Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

Get Citation
Chao Jin, Yi-Qing Guo and Hong-Bo Hu. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02[J]. Chinese Physics C, 2016, 40(1): 015101. doi: 10.1088/1674-1137/40/1/015101
Chao Jin, Yi-Qing Guo and Hong-Bo Hu. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02[J]. Chinese Physics C, 2016, 40(1): 015101.  doi: 10.1088/1674-1137/40/1/015101 shu
Milestone
Received: 2015-04-30
Revised: 2015-09-02
Fund

    Supported by Natural Sciences Foundation of China (11135010)

Article Metric

Article Views(1484)
PDF Downloads(133)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

    Corresponding author: Chao Jin,
  • 1. School of Physical Engineering, Zhengzhou University, Zhengzhou 450001, China
  • 2. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by Natural Sciences Foundation of China (11135010)

Abstract: The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra (ΔΦ= Φe--Φe+) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary.

    HTML

Reference (37)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return