricci R et al. JHEP, 2008, 0805: 017[61] Alday L F, Maldacena J M. JHEP, 2007, 0706: 064[62] Polyakov A M, Rychkov V S. Nucl. Phys. B, 2000, 581: 116[63] Ryu S, Takayanagi T. Phys. Rev. Lett., 2006, 96: 181602[64] Ryu S, Takayanagi T. JHEP, 2006, 0608: 045[65] Hubeny V E, Rangamani M, Takayanagi T. JHEP, 2007, 0707: 062[66] Bombelli L, Koul R K, Lee J et al. Phys. Rev. D, 1986, 34: 373[67] Srednicki M. Phys. Rev. Lett., 1993, 71: 666
  • 加载中

Get Citation
BAI Nan, CHEN Hui-Huang and WU Jun-Bao. Holographic cusped Wilson loops in q-deformed AdS5× S5 spacetime[J]. Chinese Physics C, 2015, 39(10): 103102. doi: 10.1088/1674-1137/39/10/103102
BAI Nan, CHEN Hui-Huang and WU Jun-Bao. Holographic cusped Wilson loops in q-deformed AdS5× S5 spacetime[J]. Chinese Physics C, 2015, 39(10): 103102.  doi: 10.1088/1674-1137/39/10/103102 shu
Milestone
Received: 2015-10-21
Revised: 2015-05-30
Article Metric

Article Views(1404)
PDF Downloads(38)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Holographic cusped Wilson loops in q-deformed AdS5× S5 spacetime

    Corresponding author: BAI Nan,
    Corresponding author: CHEN Hui-Huang,
    Corresponding author: WU Jun-Bao,

Abstract: In this paper, a minimal surface in q-deformed AdS5× S5 with a cusp boundary is studied in detail. This minimal surface is dual to a cusped Wilson loop in dual field theory. We find that the area of the minimal surface has both logarithmic squared divergence and logarithmic divergence. The logarithmic squared divergence cannot be removed by either Legendre transformation or the usual geometric subtraction. We further make an analytic continuation to the Minkowski signature, taking the limit such that the two edges of the cusp become light-like, and extract the anomalous dimension from the coefficient of the logarithmic divergence. This anomalous dimension goes back smoothly to the results in the undeformed case when we take the limit that the deformation parameter goes to zero.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return