×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Quantum-classical correspondence for the inverted oscillator

  • While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics.
      PCAS:
  • 加载中
  • [1] N. Bohr, Z. Phys., 13:117-165(1923)
    [2] A. O. Bolivar, Quantum-Classical Correspondence:Dynamical Quantization and the Classical Limit, (Berlin:Springer-Verlag, 2004)
    [3] S. Gentilini, M. C. Braidotti, G. Marcucci, E. DelRe, and C. Conti, Sci. Rep., 5:15816(2015)
    [4] A. Rauh, Symmetry, 8:46(1-12) (2016)
    [5] G. Wang, Y. C. Lai, and C. Grebogi, Sci. Rep., 6:35381(2016)
    [6] J. Bernal, A. Martn-Ruiz, and J. C. Garca-Melgarejo, J. Mod. Phys., 4:108-112(2013)
    [7] A. C. Oliveira, Physica A, 393:655-668(2014)
    [8] I. Hen and A. Kalev, arXiv:0701015v2[quant-ph] (2007)
    [9] A. Guth and S. Y. Pi, Phys. Rev. D, 32:1899-1920(1985)
    [10] T. Padmanabhan, Gen. Relativ. Gravit., 42:2743-2750(2010)
    [11] R. Brout, Z. Phys. B Condensed Matt., 68:339-341(1987)
    [12] R. Brout and P. Spindel, Nucl. Phys. B, 348:405-434(1991)
    [13] R. Casadio and G. Venturi, Phys. Lett. A, 199:33-39(1995)
    [14] R. Casadio and G. Venturi, Phys. Lett. A, 252:109-114(1999)
    [15] A. Davidson and B. Yellin, Gen. Relativ. Gravit., 46:1662(2014)
    [16] A. Jevicki and T. Yoneya, Nuclear Phys. B, 411:64-96(1994)
    [17] C. Yuce, A. Kilic, and A. Coruh, Phys. Scr., 74:114-116(2006)
    [18] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, arXiv:hep-th/9405196v1(1994)
    [19] H. C. Rosu, arXiv:gr-qc/9806075v1(1998)
    [20] H. Rosu, P. Espinoza, and M. Reyes, Nuovo Cim. B, 114:1439-1444(1999)
    [21] M. Kenmoku, K. Otsuki, K. Shigemoto, and K. Uehara, Classical Quant. Grav., 13:1751-1760(1996)
    [22] P. Roser and A. Valentini, Classical Quant. Grav., 31:245001(2014)
    [23] M. V. John, Gravitation Cosmol., 21:208-215(2015)
    [24] M. Fathi and S. Jalalzadeh, Int. J. Theor. Phys., 56:2167-2177(2017)
    [25] F.Darabi and M.Mousavi, Phys. Lett. B, 761:269-280(2016)
    [26] H. R. Lewis, Jr. Phys. Rev. Lett., 18:510-512(1967)
    [27] H. R. Lewis, Jr. and W. B. Riesenfeld, J. Math. Phys., 10:1458-1473(1969)
    [28] M. Maamache, Y. Bouguerra, and J. R. Choi, Prog. Theor. Exp. Phys., 2016:063A01(2016)
    [29] I. A. Pedrosa, A. L. de Lima, and A. M. de M. Carvalho, Can. J. Phys., 93:841-845(2015)
    [30] V. G. Bagrov, D. M. Gitman, E. S. Macedo, and A. S. Pereira, J. Phys. A:Math. Theor., 46:325305(2013)
    [31] M. V. Berry, and N. L. Balazs, Am. J. Phys., 47:264-267(1979)
    [32] T. Majumdar, M. K. Bhattacharyya, and K. R. Nayak, arXiv:1612.05380v1[quant-ph] (2016)
    [33] K. V. Zhukovsky and G. Dattoli, Appl. Math. Comput., 217:7966-7974(2011)
    [34] M. Berrehail, and F. Benamira, Indian J. Phys., 87:1023-1027(2013)
    [35] M. Feng, Phys. Rev. A, 64:034101(2001)
    [36] H. Bekkar, F. Benamira, and M. Maamache, Phys. Rev. A, 68:016101(2003)
    [37] J. R. Choi and S. S. Choi, J. Appl. Math. Comput., 17:495-508(2005)
    [38] J. R. Choi, Phys. Scr., 73:587-595, (2006)
    [39] J. R. Choi, Information theory and entropies for quantized optical waves in complex time-varying media, Chap. 6(pp, 121-138), Open Systems, Entanglement and Quantum Optics, (InTech, Rijeka, 2013)
    [40] P. Shadbolt, J. C. F. Mathews, A. Laing, and J. L. O'Brien, Nat. Phys., 10:278-286(2014)
    [41] C. Jaffe and P. Brumer, J. Chem. Phys., 82:2330-2340(1985)
    [42] M. Castagnino and O. Lombardi, Philosophy of Science, 72:764-776(2005)
    [43] K. Hinterbichler, J. Khoury, A. Levy, and A. Matas, Phys. Rev. D, 84:103521(2011)
    [44] G. Felder, A. Frolov, L. Kofman, and A. Linde Phys. Rev. D, 66:023507(2002)
    [45] I. Ya. Aref'eva, N. V. Bulatov, R. V. Gorbachev, S. Yu. Vernov, Class. Quantum Grav., 31:065007(2014)
  • 加载中

Get Citation
Mustapha Maamache and Jeong Ryeol Choi. Quantum-classical correspondence for the inverted oscillator[J]. Chinese Physics C, 2017, 41(11): 113106. doi: 10.1088/1674-1137/41/11/113106
Mustapha Maamache and Jeong Ryeol Choi. Quantum-classical correspondence for the inverted oscillator[J]. Chinese Physics C, 2017, 41(11): 113106.  doi: 10.1088/1674-1137/41/11/113106 shu
Milestone
Received: 2017-06-19
Fund

    Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

Article Metric

Article Views(1660)
PDF Downloads(34)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quantum-classical correspondence for the inverted oscillator

    Corresponding author: Jeong Ryeol Choi, choiardor@hanmail.net
  • 1.  Laboratoire de Physique Quantique et Systé
  • 2.  Department of Radiologic Technology, Daegu Health College, Buk-gu, Daegu 41453, Republic of Korea
Fund Project:  Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

Abstract: While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics.

    HTML

Reference (45)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return